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TRAVELING WAVE SOLUTIONS FOR FULLY PARABOLIC
KELLER-SEGEL CHEMOTAXIS SYSTEMS WITH
A LOGISTIC SOURCE

RACHIDI B. SALAKO, WENXIAN SHEN

ABSTRACT. This article concerns traveling wave solutions of the fully parabolic
Keller-Segel chemotaxis system with logistic source,
ur = Au—xV - (uVv) + u(a — bu), € RY,
T = Av — Av + pu, xeRN,
where x, i, A, a, b are positive numbers, and 7 > 0. Among others, it is proved

that if b > 2xp and 7 > %(1 - %)Jr, then for every ¢ > 2y/a, this system

has a traveling wave solution (u,v)(t,z) = (UT¢(x - € — ct), VT ¢(z - £ — ct))
(for all ¢ € RYV) connecting the two constant steady states (0,0) and (£, 5%),
and there is no such solutions with speed c less than 2y/a, which improves
the results established in [30], and shows that this system has a minimal wave
speed ¢ = 2+/a, which is independent of the chemotaxis.

1. INTRODUCTION

This work concerns traveling wave solutions of the fully parabolic chemotaxis
System
up = Au—xV - (uVo) +ula —bu), = €RY, 1
Top = Av— X+ pu, xeRY, (1.1)
where x, i, A, a,b are positive real numbers, 7 is a nonnegative real number, and
u(t,x) and v(t,z) denote the concentration functions of some mobile species and
chemical substance, respectively. Biologically, the positive constant y measures
the sensitivity effect on the mobile species by the chemical substance which is
produced overtime by the mobile species. The reaction term u(a — bu) in the first
equation of describes the local dynamics of the mobile species. A represents the
degradation rate of the chemical substance. p is the rate at which the mobile species
produces the chemical substance. The constant 1/7 in the case 7 > 0 measures the
diffusion rate of the chemical substance, and the case 7 = 0 is supposed to model
the situation when the chemical substance diffuses very quickly.
System is a simplified version of the chemotaxis system proposed by Keller
and Segel in [I8, [19]. Chemotaxis models describe the oriented movements of bi-
ological cells and organisms in response to certain chemical substances. These
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mathematical models play very important roles in a wide range of biological phe-
nomena and accordingly a considerable literature is concerned with their mathe-
matical analysis. The reader is referred to [I1 [12] for some detailed introduction
into the mathematics of Keller-Segel models.

One of the central problems about is whether a positive solution blows
up at a finite time. This problem has been studied in many papers in the case
that a = b = 0 (see [11}, 14} [16], 17, 25, B8, B9, 40]). It is known that finite time
blow-up may occur if either N = 2 and the total initial population mass is large
enough, or N > 3. It is also known that some radial solutions to in plane
collapse into a persistent Dirac-type singularity in the sense that a globally defined
measure-valued solution exists which has a singular part beyond some finite time
and asymptotically approaches a Dirac measure (see [23] [34]). We refer the reader
to [2, [13] and the references therein for more insights in the studies of chemotaxis
models.

When the constants a and b are positive, the finite time blow-up phenomena
in may be suppressed to some extent. In fact in this case, it is known that
when the space dimension is equal to one or two, solutions to on bounded
domains with Neumann boundary conditions and initial functions in a space of
certain integrable functions are defined for all time. And it is enough for the self
limitation coefficient b to be large enough compared to the chemotaxis sensitivity
coefficient to prevent finite time blow-up, see [I5, 311 [35].

Traveling wave solutions constitute another class of important solutions of (L.1).
Observe that, when y = 0, the first equation in chemotaxis system reduces to

uy = Au+u(a —bu), xRN, (1.2)

Due to the pioneering works of Fisher [7] and Kolmogorov, Petrowsky, Piskunov [20]
on traveling wave solutions and take-over properties of , is also referred to
as the Fisher-KPP equation. The following results are well known about traveling
wave solutions of . Equation has traveling wave solutions of the form
u(t,z) = ¢(z - & — ct) (€ € SN71) connecting 0 and ¢ (¢(—00) = 4, ¢(c0) = 0)
of all speeds ¢ > 2y/a and has no such traveling wave solutions of slower speed.
¢t = 2v/a is therefore the minimal wave speed of traveling wave solutions of
connecting 0 and ¢. Since the pioneering works by Fisher [7] and Kolmogorov,
Petrowsky, Piscunov [20], a huge amount of research has been carried out toward
the front propagation dynamics of reaction diffusion equations of the form

Ut = A’U,-'— uf(t,x,u), T e RNa (13)

where f(t,z,u) <0 for u> 1, 0, f(t,z,u) <0 for u > 0; see [II, 3] [4, [5 [6], 8, @, 2T,
99, 24], 26, 27, (32, [33, 56, 37, 41].

