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GLOBAL STABILITY OF TRAVELING WAVES FOR DELAY

REACTION-DIFFUSION SYSTEMS WITHOUT

QUASI-MONOTONICITY

SI SU, GUO-BAO ZHANG

Abstract. This article concerns the global stability of traveling waves of

a reaction-diffusion system with delay and without quasi-monotonicity. We
prove that the traveling waves (monotone or non-monotone) are exponentially

stable in L∞(R) with the exponential convergence rate t−1/2e−µt for some con-

stant µ > 0. We use the Fourier transform and the weighted energy method
with a suitably weight function.

1. Introduction

This article is devoted to studying the delay reaction-diffusion system

∂

∂t
u1(x, t) = d1

∂2

∂x2
u1(x, t)− αu1(x, t) + h(u2(x, t− τ1)),

∂

∂t
u2(x, t) = d2

∂2

∂x2
u2(x, t)− βu2(x, t) + g(u1(x, t− τ2)).

(1.1)

Here u1(x, t) and u2(x, t) stand for the spatial density of the bacterial population
and the infective human population at point x ∈ R and time t ≥ 0, respectively.
Both bacteria and humans are assumed to diffuse, d1 and d2 are diffusion coeffi-
cients; the term αu1 is the natural death rate of the bacterial population and the
nonlinearity h(u2) is the contribution of the infective humans to the growth rate
of the bacterial; βu2 is the natural diminishing rate of the infective population due
to the finite mean duration of the infectious population and the nonlinearity g(u1)
is the infection rate of the human population under the assumption that the total
susceptible human population is constant during the evolution of the epidemic, and
τ1, τ2 are time delays.

Wu and Hsu [23] have already established the existence and qualitative features
of solutions of (1.1). For the particular case τi = 0, i = 1, 2, system (1.1) becomes
the non-delay reaction-diffusion system

∂

∂t
u1(x, t) = d1

∂2

∂x2
u1(x, t)− αu1(x, t) + h(u2(x, t)),

∂

∂t
u2(x, t) = d2

∂2

∂x2
u2(x, t)− βu2(x, t) + g(u1(x, t)).

(1.2)
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Hsu and Yang [6] studied the existence, uniqueness, monotonicity and asymptotic
behavior of monostable traveling wave solutions of (1.2). For τ1 = 0 and h(u2) =
γu2 in (1.1), Freedman and Zhao [3] presented a threshold result for the global
dynamics of the epidemic system

∂

∂t
u1(x, t) = d1

∂2

∂x2
u1(x, t)− αu1(x, t) + γu2(x, t),

∂

∂t
u2(x, t) = d2

∂2

∂x2
u2(x, t)− βu2(x, t) + g(u1(x, t− τ)).

(1.3)

The epidemic model (1.3) with τ = 0 was first proposed and analyzed by Capasso
and Maddalena [1]. When d2 = 0, system (1.3) becomes

∂

∂t
u1(x, t) = d1

∂2

∂x2
u1(x, t)− αu1(x, t) + γu2(x, t),

∂

∂t
u2(x, t) = −βu2(x, t) + g(u1(x, t− τ)).

(1.4)

Thieme and Zhao [20] investigated the existence of spreading speed and minimal
wave speed of (1.4) in the quasi-monotone case. The results in [20] were then ex-
tended by Wu and Liu [22] to the non-quasi-monotone case by constructing two
auxiliary monotone integral equations. Yang, Li and Wu [25, 26] studied the sta-
bility of traveling wave solutions of (1.4) in both the quasi-monotone case and the
non-quasi-monotone case by using the weighted energy method. When τ = 0 in
(1.4), Xu and Zhao [24] proved the existence, uniqueness (up to translation) and
globally exponential stability of bistable traveling wave fronts of (1.4), and Zhao
and Wang [31] proved the existence and non-existence of monostable traveling wave
fronts of (1.4).

More recently, Hsu, Yang and Yu [7] studied the existence and exponential sta-
bility of traveling wave solutions for general delay reaction-diffusion systems

∂

∂t
u1(x, t) = d1

∂2

∂x2
u1(x, t) + h(u1(x, t), u1(x, t− τ̂1), u2(x, t− τ2)),

∂

∂t
u2(x, t) = d2

∂2

∂x2
u2(x, t) + g(u2(x, t), u1(x, t− τ1), u2(x, t− τ̂2)).

(1.5)

When system (1.5) is monotone, by applying the techniques of weighted energy
method and the comparison principle, they showed that the traveling wave solutions
of (1.5) are exponentially stable provided that the initial perturbations around
the traveling wave fronts belong to a suitable weighted Sobolev space. To the
best of our knowledge, global stability for traveling wave solutions of (1.1)-(1.5)
without monotonicity have not been considered. The purpose of this article is
to establish the global stability of traveling waves of (1.1) with τ1 = τ2, without
quasi-monotonicity.

