Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 47, pp. 1-10. Title: Positive solutions of Schrodinger-Poisson systems with Hardy potential and indefinite nonlinearity Authors: Yongyi Lan (Jimei Univ., Xiamen, China) Biyun Tang (Jimei Univ., Xiamen, China) Xian Hu (Jimei Univ., Xiamen, China) Abstract: In this article, we study the nonlinear Schrodinger-Poisson system $$\displaylines{ -\Delta u+u-\mu\frac{u}{|x|^2}+l(x) \phi u=k(x)|u|^{p-2}u \quad x\in\mathbb{R}^3, \cr -\Delta\phi=l(x)u^2 \quad x\in\mathbb{R}^3, }$$ where $k\in C(\mathbb{R}^3)$ and 4<p<6, k changes sign in $\mathbb{R}^3$ and $\limsup_{|x|\to\infty}k(x)=k_{\infty}<0$. We prove that Schrodinger-Poisson systems with Hardy potential and indefinite nonlinearity have at least one positive solution, using variational methods. Submitted April 6, 2020. Published May 21, 2020. Math Subject Classifications: 35J20, 35J70. Key Words: Hardy potential; variational methods; indefinite nonlinearity; positive solution.