In [30], the authors of the current paper studied the existence of traveling wave
solutions of connecting the two constant steady states (0,0) and (%, 5%).
Roughly, in [30], it is proved that when the chemotaxis sensitivity x is small relative
to the logistic damping b, has traveling wave solutions connecting (0,0) and
(%, %) with speed ¢, which is bounded below by some constant ¢* > ¢fj = 2y/a and
is bounded above by some constant ¢** < oco. But many fundamental questions
remain open, for example, whether has traveling wave solutions connecting
(0,0) and (%, &%) with speed ¢ > 1; whether there is a minimal wave speed of
traveling wave solutions of connecting (0,0) and (§, 5 %), and if so, how the

chemotaxis affects the minimal wave speed.
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The objective of this article is to investigate those fundamental open questions.
To state the main results of the current paper, we first introduce the definition of
traveling wave solutions of (|1.1)) and the induced problems to be studied.

1.1. Traveling wave solutions and induced problems. An entire solution of
is a classical solution (u(t,z),v(t,x)) of which is defined for all z €
RY and t € RY. Note that the constant solutions (u(t,z),v(t,z)) = (0,0) and
(u(t,z),v(t,x)) = (4, 4%) are clearly two particular entire solutions of (L.I). An
entire solution of of the form (u(t,z),v(t,z)) = (U™(z-£—ct), VTC(x-&—ct))
for some unit vector £ € S™V~1 and some constant ¢ € R is called a traveling wave
solution with speed c¢. A traveling wave solution (u(t,z),v(t,z)) = (U™(x - & —
ct), Vhe(z - & —ct)) (€€ SN1) of with speed c is said to connect (0,0) and

(5, 56) 1f

liminf U™¢(z) = 2 and lim supU™“(z) = 0. (1.4)

T——00 b T—00
We say that a traveling wave solution (u(t,z),v(t,z)) = (U™%(x - & — ct), V(-
& —ct)) of (|1.1) is nontrivial and connects (0,0) at one end if
lig infU™(x) >0 and limsupU™°(x)=0. (1.5)
T——00 T—00
Observe that for given ¢ € R, a traveling wave solution (u(t, z),v(t, x)) = (U™ (-
E—ct),V™e(z- & —ct)) (€ € SN1) of (1.1) with speed ¢ connecting the states
(0,0) and (%, 5%) gives rise to a stationary solution (u,v) = (U™%(x),V"%(z)) of
the parabolic-elliptic system

Up = Uy + (¢ — xV)U) 2 + (a — bu)u, =z €R,

1.6
0=wvge +7TCV, — A0+ pu, x€R. (1.6)
connecting the states (0,0) and (%, §7)-

Conversely, if (u,v) = (U™¢(z), V™°(x)) is a stationary solution of connect-
ing the states (0,0) and (%, 5%), then (u(t,z),v(t,z)) = (UT(z-§ —ct), V7o (x- & —
ct)) is a traveling wave solution of with speed ¢ connecting the states (0, 0)
and (%, 4%2) for any (¢ € SVTL.

To study traveling wave solutions of with speed ¢ connecting the states (0, 0)
and (%, 4%) is then equivalent to study stationary solutions of connecting the

states (0,0) and (g, §%). It is clear that (1.6) is equivalent to

Ut = Uy + (€ — XUz )Uy + (@ — XVgz — DU)u, 2z ER, L7
0=vyy + 7TV, — A+ pu, z€R. (L7)
Hence, to study traveling wave solutions of ([1.1)) connecting the states (0,0) and
(¢, £2) we shall study steady state solutions of (1.7 connecting the states (0, 0)

b Nb
and (%, 57)-

Before stating the main results of the current paper, we next recall some existing
results on the existence of solutions of with given initial functions and existence
of steady state solutions of or traveling wave solutions of connecting the

states (0,0) and (%, 57).
1.2. Existing results. Let

Clit(R) = {u € C(R) : u(z) is uniformly cont. in z € R and sup |u(z)| < oo}
z€R

equipped with the norm ||u||s = sup,ep |u(z)].
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Proposition 1.1 (Local solution). For every monnegative initial function ug in
C? +(R) and c in R, there is a unique mazimal time Tpaz(uo), such that ([1.7) has
a unique classical solution (u(t,z;uo,c), v(t, z;ug,c)) defined for every x € R and
0 <t < Tmax(uo) with u(0,z;ug, c) = ug(x). Moreover if Tynaz(ug) < 0o then
i 510 =0

The above proposition can proved by similar arguments as those in [31, Theorem
1.1]. The following proposition follows from the arguments of [30, Theorems A and
B] (it is proved in [30, Theorems A and B] for the case that A = p = 1).
Proposition 1.2 (Global solution). Consider (L.7)).

(1) Assume that 0 < ’;“—\/TXC < b— xp. Then for any ug € C°_.;
Timax (o) = 0o0. Moreover,

(R) with 0 < g,

a
[[u(t, 0, ¢)[loo < max{||uol|oo, m}
2V/A
for every t > 0.
(2) Assume that 0 < L\fj\c < b—2xu. Then for any ug € C°

inf,er uo(x) >0,

(R) with

nif

Jim [t 00,€) = oo + [0 t50,¢) = 1] =0

Proposition 1.3. (1) For every T > 0, there is 0 < x& < ﬁ such that for
every 0 < x < x%, there exist two positive numbers 0 < ¢*(x,T) < ¢**(x, 7)
satisfying that for every ¢ € (¢*(x,7) , ¢ (x,T)), has a traveling wave
solution (u,v) = (U(x - & — ct),V(x - & — ct)) (V€ € SN7L) connecting the

constant solutions (0,0) and (§,5%). Moreover,
X

lim ¢ (x,T) = oo,

x—0+

2\/a if0<a< 2tra
IH&C*(X’T)_{ >\\{m a(l-7)¢ f > A:TEzI_T)Jr
X iy T e o2 a5y

U .
i Z@®7) g
r—o0 e KT
where K is the only solution of the equation k + = = c in the interval

(0, min{/a, (1\;";)’1 ).