The stability of traveling waves for various evolution equations has been exten-
sively studied. We refer the readers to [4, 5, 9, 10, 11, 13, 14, 15, 18, 19, 21, 26] for
reaction-diffusion equations and to [8, 12, 17, 27, 28, 29, 30] for nonlocal dispersal
equations. Note that when the evolution equations are non-monotone, the compar-
ison principle is not applicable. Thus, the frequently used methods for the stability
of traveling waves, such as the squeezing technique, the method of combination
of the comparison principle and the weighted energy method are not applicable.
Recently, the weighted energy method without the comparison principle was used
to prove the stability of traveling waves of nonmonotone equations, see Chern et al.
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[2], Huang et al. [8], Li et al. [9], Wu et al. [21], Yang et al. [26], Zhang and Ma [28]
and Zhang et al. [30]. In particular, Yang et al. [26] studied the stability of traveling
waves of (1.4) without quasi-monotonicity. Zhang, Li and Feng [30] further investi-

gated the stability of traveling waves of (1.4) by replacing d ∂2

∂x2u1 with d(J∗u1−u1).
However, local stability of traveling waves has been obtained only for perturbations
around the traveling wave with properly small weighted norm. Recently, Mei et
al. [16] established the global stability for the oscillatory traveling waves of local
Nicholson’s blowflies equations by using the anti-weighted energy method together
with the Fourier transform. Zhang [29] applied this method to a nonlocal dispersal
equation with time delay and obtained the global stability of traveling waves. Mo-
tivated by [12, 16, 29], we shall extend this method to the study of global stability
of traveling waves of reaction-diffusion system (1.1) without quasi-monotonicity.

The rest of this article is organized as follows. In Section 2, we present some
preliminaries and summarize our main results. Section 3 is dedicated to the global
stability of traveling waves of (1.1) by the Fourier transform and the weighted
energy method, when h(u) and g(u) are not monotone.

2. Preliminaries and statement main results

Throughout this article, we assume that τ1 = τ2 = τ in (1.1), that the initial
data satisfies

ui(x, s) = ui0(x, s), x ∈ R, s ∈ [−τ, 0], i = 1, 2. (2.1)

Now we state some basic assumptions on the nonlinearities g and h.

(H1) g ∈ C2([0,K1],R), g(0) = h(0) = 0, K2 = g(K1)/β > 0, h ∈ C2([0,K2],R),
h(g(K1)/β) = αK1, h(g(u)/β) > αu for u ∈ (0,K1), where K1 is a positive
constant.

(H2) |g′(u)| ≤ g′(0) and |h′(v)| ≤ h′(0) for u, v ∈ [0,+∞).

From (H1), we see that the spatially homogeneous system of (1.1) admits two
constant equilibria

(u1−, u2−) = (0, 0) =: 0 and (u1+, u2+) = (K1,K2) =: K.

A traveling wave solution (in short, traveling wave) of (1.1) is a special trans-
lation invariant solution of the form (u1(x, t), u2(x, t)) = (φ1(x + ct), φ2(x + ct)),
where c > 0 is the wave speed. If φ1 and φ2 are monotone, then (φ1, φ2) is called
a traveling wavefront. Substituting (φ1(x + ct), φ2(x + ct)) into (1.1) and letting
ξ = x+ ct, we obtain the following wave profile system with boundary conditions

cφ′1(ξ) = d1φ
′′
1(ξ)− αφ1(ξ) + h(φ2(ξ − cτ)),

cφ′2(ξ) = d2φ
′′
2(ξ)− βφ2(ξ) + g(φ1(ξ − cτ)),

(φ1, φ2)(−∞) = (u1−, u2−), (φ1, φ2)(+∞) = (u1+, u2+).

(2.2)

It is clear that the characteristic function for (2.2) with respect to the trivial
equilibrium 0 can be represented by

∆1(λ, c) := f1(c, λ)− f2(c, λ)

for c ≥ 0 and λ ∈ C, where

f1(c, λ) := (d1λ
2 − cλ− α)(d2λ

2 − cλ− β),

f2(c, λ) := h′(0)g′(0)e−2cλτ .
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For convenience, we denote

λ±1 =
c±
√
c2 + 4d1α

2d1
, λ±2 =

c±
√
c2 + 4d2β

2d2
, λcm = min{λ+

1 , λ
+
2 }.

It is clear that f1(c, λ±1 ) = f1(c, λ±2 ). According to [23, Lemma 2.1], we have the
following result.

Lemma 2.1. There exist a positive number c∗ such that the following items hold.

(i) If c ≥ c∗, then the equation ∆1(λ, c) = 0 has two positive real roots λ1 :=
λ1(c) and λ2 := λ2(c) with 0 < λ1(c) ≤ λ2(c) < λcm.

(ii) If c = c∗, then λ∗ = λ1(c∗) = λ2(c∗) and if c > c∗, then λ1(c) < λ2(c) and
∆1(·, c) > 0 in (λ1(c), λ2(c)).

When g′(u) ≥ 0 for u ∈ [0,K1] and h′(v) ≥ 0 for v ∈ [0,K2], system (1.1) is a
quasi-monotone system. The existence of traveling wave fronts has been obtained
by Wu and Hsu, see [23, Theorem 2.3]. When the condition g′(u) ≥ 0 for u ∈ [0,K1]
or h′(v) ≥ 0 for v ∈ [0,K2] does not hold, system (1.1) is a non-quasi-monotone
system. The existence of traveling waves can also be obtained by using auxiliary
equations and Schauder’s fixed point theorem [22, 26], if we assume the following
conditions:

(H3) There exist K± = (K±1 ,K
±
2 )� 0 with K− < K < K+ and four continuous

and twice piecewise continuous differentiable functions g± : [0,K+
1 ] → R

and h± : [0,K+
2 ]→ R such that

(i) K±2 = g±(K±1 )/β, h±( 1
β g
±(K±1 )) = αK±1 , and h±( 1

β g
±(u)) > αu for

u ∈ (0,K±1 );
(ii) g±(u) and h±(v) are non-decreasing on [0,K+

1 ] and [0,K+
2 ], respec-

tively;
(iii) (g±)′(0) = g′(0), (h±)′(0) = h′(0) and

0 < g−(u) ≤ g(u) ≤ g+(u) ≤ g′(0)u for u ∈ [0,K+
1 ],

0 < h−(v) ≤ h(v) ≤ h+(v) ≤ h′(0)v for v ∈ [0,K+
2 ].

Proposition 2.2. Assume that (H1) and (H3) hold, τ ≥ 0, and let c∗ be de-
fined as in Lemma 2.1. Then for every c > c∗, system (1.1) has a traveling wave
(φ1(ξ), φ2(ξ)) satisfying (φ1(−∞), φ2(−∞)) = (0, 0) and

K−1 ≤ lim inf
ξ→+∞

φ1(ξ) ≤ lim sup
ξ→+∞

φ1(ξ) ≤ K+
1 ,

0 ≤ lim inf
ξ→+∞

φ2(ξ) ≤ lim sup
ξ→+∞

φ2(ξ) ≤ K+
2 .

Notation. C > 0 denotes a generic constant, while Ci (i = 1, 2, . . . ) represents a
specific constant. Let ‖ · ‖ and ‖ · ‖∞ denote 1-norm and ∞-norm of the matrix (or
vector), respectively. Let I be an interval, typically I = R. Denote by L1(I) the
space of integrable functions defined on I, and W k,1(I)(k ≥ 0) the Sobolev space of

the L1-functions f(x) defined on the interval I whose derivatives dn

dxn f(n = 1, . . . , k)

also belong to L1(I). Let L1
w(I) be the weighted L1-space with a weight function

w(x) > 0 and norm

‖f‖L1
w(I) =

∫
I

w(x)|f(x)|dx .



EJDE-2020/46 GLOBAL STABILITY FOR NON-MONOTONE TRAVELING WAVES 5

Let W k,1
w (I) be the weighted Sobolev space with norm

‖f‖Wk,1
w (I) =

k∑
i=0

∫
I

w(x)
∣∣dif(x)

dxi
∣∣dx.

Let T > 0 be a number and B be a Banach space. We denote by C([0, T ];B)
the space of the B-valued continuous functions on [0, T ], and by L1([0, T ];B) the
space of the B-valued L1-functions on [0, T ]. The corresponding spaces of the B-
valued functions on [0,∞) are defined similarly. For any function f(x), its Fourier
transform is

F [f ](η) = f̂(η) =

∫
R
e−ixηf(x)dx

and the inverse Fourier transform is

F−1[f̂ ](x) =
1

2π

∫
R
eixη f̂(η)dη,

where i is the imaginary number, i2 = −1.
To obtain stability of traveling waves of (1.1), we need the following assumptions.

(H4) d1 > d2, α > β and max{h′(0), g′(0)} > β.
(H5) The initial data (u10(x, s), u20(x, s)) ≥ (0, 0) satisfies

lim
x→±∞

(u10(x, s), u20(x, s)) = (u1±, u2±) uniformly in s ∈ [−τ, 0].

We consider the function

∆2(λ, c) = d2λ
2 − cλ− β + max{h′(0), g′(0)}e−λcτ .

It is easy to see that there exist λ∗ > 0 and c∗ > 0, such that ∆2(λ∗, c∗) = 0

and ∂∆2(λ,c)
∂λ |(λ∗,c∗) = 0. When c > c∗, the equation ∆2(λ, c) = 0 has two positive

real roots λ\1(c) and λ\2(c) with 0 < λ\1(c) < λ∗ < λ\2(c). When λ ∈ (λ\1(c), λ\2(c)),

∆2(λ, c) < 0. Moreover, (λ\1)′(c) < 0 and (λ\2)′(c) > 0.

Since (λ\1)′(c) < 0, there exists a positive number c\ such that when c > c\ > c∗,

λ\1(c) <
√

α−β
d1−d2 . Define the weight function w(ξ) > 0 as

w(ξ) = e−2λξ,

where λ > 0 satisfies λ\1(c) < λ < min
{√

α−β
d1−d2 , λ

\
2(c)

}
. Now we present the main

result on global stability of traveling waves.

Theorem 2.3. Assume that (H1)–(H5) hold. For any given traveling wave (φ1(x+
ct), φ2(x+ ct)) of (1.1) with speed c ≥ max{c∗, c\} connecting (0, 0) and (K1,K2),
whether it is monotone or non-monotone, if the initial data satisfy

ui0(x, s)− φi(x+ cs) ∈ Cunif [−τ, 0] ∩ C([−τ, 0];W 2,1
w (R)), i = 1, 2,

∂s(ui0 − φi) ∈ L1([−τ, 0];L1
w(R)), i = 1, 2,

then there exists τ0 > 0 such that for any τ ≤ τ0, the solution (u1(x, t), u2(x, t)) of
(1.1)-(2.1) converges to the traveling wave (φ1(x+ ct), φ2(x+ ct)) with

sup
x∈R
|ui(x, t)− φi(x+ ct)| ≤ Ct−1/2e−µt, t > 0,
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where C and µ are two positive constants, and Cunif [r, T ] is the space of uniformly
continuous functions,

Cunif [r, T ] :=
{
u ∈ C2([r, T ]× R) : lim

x→+∞
u(x, t) exists uniformly in t ∈ [r, T ],

lim
x→+∞

ux(x, t) = lim
x→+∞

uxx(x, t) = 0 uniformly for t ∈ [r, T ]
}
.