(2) For any given 7 > 0 and x > 0, has no traveling wave solutions
(u,v) = (U(z-&—ct),V(x-£—ct)) (Vo € SN1) with (U(—o00),V(—o0)) =
(5:5%), (U(0),V(o0)) = (0,0), and ¢ < 2V/a.

As mentioned before, in the absence of chemotaxis (i.e. x = 0), ¢§ = 2v/a is
the minimal wave speed of the Fisher-KPP equation (1.2). Both biologically and
mathematically, it is interesting to know whether the results stated in Proposition
1.3(1) can be improved to the following: for any ¢ > ¢, has a traveling wave
solution (u(t,z),v(t,z)) = (U(z-£—ct),V(x-&—ct)) (for all & € SN~1) connecting
(3,5%) and (0,0), which implies that has a minimal wave speed, and the
chemotaxis does not affect the magnitude of the minimal wave speed.

Also, as mentioned before, this article is to investigate the above open problem

or to improve the results obtained in [30]. Roughly, we will show that there is no
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upper bound for the speeds of traveling wave solutions of ([L.1) and under some
natural conditions, ¢§ = 24/a is the minimal wave speed of (L.1)). The precise
statements of the main results are stated in next subsection.

1.3. Statements of main results. To state our main results, we first introduce
some notation. For given a c € R, let

1
B T T T Y/ 5
e VAN + 722
e = (Te+ VAN + 72¢2) e = (VAN + 12¢2 — 7¢)
1 — 2 ’ 2 — 9 B}
a+ K2

Cp =, Y0 < Kk < Va.
Note that A§ and —\§ are the positive and negative roots of the quadratic equation
m? +71em — X = 0.
Note also that )

AN =X and A{+ A = B . (1.8)
A, e, T

All the above quantities are defined for any 7 > 0.

Throughout this work, we suppose that ¢ > 0. This restriction is justified by
the fact that (1.1)) does not have a non-trivial traveling wave with speed ¢ < 0 (see
Proposition )

Note that, by ,

A5Bx.cr A AS(K — %)+
——— k= =] = < 1. 1.9
AS + K QZ A§)+ (AS 4+ A9) (K + AS) (1.9)
Hence the following quantity is well defined
A5t (k — ASP
b = sup{l + 2 (F A5 10 < k < +Va}. (1.10)

(A" + A7) (R + A57)

: * * * __ (\/E*\/X)Jr
It is clear that b} is defined for all 7 > 0, by < 2forall 7 > 0, and b = 1+ TR

For the sake of simplicity in the statements of our results, let us introduce the
following standing hypotheses.

(H1) b > xp.

(H2) b > bixp.

(H3) b > 2xp.

(H4) 7> % (1 - %)-i-
Observe that (H3) implies (H2), and (H2) implies (H1).

The following results about the existence of a global bounded classical solutions
and the stability of the positive constant equilibria of will be of great use in
our arguments.

Theorem 1.4. For any 7 > 0 and ¢ > 0, the following hold.
(i) If (H1) holds, then for every ug € Ct ..(R), with ug > 0, (1.7) has a unique
global classical solution (u(t, z;ug,c),v(t, x;ug,c)) on (0,00) x R satisfying
limg o+ [|u(0, s w0, ¢) —uo(-)|leo = 0. Moreover it holds that

u(t, -3 10, €)||os < maX{HuoHoo, L} t>0. (1.11)
"

b—
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(ii) If (H3) holds, then for every ug € C° .+(R), with inf,cg uo(z) > 0, we have
that

t—o0

) a aj
lim (Hu(t, 5 UQ, €) — EHOO + ||lv(t, 5 up, ) — ﬁ”"") =0. (1.12)

When 7 = 0, we recover [31, Theorems 1.5 & 1.8]. For 7 > 0, Theorem
improves the results stated in Proposition |1.2
Observe that the function (0,+/a) 3 k — A" — & is strictly decreasing. Hence
the quantity
kEi=sup{0 < k < Va| A" —k >0} (1.13)
is well defined. It holds that
A" —K>0

whenever 0 < k < k%. Note also that

A

K :min{\/a, (1—_|—777—')a+} (1.14)

Indeed, it holds that )\i‘/& > +/a for every 7 > 1. On the other hand, for 0 < 7 < 1,
if A\{" = & for some 0 < k < +/a, then it holds that

o)
A kTee —K2=0 < A+1a=(1-7)k* with k= 1+Ta.
-7

Hence (1.14]) holds. Let

c*(7) :/Qi—ki*. (1.15)
/{/T

Note that ¥ and ¢*(7) are defined for all 7 > 0, and

kg =min{V\,va}, ¢ (0) =min{V\, va} +

a
min{v'\, a}
We have the following theorem on the existence of traveling wave solutions of (1.1)).