3. Global stability of traveling waves

In this section we prove Theorem 2.3. Let (φ1(x+ct), φ2(x+ct)) = (φ1(ξ), φ2(ξ))
be a given traveling wave with speed c ≥ c∗ and define

Ui(ξ, t) := ui(x, t)− φi(x+ ct) = ui(ξ − ct, t)− φi(ξ), i = 1, 2,

Ui0(ξ, s) := ui0(x, s)− φi(x+ cs) = ui0(ξ − cs, s)− φ(ξ), i = 1, 2.

Then from (1.1) and (2.2), Ui(ξ, t) satisfies

U1t + cU1ξ − d1U1ξξ + αU1 = P1(U2(ξ − cτ, t− τ)),

U2t + cU2ξ − d2U2ξξ + βU2 = P2(U1(ξ − cτ, t− τ)),

Ui(ξ, s) = Ui0(ξ, s), (ξ, s) ∈ R× [−τ, 0], i = 1, 2.

(3.1)

The nonlinear terms are

P1(U2) := h(φ2 + U2)− h(φ2) = h′(φ̃2)U2,

P2(U1) := g(φ1 + U1)− g(φ1) = g′(φ̃1)U1,
(3.2)

for some φ̃i between φi and φi+Ui, with φi = φi(ξ−cτi) and Ui = Ui(ξ−cτi, t−τi).
We first prove the existence and uniqueness of solution (U1(ξ, t), U2(ξ, t)) to the

initial value problem (3.1) in the space Cunif [−τ,+∞)× Cunif [−τ,+∞).

Proposition 3.1. Assume that (H1) and (H2) hold. If the initial perturbation
satisfies

(U10(ξ, s), U20(ξ, s)) ∈ Cunif [−τ, 0]× Cunif [−τ, 0]

for c ≥ c∗, then a solution (U1, U2) of the perturbed equation (3.1) is unique, exists
globally in time, and belongs to Cunif [−τ,+∞)× Cunif [−τ,+∞).

Proof. When t ∈ [0, τ ], we have t−τ ∈ [−τ, 0] and Ui(ξ−cτ, t−τ) = Ui0(ξ−cτ, t−τ),
i = 1, 2, which imply that (3.1) is linear. Thus, the solution of (3.1) can be explicitly
and uniquely solved:

U1(ξ, t) = e−αt
∫ ∞
−∞

G1(η, t)U10(ξ − η, 0)dη

+

∫ t

0

e−α(t−s)
∫ ∞
−∞

G1(η, t− s)P1(U20(ξ − η − cτ, s− τ)) dη ds,

U2(ξ, t) = e−βt
∫ ∞
−∞

G2(η, t)U20(ξ − η, 0)dη

+

∫ t

0

e−β(t−s)
∫ ∞
−∞

G2(η, t− s)P2(U10(ξ − η − cτ, s− τ)) dη ds

(3.3)

for t ∈ [0, τ ], where Gi(η, t) is the heat kernel

Gi(η, t) =
1√

4πdit
exp

(
− (η + ct)2

4dit

)
, i = 1, 2.
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Since Ui0(ξ, s) ∈ Cunif [−τ, 0], i = 1, 2, namely, limξ→+∞ Ui0(ξ, s) = Ui0(∞, s)
and limξ→+∞ Ui0,ξ(ξ, s) = limξ→+∞ Ui0,ξξ(ξ, s) = 0 uniformly in s ∈ [−τ, 0], we
immediately prove the following uniform convergence

lim
ξ→+∞

U1(ξ, t)

= e−αt
∫ ∞
−∞

G1(η, t) lim
ξ→+∞

U10(ξ − η, 0)dη

+

∫ t

0

e−α(t−s)
∫ ∞
−∞

G1(η, t− s) lim
ξ→+∞

P1(U20(ξ − η − cτ, s− τ)) dη ds

= e−αtU10(∞, 0)

∫ ∞
−∞

G1(η, t)dη

+

∫ t

0

e−α(t−s)P1(U20(∞, s− τ))

∫ ∞
−∞

G1(η, t− s) dη ds

= e−αtU10(∞, 0) +

∫ t

0

e−α(t−s)P1(U20(∞, s− τ))ds

=: g1(t), uniformly for t ∈ [0, τ ],

and

lim
ξ→+∞

U2(ξ, t)

= e−βt
∫ ∞
−∞

G2(η, t) lim
ξ→+∞

U20(ξ − η, 0)dη

+

∫ t

0

e−β(t−s)
∫ ∞
−∞

G2(η, t− s) lim
ξ→+∞

P2(U10(ξ − η − cτ, s− τ)) dη ds

= e−βtU20(∞, 0)

∫ ∞
−∞

G2(η, t)dη

+

∫ t

0

e−β(t−s)P2(U10(∞, s− τ))

∫ ∞
−∞

G2(η, t− s) dη ds

= e−βtU20(∞, 0) +

∫ t

0

e−β(t−s)P2(U10(∞, s− τ))ds

=: g2(t), uniformly for t ∈ [0, τ ],

where we used that
∫∞
−∞Gi(η, t− s)dη = 1 for i = 1, 2. Furthermore, we obtain

lim
ξ→+∞

∂kξU1(ξ, t)

= e−αt
∫ ∞
−∞

∂kηG1(η, t) lim
ξ→+∞

U10(ξ − η, 0)dη

+

∫ t

0

e−α(t−s)
∫ ∞
−∞

∂kηG1(η, t− s) lim
ξ→+∞

P1(U20(ξ − η − cτ, s− τ)) dη ds

= e−αtU10(∞, 0)

∫ ∞
−∞

∂kηG1(η, t)dη

+

∫ t

0

e−α(t−s)P1(U20(∞, s− τ))

∫ ∞
−∞

∂kηG1(η, t− s) dη ds

= 0, uniformly for t ∈ [0, τ ], k = 1, 2,
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and

lim
ξ→+∞

∂kξU2(ξ, t)

= e−βt
∫ ∞
−∞

∂kηG2(η, t) lim
ξ→+∞

U20(ξ − η, 0)dη

+

∫ t

0

e−β(t−s)
∫ ∞
−∞

∂kηG2(η, t− s) lim
ξ→+∞

P2(U10(ξ − η − cτ, s− τ)) dη ds

= e−βtU20(∞, 0)

∫ ∞
−∞

∂kηG2(η, t)dη

+

∫ t

0

e−β(t−s)P2(U10(∞, s− τ))

∫ ∞
−∞

∂kηG2(η, t− s) dη ds

= 0, uniformly for t ∈ [0, τ ], k = 1, 2.

Here we used that

Gi(±∞, t− s) = 0, ∂ηGi(η, t− s)
∣∣
η=±∞ = 0, i = 1, 2.

Thus, we have proved that (U1, U2) ∈ Cunif [−τ, τ ]× Cunif [−τ, τ ].
Now we consider (3.1) for t ∈ [τ, 2τ ]. Since t− τ ∈ [0, τ ] and Ui(ξ, t− τ) is solved

already in (3.3), P1(U2(ξ−cτ, t−τ)) and P2(U1(ξ−cτ, t−τ)) are known for (3.1) with
t ∈ [0, 2τ ], namely, the equation (3.1) is linear for t ∈ [0, 2τ ]. As showed before, we
can similarly prove the existence and uniqueness of the solution (U1(ξ, t), U2(ξ, t))
to (3.1) for t ∈ [0, 2τ ], and particularly (U1, U2) ∈ Cunif [−τ, 2τ ]× Cunif [−τ, 2τ ].

By repeating this process for t ∈ [nτ, (n+ 1)τ ] with n ∈ Z+, we prove that there
exists a unique solution (U1, U2) ∈ Cunif [−τ, (n+1)τ ]×Cunif [−τ, (n+1)τ ] for (3.1),
and step by step, we finally prove the uniqueness and existence global in time of
the solution (U1, U2) ∈ Cunif [−τ,∞)× Cunif [−τ,∞) for (3.1). �

Now we state a stability result for the perturbed equation (3.1), which automat-
ically implies Theorem 2.3.

Proposition 3.2 (Stability of traveling waves). Assume that (H1), (H2), (H4) and
(H5) hold. If

Ui0 ∈ Cunif [−τ, 0] ∩ C([−τ, 0];W 2,1
w (R)), i = 1, 2,

and ∂sUi0 ∈ L1([−τ, 0];L1
w(R)) for i = 1, 2, then there exists τ0 > 0 such that for

any τ ≤ τ0, when c ≥ min{c∗, c\}, it holds

sup
ξ∈R
|Ui(ξ, t)| ≤ Ct−1/2e−µt, t > 0, i = 1, 2, (3.4)

for some µ > 0 and C > 0.

To prove Proposition 3.2, we first investigate the time-exponential decay estimate
of Ui(ξ, t) at ξ = +∞, i = 1, 2.

Lemma 3.3. There exist τ0 > 0 and a large number x0 � 1 such that when τ ≤ τ0,
the solution Ui(ξ, t) of (3.1) satisfies

sup
ξ∈[x0,+∞)

|Ui(ξ, t)| ≤ Ce−µ1t, t > 0, i = 1, 2,

for some µ1 > 0 and C > 0.
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Proof. Denote

z+
i (t) := Ui(∞, t), z+

i0(s) := Ui0(∞, s), s ∈ [−τ, 0], i = 1, 2.

Since (U1, U2) ∈ Cunif [−τ,+∞)× Cunif [−τ,+∞), we have

lim
ξ→+∞

Ui(ξ, t) = z+
i (t)

exists uniformly for t, and

lim
ξ→+∞

Uiξ(ξ, t) = lim
ξ→+∞

Uiξξ(ξ, t) = 0

uniformly for t. Let us take the limits in (3.1) as ξ → +∞. Then we have

dz+
1

dt
+ αz+

1 − h′(u2+)z+
2 (t− τ) = Q1(z+

2 (t− τ)),

dz+
2

dt
+ βz+

2 − g′(u1+)z+
1 (t− τ) = Q2(z+

1 (t− τ)),

z+
i (s) = z+

i0(s), s ∈ [−τ, 0], i = 1, 2,

where

Q1(z+
2 ) = h(u2+ + z+

2 )− h(u2+)− h′(u2+)z+
2 ,

Q2(z+
1 ) = g(u1+ + z+

1 )− g(u1+)− g′(u1+)z+
1 .