Theorem 1.5. For any 7 > 0, the following hold.

(1) If (H2) holds, then for any ¢ > c*(7), (L.1) has a nontrivial traveling wave
solution (u,v)(t,z) = (U(x-& —cut), V(z- & —cut)) (VE € SNTL) satisfying
(1.5), where k € (0, kL) is such that ¢, = c. Furthermore, it holds that

U(x)

lim = 1. (1.16)
r—00 e KT
If in addition (H3) holds, then
. a
Jim [U(2) - 7] =0, (1.17)

(2) If (H2) and (H4) hold, then k* = \/a and ¢*(17) = 2\/a. Hence for any
¢ > 2+/a, the results in (1) hold true.

(3) Suppose that (H3) holds. Then system has a traveling wave solution
(u,v)(t,z) = (UT(x - € —ct, VT(z - & —ct)) (for all £ € SN1) with speed

c*(7) connecting (0,0) and (%, 75)-

Remark 1.6. (1) Note that the conditions in Proposition are x < x5 and
b > 2xu, which imply both (H2) and (H3). Hence the assumptions in Theorem
11.5((1) are weaker than those in Proposition for the existence of traveling wave
solutions. Note also that, by Theorem [I.5{(1), the lower bound c¢*(r) for the wave
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speed is independent of x, and the upper bound is co. By the proof of [30, Theorem
C], k* = min{/a, d‘_”‘i} is an upper bound found for the decay rate of traveling

™)

wave solutions found in [30]. Hence c*(x,7) > cxx = ¢*(7), that is, the lower bound
provided in Theorem [1.5|for the wave speed of traveling wave solutions of (L.1]) is not
larger than that provided in Proposmon- Moreover, under the assumptlons (H2)
and (H4), ¢*(7) = 2v/a < ¢*(x, 7). Therefore Theorem ﬂ 1.5 improves considerably
Proposition [T.3]

(2) Recall that b5 = 1+ (V2N ISy min{y/a, vA}, and ¢*(0) = kjj + <.

0 2(a+v) 70 ’ ’ 0 K

Hence Theorem in the case 7 = 0 recovers [28, Theorem 1.4].

(3) When A\ > a, ¢*(1) = ¢§ = 2¢/a for any 7 > 0. Hence if A > a and 0 <
xp < g hold, by Theorem for every 7 > 0 and ¢ > 24/a, has a traveling
wave solution (u,v)(t,z) = (U™, V™ C)(:v - ct) with speed ¢ connecting (0,0) and
(5> 15)- Whence if A > aand 0 < x < 5=, Theorem 1mphes that ¢§ = 2v/a
is the minimal wave speed of traveling Wave solutions of connecting (0,0)
and (7, 75 ), and that the chemotaxis does not affect the magnitude of the minimal
wave speed of . Biologically, A > a means that the degradation rate A of the
chemical substance is greater than the intrinsic growth rate a of the mobile species,
and 0 < xp < % indicates that the product of the chemotaxis sensitivity x and the
rate p at which the mobile species produces the chemical substance is less than half
of the logistic damping b.

(4) When A < a, ¢*(1) = ¢§ = 2/a for 7 > 1(1 — 2). Hence if A < a and
0<xu< % hold, by Theorem for every 7 > %(1 — %) and ¢ > 2+/a, has
a traveling wave solution (u,v)(t,x) = (U™, V7°)(x — ct) with speed ¢ connecting
(0,0) and (%, 7%). Thus in this case, Theorem also implies that ¢ = 2y/a is
the minimal wave speed of traveling wave solutions of connecting (0,0) and
(3, 3%), and that the chemotaxis does not affect the magnitude of the minimal
wave speed of (L1). Biologically, 7 > 1(1 — 2) indicates that diffusion rate of the
chemical substance is not big.

(5) By Theorem it holds that ¢*(7) = 2y/a whenever 7 > 1 and has

a minimal wave speed, which is ¢*(7). When A < @ and 0 < 7 < 3, it remains
open whether has a minimal wave speed, and if so, whether the minimal wave
speed equals 2v/a. It would be interesting to study the stability of the traveling
wave solutions of . When 7 = 0, the spreading speeds of solutions of
with compactly supported initial functions are studied in [28]. It would be also
interesting to study these spreading results when 7 > 0, which we plan to carry out

in our future work.

The rest of this article is organized as follows. In Section 2, we prove some
preliminaries results to use in the subsequent sections. Section 3 is devoted to the
proof of Theorem [I.4] while Section 4 is devoted to the proof of Theorem [L.5]

2. PRELIMINARY LEMMAS

In this section, we prove some lemmas to be used in the proofs of the main
results in the later sections. Throughout of this section, we assume 7 > 0. For
u€ Ct (R) and c € R, let

_lztros—yl? Mk

U(z;u,c,T) / / e u(y) dy ds. (2.1)
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It is well known that ¥(x;u,c,7) € C,

2 +(R) and solves the elliptic equation

d? d

@‘If(x; u, ¢, T) + TC%\IJ({E;U, e, T) — AV (z;u,¢,7) + pu = 0.
Lemma 2.1. [t holds that

—\/4)\+T262|r2,—y\—rc(w—y)

W(x;u,c, T u(y)d
( )= m / (w)dy 22)
=By c.r (e*“x / MYu(y)dy + " / e’AgyU(y)dy)
and
L wauem)

@ oo (2.3)
:uB,\,C’T(—)\fe_’\i“’/ AMVu(y)dy + Nse ’\21/ e_’\gyu(y)dy).

— 00 x

Proof. For the case 7 = 0, this lemma is proved in [28, Lemma 2.1]. In the following,
we prove the case that 7 > 0. Observe that it is sufficient to prove the result for
7 = 1. The general case follows by replacing ¢ by 7c. So, without loss of generality,
we set 7 = 1. First, observe that the following identity holds,

e 4s e B
[,
o VA4rs 2
Next using Fubini’s Theorem, one can exchange the order of integration in (2.1))
to obtain

V3 > 0. (2.4)

T+m |ztes—yl2

7)\5
U (z;u,c,1) / / u(y) dyds
47rs

\r+cs y|2

—u/ / T ASds] (y)dy (2.5)

[( 0P| aed) ]

:/Re—c(mzy)[/ooo c. T — ds}u(y)dy

By the change of variables z = % and taking 8 = 7“1’\2"'“2@ —y|, from (2.4)
it follows that

— [ @rieh ]
4s 4 1 _Vaxre|a—y|
2

ds = / dz = e
/0 47s VAN +c? Jo  VArz VAN + 2
This together with (2.5) implies that
I VDt lr—y|—c(z=y)
\I/:c;u,c,lzi/e 2 u(y) dy.
e = s )y
Thus (2.2) holds. Note that (2.3]) then follows from a direction calculation. O

Lemma 2.2. For every u € C° ..(R), u(z) >0, it holds that

d
|d—\11(x;u,c, ) < AN¥(z;u,¢,7), VreR, ceR. (2.6)
x
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Furthermore, it holds that

MX/J, B)\,C’T ((Tc—i— H))\Q — )\)+
Xk (5 u,6,7) = xWao(5ue,m) < = ( o) - 1) (2.7)
whenever 0 < u(x) < Me™"* for some k >0 and M > 0.
In particular, if
By, .,-((TC + K)o — /\)+
o 1) <b, 2.8
wr( Oz + ) )= (28)
then
Xk (s u,e,7) — XVan(z3u,0,7) — bMe ™™ <0, VzeR, (2.9)

whenever 0 < u(z) < Me "% for some positive real numbers k > 0 and M > 0.

Proof. For the case that 7 = 0, this lemma is proved in [28] Lemma 2.2]. In the
following, we prove the lemma for any 7 > 0.

First, by (2.2) and (2.3)), we have
< VAN + 1262 + 1¢

d
|%\I/(x;u,c,7)| < 5 U(z;u,c,T).
This implies (2.6).
Next, we prove (2.9). It follows from (2.1) and (2.3]) that
XV (x5 u, e, 7)) — X Von (250, ¢, 7) (2.10)
= xkU(x;u,¢,7) — x(AV(2;u,¢,7) — TV, (x;u, ¢, T) — pu) (2.11)
=x(rc+ &)U (x;u, ¢, 7) — XA (250, ¢, T) + xpu (2.12)
T
= —XUBxcr ((Te+ K)A] + N) e~ 1® / eMYu(y)dy (2.13)
FXHBrer (e 1) = N5 [ eimu(y)dy -+ xpn (2.14)

Hence, since 0 < u < Me™"*, it follows that

X (KJ\IJI(ZL';U, C, T) - \Ilzz(xa u, ¢, T))

c o0 c M
S XUBxer ((Te+ R)AG = )| Me2® / e 2Ye ™ Y dy 4 X:T
B ((Te+K)AS = A) L
e 1)
X ( (5 + )
Hence, (2.7) follows. O
Remark 2.3. Observe that
reXs = A =7 (Vax+ 72 —re) = A
B 2X\Tc )
VAN + T2¢2 + TC (2.15)
AN
=— < 0.

AT
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Hence
B c,T
SET (76X — A4 =0,
AS
BACT )\EB)\CT A
Baer 5 3) = MBhen ()
Ag+/~;(<m+”)2 + T e T
We also note from (1.8)) that
A A
B M(f —) ~ 1. 2.16
rer (52 T 5g (2.16)

These identities will be frequently used later.