Then by [9, Lemma 3.8], there exist positive constants τ0, µ1 and C such that when
τ ≤ τ0,

|Ui(∞, t)| = |z+
i (t)| ≤ Ce−µ1t, t > 0, i = 1, 2,

provided that |z+
i0| � 1, i = 1, 2.

Furthermore, by the continuity and the uniform convergence of Ui(ξ, t) as ξ →
+∞, there exists a large x0 � 1 such that

sup
ξ∈[x0,+∞)

|Ui(ξ, t)| ≤ Ce−µ1t, t > 0, i = 1, 2,

provided that supξ∈[x0,+∞) |Ui0(ξ, s)| � 1 for s ∈ [−τ, 0]. Such a smallness for the

initial perturbation (U10, U20) near ξ → +∞ can be easily verified, since

lim
x→+∞

(u10(x, s), u20(x, s)) = (K1,K2) uniformly in s ∈ [−τ, 0],

which implies

lim
ξ→+∞

Ui0(ξ, s) = lim
ξ→+∞

[ui0(ξ, s)− φi(ξ)] = Ki −Ki = 0

uniformly for s ∈ [−τ, 0], i = 1, 2. The proof is complete. �

Next we establish the a priori decay estimate of supξ∈(−∞,x0] |Ui(ξ, t)|. We shall

use the anti-weighted technique [2, 8] together with Fourier transform to treat this
problem. First of all, we shift Ui(ξ, t) to Ui(ξ + x0, t) by the constant x0 given in
Lemma 3.3, and then introduce the transformation

Vi(ξ, t) =
√
w(ξ)Ui(ξ + x0, t) = e−λξUi(ξ + x0, t), i = 1, 2.
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Substituting U = w−1/2V in (3.1) yields

V1t + ρ1(c)V1ξ − d1V1ξξ + ρ2(c)V1 = P̃1(V2(ξ − cτ, t− τ)),

V2t + ρ3(c)V2ξ − d2V2ξξ + ρ4(c)V2 = P̃2(V1(ξ − cτ, t− τ)),

(ξ, t) ∈ R× [0,+∞),

Vi(ξ, s) =
√
w(ξ)Ui0(ξ + x0, s) =: Vi0(ξ, s), ξ ∈ R, s ∈ [−τ, 0], i = 1, 2,

(3.5)

where

ρ1(c) := c− 2d1λ, ρ2(c) := cλ− d1λ
2 + α,

ρ3(c) := c− 2d2λ, ρ4(c) := cλ− d2λ
2 + β,

P̃1(V2) = e−λξP1(U2), P̃2(V1) = e−λξP2(U1).

By (3.2), P̃1(V2) satisfies

P̃1(V2(ξ − cτ, t− τ)) =e−λξP1(U2(ξ − cτ + x0, t− τ))

=e−λξh′(φ̃2)U2(ξ − cτ + x0, t− τ)

=e−λcτh′(φ̃2)V2(ξ − cτ, t− τ)

(3.6)

and P̃2(V1) satisfies

P̃2(V1(ξ − cτ, t− τ)) = e−λcτg′(φ̃1)V1(ξ − cτ, t− τ). (3.7)

Furthermore, by (H2), we have

|P̃1(V2(ξ − cτ, t− τ))| ≤ h′(0)e−λcτ |V2(ξ − cτ, t− τ)|,

|P̃2(V1(ξ − cτ, t− τ))| ≤ g′(0)e−λcτ |V1(ξ − cτ, t− τ)|.

Taking (3.6) and (3.7) into (3.5), we see that the coefficient h′(φ̃2) and g′(φ̃1)
on the right side of (3.5) is variable and can be negative. Thus, the classical
methods, such as the monotone technique and the Fourier transform cannot be
applied directly to establish the decay estimate for (V1, V2). A new method should
be introduced. The main ideas of this method can be described as follows.

(i) We replace h′(φ̃2) in the first equation of (3.5) with a constant h′(0), and

g′(φ̃1) in the second equation of (3.5) with a constant g′(0), and then consider the
following linear delayed reaction-diffusion system

V +
1t + ρ1(c)V +

1ξ − d1V
+
1ξξ + ρ2(c)V +

1 = h′(0)e−λcτV +
2 (ξ − cτ, t− τ),

V +
2t + ρ3(c)V +

2ξ − d2V
+
2ξξ + ρ4(c)V +

2 = g′(0)e−λcτV +
1 (ξ − cτ, t− τ),

V +
i (ξ, s) =

√
w(ξ)Ui0(ξ + x0, s) =: V +

i0 (ξ, s), i = 1, 2,

(3.8)

where ξ ∈ R, t ∈ [0,+∞) and s ∈ [−τ, 0]. Then we investigate the decay estimate
of (V +

1 , V +
2 ) by applying the Fourier transform to (3.8);

(ii) We prove that the solution (V1, V2) of (3.5) can be bounded by the solution
(V +

1 , V +
2 ) of (3.8).