For 0 < k < & < y/a with & < 2k and M, D > 1, consider the functions ¢ (z),
Uy,p(z), and U, p(z) given by

or(x) =", (2.17)
Up(x) = pi(z) — Dor(z), z€R, (2.18)
Uy om(z) = min{M, . (x)}, (2.19)

Dyi(x), *>7Tup

U,p(x)= {i”gz) (2.20)

x,0) — Doi(Te.p), =<k p,
where T,; p satisfies

max{py(r) — Dpz(z) : © € R} = ¢ (T, p) — Dpi(Tw.D)- (2.21)
Letting z,. p := In(D) “it holds that

>0 ifz> ,
a7 0 > e
<0, ifzx< Z. p-

For u € C?_(R), let
Ay c(U) =Ugp + (¢ — XV (54,6, 7)) Uy + (@ — xVsu(5u,c,7) —0U)U.  (2.22)

Lemma 2.4. For a given T > 0, assume that (H2) holds and 0 < k < k¥. Then
there is D* > 1 such that for every D > D*, M >0, and

ue € :={ucCl(R): max{Up(z),0} <u(z) <min{M,p.(z)};Ve € R}
it holds that

nif

Au,e,(Up) 20 V€ (2, p,0). (2.23)
Proof. We first note that (H2) implies , and K < kX implies
A > K. (2.24)
Let u € & be given and U~ (z) = Up, (). Then

A, (UT)

= Upz + (en = XWa 54, 6:))Uy + (@ = XxWap — DU )U™

= (K% — E*De™ ") + (¢ — xVs)(—ke ™ + EDe™ ") + a(e™"* — De™ ")
= (XWar +0UT)U™

~ 2 ~
= M — XV (RDe ™ — ke ™) — (x(A\V — pu — 7¢,V,) + U )U™
e x
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= DAKefl_” — XU, (—ke ™" £ EDe ") — (\AU — xpu — Te XV, + U )U™
> DApe M 4\ W, (ke " — RDe ) + (=AU + 7o Wy — (b— xu) U )U ™

I Iz

where A,, := &c,, — #? — a. Next, observe that since Af® > k, it folows that

)‘CN > u(y) )‘CN N U(y) — KT ~ —Rx
]Il :/*’LB)\,CN,T (6_)\2@.-, / )\;xm - )xil"'af / dy) (Re — kDe )

2" e e oo €AY
Ii)\cﬁ' r ck RD)\CK & c
> — 1 AT"y 2 “ASRy )
- /J“BAaCmT (e(Aim_i_R)m ‘/_OO et U(y)dy + e_()\gn_k)l. /]; € 2 u(y)

KR * . EDM5¢ o cr
el HDXxc,., T e(}\lm_i_n)m - Y e_()\zm_ﬁ)x .

RAS® . RDNSF ~
=—uBy. - 1 —(2k—R)x 2 _—kx\ _ —Fkx
HDX e, <A{i'€*lie +)\§'€7+K,e )6
and
Io + (b — xp) (e~ 2% — De~(Rtr)z)
X/’LB)\,CH,T
(e V[T ) (et VN ) e
e N er2"v eM" e Lo €7NY y
b— D ~
+(X,UB§M) U™ (x)e™™*
o ((Tcn AT [T u(y) dy + (e = N)=AFU () [ uly) dy)
= e()\TN+n):n . ef)\iﬁy e,)\gmz . €>\§Ry
- ((Tcﬁ + AT [T u(y) dy+ (Tew — A=A [ u(y) i )
= e()\im-i,-n)z o e_)\?iy Y 6_(>‘;K_F”)z 6>‘§Ny Y
(TC;{ + )\))\iﬁ z (/\cm_ ) (TCH — )\)7)\55 o0 (NS
>_ (Ve T AN k)Y Tl = A=Ay (A" +r)y )
- ( e(A[" +r)z —ooe ' dy + e~ (A" —k)z - ¢ : dy

_ ((Tc,{ + A)AT" N (Terw — N)_Ag" )672,%
Aj* — K ASE + kK '
Thus, with D > 1, 0 < k1 := 2k — £ <K, and > z,, p > 0, it holds that

(H+(TCN+)\))>\({N (RD4(Tcr—A)4)A5"
AW - DB (SR + PR ) + (0 — )]
e—kx - K eﬁ’lln.D
Setting & = k + 1, we have A,; > 0 and
e F12ep = ¢~ T In(D) 4ifn .

n

Therefore, for 0 < n < min{%,/a — x}, it holds that
Kk < k= K +n < min{2k, Va},

R0,
n
(5+D(cAA)A | (RD+(ca—X) 1 )ASF
XHBxc,r o O + (b —xn)
lim (DA,{f [ ( et — s ) ])oo
D—oo e"%r.D
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Therefore, there is D* > 1 such that (2.23) holds for every D > D* and u € £. O

3. PROOF OF THEOREM [I.4]

Proof of Theorem[I]]. (1) Let (u(t,x;uo,c),v(t, z;ug,c)) be defined on [0, Tnax)-
Note by Proposition that to show that Ti,.x = 00, it is sufficient the prove that
holds. For every T € (0, Tinax) let Mz = supg<;<r [[u(t, ;3 uo, ¢)[|oo- With
k=0 and M = M, it follows from that
Bycr(TCAS — A)
AS

for 0 < t < T. Hence, by the comparison principle for parabolic equations, it holds
that

Ut Suxm+(C_sz)Uz+ (a+X;U'( + +1)MT_bu)ua

a+w(%?§—k>+ +1) My
b

Ju(t, 50, €)oo < max { e, }ovee T
Hence, if M7 > |Jug||oo, we must have

a+ XM(—BM’T(T)\Z:)\;_)\)+ + 1) My

T >

b
By (2.15)), (teA§ — A)+ = 0. Hence
Mp<—2
b—xp
Therefore,
a

MT SmaX{HuOHMM }a O<T<ﬂnaxa
y2i

h—
which yield that Ti,.x = 0o, and by Remark we conclude that ([1.11)) holds.