Lemma 3.4 (Positiveness). When (V +
10(ξ, s), V +

20(ξ, s)) ≥ (0, 0) for (ξ, s) ∈ R ×
[−τ, 0], then (V +

1 (ξ, t), V +
2 (ξ, t)) ≥ (0, 0) for (ξ, t) ∈ R× [0,+∞).

Proof. When t ∈ [0, τ ], we have t− τ ∈ [−τ, 0] and

h′(0)e−λcτV +
2 (ξ − cτ, t− τ) = h′(0)e−λcτV +

20(ξ − cτ, t− τ)dy ≥ 0. (3.9)
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Applying (3.9) to the first equation of (3.8), we obtain

V +
1t + ρ1(c)V +

1ξ − d1V
+
1ξξ + ρ2(c)V +

1 ≥ 0, (ξ, t) ∈ R× [0, τ ],

V +
10(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

By the comparison principle, we have

V +
1 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ]. (3.10)

Similarly, we obtain

V +
2t + ρ3(c)V +

2ξ − d2V
+
2ξξ + ρ4(c)V +

2 ≥ 0, (ξ, t) ∈ R× [0, τ ],

V +
20(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

Using the comparison principle again, we obtain

V +
2 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ]. (3.11)

When t ∈ [nτ, (n+ 1)τ ], n = 1, 2, . . . , repeating the above procedure step by step,
we can similarly prove

(V +
1 (ξ, t), V +

2 (ξ, t)) ≥ (0, 0), (ξ, t) ∈ R× [nτ, (n+ 1)τ ]. (3.12)

Combining (3.10), (3.11) and (3.12), we obtain (V +
1 (ξ, t), V +

2 (ξ, t)) ≥ (0, 0) for
(ξ, t) ∈ R× [0,+∞). The proof is complete. �

Now we establish the following crucial boundedness estimate for (V1, V2).

Lemma 3.5. Let (V1(ξ, t), V2(ξ, t)) and (V +
1 (ξ, t), V +

2 (ξ, t)) be the solutions of (3.5)
and (3.8), respectively. If

|Vi0(ξ, s)| ≤ V +
i0 (ξ, s) for (ξ, s) ∈ R× [−τ, 0], i = 1, 2, (3.13)

then

|Vi(ξ, t)| ≤ V +
i (ξ, t) for (ξ, t) ∈ R× [0,+∞), i = 1, 2.

Proof. First of all, we prove |Vi(ξ, t)| ≤ V +
i (ξ, t) for t ∈ [0, τ ], i = 1, 2. In fact,

when t ∈ [0, τ ], namely, t− τ ∈ [−τ, 0], it follows from (3.13) that

|Vi(ξ − cτ, t− τ)| = |Vi0(ξ − cτ, t− τ)|
≤ V +

i0 (ξ − cτ, t− τ)

= V +
i (ξ − cτ, t− τ) for (ξ, t) ∈ R× [0, τ ].

(3.14)

Then by |h′(φ̃2)| < h′(0) and |g′(φ̃1)| < g′(0) and (3.14), we obtain

h′(0)e−λcτV +
2 (ξ − cτ, t− τ)± h′(φ̃2)e−λcτV2(ξ − cτ, t− τ)

≥ h′(0)e−λcτV +
2 (ξ − cτ, t− τ)− |h′(φ̃2)|e−λcτ |V2(ξ − cτ, t− τ)|

≥ 0 for (ξ, t) ∈ R× [0, τ ]

(3.15)

and

g′(0)e−λcτV +
1 (ξ − cτ, t− τ)± g′(φ̃1)e−λcτV1(ξ − cτ, t− τ)

≥ 0 for (ξ, t) ∈ R× [0, τ ].

Let

v−i (ξ, t) := V +
i (ξ, t)− Vi(ξ, t), v+

i (ξ, t) := V +
i (ξ, t) + Vi(ξ, t), i = 1, 2.
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We are going to estimate v±i (ξ, t). From (3.5), (3.6), (3.8) and (3.15), we see that
v−1 (ξ, t) satisfies

v−1t + ρ1(c)v−1ξ − d1v
−
1ξξ + ρ2(c)v−1 ≥ 0, (ξ, t) ∈ R× [0, τ ],

v−10(ξ, s) = V +
10(ξ, s)− V10(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

By the comparison principle, we obtain

v−1 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ],

namely,
V1(ξ, t) ≤ V +

1 (ξ, t), (ξ, t) ∈ R× [0, τ ]. (3.16)

Similarly, one has

v−2t + ρ3(c)v−2ξ − d2v
−
2ξξ + ρ4(c)v−2 ≥ 0, (ξ, t) ∈ R× [0, τ ],

v−20(ξ, s) = V +
20(ξ, s)− V20(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

Applying the comparison principle again, we have

v−2 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ],

i.e.,
V2(ξ, t) ≤ V +

2 (ξ, t), (ξ, t) ∈ R× [0, τ ]. (3.17)