(2) We show that holds. We follow the ideas of the proof of [31] Theorem
1.8]. Let

u = limsup ||u(t, ;; ug, €)||oc  and w := liminf inf u(¢, z;ug, ¢).
t—00 t—oo z€eR

Since infyer uo(z) > 0, it follows from the arguments in [29, Theorem 1.2 (i) ] that
0 <u <u< oco. It suffices to prove that
a
=u=—. 3.1
u=1u=y (3.1)
To this end, for T' > 0, let
up = t, x; d := inf inf u(t, x; .
ur fggilégu( ,xyup,c) and  up tlgT;rel]Ru( , X3 U, C)
Let
L(u) = Ugy + (€ = XVz)Ug.
By (2.10) (with x = 0), for every t > T and = € R, it holds

up — L(u) + (b= xp)u?

< (a — XtBx e (TCA] + )\)e_)‘ix/ ekfygTdy)u

— 00

TeAS — A * w TeAS — N [ u
+XMBA,C,T(( 2 )+/ T gy TN / = dy)u
xr

e—)\gm e)\gy e—)\gz

AL A
= (a + XpBx e, ((T¢ — )\—g)+uT — (e + A—%)QT — (re— )\—g)_gT))u
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Hence, by comparison principle for parabolic equations, it holds that

(0= x0T < @+ B (7= 5)2r = (re S up = (re = 50) )

Letting T' — oo, we obtain

A5 — A AL+ A AS— )
(b—X,LL)ﬂSCL—i—X/J/B)\CT((TC 2 )+H_(TC 1+ )y_(TC 2 ) E) (32)
U X X5
Similarly, from (2.10)) (with x = 0) it follows for every t > T' and = € R that

uy — L(u) + (b — xp)u?

> (a — XtBx,c,r (TCA] + )\)e”‘iw/ e)‘fyﬂTdy>u

(TeX§ =N+ [ up (TeX§—N)= [ ar
+ X“BM’T( EOYE BT X5y dy)“
A A A
= (a + XpBe,r ((Tc = F)+QT —(te+ F)ET — (rc— F)_ET))u
2 1 2
Hence, by the comparison principle for parabolic equations, it folows that
A A A
(b= Xp) > a -+ XpuBxer ((re = <)ty — (re+ S )ar — (re— ) -r ).
2 1 2
Letting T' — oo, we obtain that
A+ A AS — A AS — A
(b—xp)u > a+quA,c,T(— (re s g (725 . b, (% . ) ﬂ) (3.3)
Af Ag Ag

Since (7¢A§ — A)+ = 0 by (2.15), by adding side-by-side inequalities (2.10) and
(13.2), we obtain
. TS + A A—TCAS)\ ,_
(b — )~ w) <xpBr e (2 BTNy
1 2

=X1Bhcr <A/\1 + AAQ) (@ — w).

By (2.16)), we have BA,C,T(%; + %) = 1. Thus, since (H3) holds, we conclude that
u="1u. By ‘ s ‘ ) and ‘ ; We have

(b—xp)u=a+ XMBA,C,T( -

(TeA + X) n TCA§ — Ag)

u
AT AS
=a — xpu.
This implies (3.1)), and (2) thus follows. O

4. PROOF OF THEOREM

In this section, following the techniques developed in [30], we present the proof of
Theorem [1.50 Without loss of generality, we assume that N =1 in . Through
this section we suppose that (H2) holds and 0 < s < k%. We choose 0 < 5 <
min{2x,/a — r} and set & = £ +n and M = ;2. We fix a constant D > D",
where D* is given by Lemma Define

&:={uecClyR): U.p<u<Usn}
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where Uy ar and U, p are given by (2.19) and (2.23) respectively. For u € £, we
let U(t,x;u) denote the solution of the parabolic equation

Ut:Au,cK(U), .’EGR,t>O
_ (4.1)
U,z2) =Uxm, z€R
Lemma 4.1. (i) For every u € &, the function U(t,x) = M satisfies the
inequality Ay, (U) <0 on R x R.
(ii) For every u € &, the function U(t,x) = e™"* satisfies Ay, (U) < 0 on
R x R.
(iti) For every u € &, the function U(t,z) = Up, where Uy, is given by [213),
satisfies Ay, (U) >0 on R x (2, p,00).
(iv) Suppose that (H3) holds. There 0 < 0 < 1 such that for every u € E, the
function U(t,x) = § satisfies Ay, (U) >0 on R x R.

The proof of the above lemma follows from Lemmas [2.2] and

Proof of Theorem[1.5. (1) Thanks to Lemma for D > D*, it follows by the
comparison principle for parabolic equations that

Ulte, z;u) < Ul(ty,z;u), Ve eR, 0<1t; <t Yue E.
Hence the function

Ulz;u) = lim U(t, z;u,¢0), ueé

t—o0

is well defined. Moreover, by estimates for parabolic equations, it follows that
U + (¢ — V(50,0 Uz + (@ — xWuu(su,c0) —DU)U =0, 1z €R,
and
U(u,cq) €E Yuel.
Next we endow € with the compact open topology. From this point, it follows from
the arguments of the proof of [30, Theorem 4.1] that the function

Esum U(su,c,) €&
is compact and continuous. Hence, by the Schauder’s fixed point theorem, it has a
fixed point, say u*. Clearly, (u,v)(t,x) = (u*, U(-;u*, cx))(x — ckt) is a nontrivial
traveling wave solution of (1.1)) satisfying (1.16]). The proof that
liminf u*(z) > 0

T——00
follows from [10, Theorem 1.1 (i)].
If (H3) holds, it follows from Lemma (iv) that for D > D*, it holds that

EdurU(su,cy) €E.

Hence
liminf u*(z) > 0.

r——00
Therefore, by the stability of the positive constant equilibrium established in The-

orem it follows that
lim w*(x) = 4
T——00 b’

This completes the proof of Theorem (1).
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(2) Observe that ¢*(7) = c4:, and, by (1.14)),

A+Ta }
(I=7)+

This implies that, if A > a or 7 > 1, k* = \/a and then ¢*(7) = 2y/a. In the case
A< aand 7 <1, (H4) implies that 7 > %(1 — %) This implies that 27a > a — A
and then a < A% Hence we also have k¥ = y/a and ¢*(1) = 2y/a. (2) then
follows from (1).

Ky = min {\/a,

(3) Let {cn}n>1 be a sequence of real numbers satisfying ¢, > ¢*(7) and ¢, —
c¢*(1) as n — oo. For each n > 1, let (U7 (), V7 (x)) denote a traveling wave
solution of with speed ¢, connecting (0,0) and (¢, %) given by Theorem
(1). For each n > 1, since the set {x € R: U7 (z) = g} is bounded and closed,
hence compact, then it has a minimal element, say x,,. Next, consider the sequence
{U™(z),V"™(x)}n>1 defined by

U™(x),V*(x)) = U (x + zp), V" (x+x,)), VreR, n>1.

Then, for every n > 1, (u(t,z),v(t,z)) = (U™(z — cnt), V™ (z — cpt)) it a traveling
wave solution of (1.1) with speed ¢, satisfying

Un(c0) =0, U™(0)=~, and U"(z)>

ni_)— 2
U"(—00) = %’

5 for every z < 0.

&l =

Note that
U™ |oo = U7

o < —2 Vn>1.
b—xp

Hence by estimates for parabolic equations, without loss of generality, we may
suppose that (U™, V") — (U*,V*) locally uniformly in C?(R). Moreover, the
function (U*, V*) satisfies

0=U;,+ (c"(7) = xXV)Us + (a — XV, —bUU*, 2x€R

4.2
0=V, +7c"(N)V; = AV +uU", z€eR, (42)
and a u a
Ut|oo < , U(0)==, U'(x)>= V<0,
0l < s VO = U@ 2 g )

U*(z) >0, VzeR.
Hence, since (H3) holds, it follows by the stability of the positive constant equilib-
rium giving by Theorem (2) that
. sy @
Jm UT(@) = 3

So, to complete this proof, it remains to show that

limsupU*(z) = 0. (4.4)

r—00

Suppose by contradiction that (4.4) does not hold. Whence, there is a sequence
{yn}n21 with y1 =0, yn < Yn+1, Yn — 00 as n — 00, and

lim U*(y,) = limsup U*(z) > 0. (4.5)

n—00 T—00
Consider a sequence {2, },>1 given by

U*(zn) = min{U"(2) |yn < 2 < ypt1}, Vn>1.
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Thus

n— oo

lim U*(z,) = ;IelufaU ().

Note that inf,cgr U*(z) = 0, otherwise since (H3) holds, we would have from Theo-
rem (2) that U*(x) = ¢, which contradicts to (4.3]). Thus, there is some ng > 1

= 37
such that z, is a local minimum point for every n > ng, and hence
Ur(zn) >0 and Uj(z,) =0, Vn>ng. (4.6)

By (4.3), |[U*]|eo < 5=+ then it follows from the first equation of (4.2)), from
(2.10) with xk =0 and M = ﬁ7 that

A A a
0>(J>,< *— V*U* - Bc*Ti* Ti_b_ (]>k U*,
> Uy, + (¢ = XV2)U; + (0= xuBhee, S v el U D) )
where ¢* = ¢*(7), which combined with (2.16) yield
0>U —xVHU. —=—= — (b—xu)U" U™ 4.7

> Ul + (1) = V) Us + (S5 =25 = (0= xU”) (4.7)
But lim, 0o U*(2,) = 0 and (4.6]) imply that there is ny > ng such that

Upe(2ny) 20, Ugz(zn,) =0, v U*(zn,) > 0.
This contradicts (4.7)), since U*(zp,) > 0. Therefore (4.4]) holds. O
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