On the other hand, v+
1 (ξ, t) satisfies

v+
1t + ρ1(c)v+

1ξ − d1v
+
1ξξ + ρ2(c)v+

1 ≥ 0, (ξ, t) ∈ R× [0, τ ],

v+
10(ξ, s) = V +

10(ξ, s) + V10(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

Then the comparison principle implies that

v+
1 (ξ, t) = V +

1 (ξ, t) + V1(ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ];

that is,
− V +

1 (ξ, t) ≤ V1(ξ, t), (ξ, t) ∈ R× [0, τ ]. (3.18)

Similarly, v+
2 (ξ, t) satisfies

v+
2t + ρ3(c)v+

2ξ − d2v
+
2ξξ + ρ4(c)v+

2 ≥ 0, (ξ, t) ∈ R× [0, τ ],

v+
20(ξ, s) = V +

20(ξ, s) + V20(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

Therefore, we can prove that

v+
2 (ξ, t) = V +

2 (ξ, t) + V2(ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ],

namely
− V +

2 (ξ, t) ≤ V2(ξ, t), (ξ, t) ∈ R× [0, τ ]. (3.19)

Combining (3.16) and (3.18), we obtain

|V1(ξ, t)| ≤ V +
1 (ξ, t) for (ξ, t) ∈ R× [0, τ ], (3.20)

and combining (3.17) and (3.19), we prove

|V2(ξ, t)| ≤ V +
2 (ξ, t) for (ξ, t) ∈ R× [0, τ ], (3.21)

Next, when t ∈ [τ, 2τ ], namely, t − τ ∈ [0, τ ], based on (3.20) and (3.21) we can
similarly prove

|Vi(ξ, t)| ≤ V +
i (ξ, t) for (ξ, t) ∈ R× [τ, 2τ ], i = 1, 2.

Repeating this procedure, we then further prove

|Vi(ξ, t)| ≤ V +
i (ξ, t), (ξ, t) ∈ R× [nτ, (n+ 1)τ ], n = 1, 2, . . . ,
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which implies

|Vi(ξ, t)| ≤ V +
i (ξ, t) for (ξ, t) ∈ R× [0,∞), i = 1, 2.

The proof is complete. �

In the following, we derive the stability of traveling waves for the linear system
(3.8) by using the weighted method and by carrying out the crucial boundedness
estimate on the fundamental solutions. Now let us recall the properties of the
solutions to the delayed ODE system.

Lemma 3.6 ([12, Lemma 3.1]). Let z(t) be the solution to the scalar differential
equation with delay

d

dt
z(t) = Az(t) +Bz(t− τ), t ≥ 0, τ > 0,

z(s) = z0(s), s ∈ [−τ, 0].
(3.22)

where A,B ∈ CN×N , N ≥ 2, and z0(s) ∈ C1([−τ, 0],CN ). Then

z(t) = eA(t+τ)eB1t
τ z0(−τ) +

∫ 0

−τ
eA(t−s)eB1(t−τ−s)

τ [z′0(s)−Az0(s)]ds,

where B1 = Be−Aτ and eB1t
τ is the so-called delayed exponential function in the

form

eB1t
τ =



0, −∞ < t < −τ,
I, −τ ≤ t < 0,

I +B1
t
1! , 0 ≤ t < τ,

I +B1
t
1! +B2

1
(t−τ)2

2! , τ ≤ t < 2τ,

. . . . . .

I +B1
t
1! +B2

1
(t−τ)2

2! + · · ·+Bm1
[t−(m−1)τ ]m

m! , (m− 1)τ ≤ t < mτ,

. . . . . .

where 0, I ∈ CN×N , and 0 is zero matrix and I is the identity matrix.

Lemma 3.7 ([12, Theome 3.1]). Suppose µ(A) := µ1(A)+µ∞(A)
2 < 0, where µ1(A)

and µ∞(A) denote the matrix measure of A induced by the matrix 1-norm ‖ · ‖1
and ∞-norm ‖ · ‖∞, respectively. If ν(B) := ‖B‖+‖B‖∞

2 ≤ −µ(A), then there exists
a decreasing function ετ = ε(τ) ∈ (0, 1) for τ > 0 such that any solution of system
(3.22) satisfies

‖z(t)‖ ≤ C0e
−ετσt, t > 0,

where C0 is a positive constant depending on initial data z0(s), s ∈ [−τ, 0] and
σ = |µ(A)| − ν(B). In particular,

‖eAteB1t
τ ‖ ≤ C0e

−ετσt, t > 0,

where eB1t
τ is defined in Lemma 3.6.

It can be seen from the proof of [12, Theome 3.1] that

µ1(A) = lim
θ→0+

‖I + θA‖ − 1

θ
= max

1≤j≤N

[
Re(ajj) +

N∑
j 6=i

|aij |
]
,
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µ∞(A) = lim
θ→0+

‖I + θA‖∞ − 1

θ
= max

1≤i≤N

Re(aii) +

N∑
i 6=j

|aij |

 .
Next, we shall estimate the decay rate for the solution V +(ξ, t).

Lemma 3.8. Let the initial data V +
i0 (ξ, s), i = 1, 2, be such that

V +
i0 ∈ C([−τ, 0];W 2,1(R)), ∂sV

+
i0 ∈ L

1([−τ, 0];L1(R)), i = 1, 2.

Then

‖V +
i (t)‖L∞(R) ≤ Ct−1/2e−µ2t for c ≥ max{c∗, c\}, i = 1, 2,

where µ > 0 and C > 0.

Proof. Taking Fourier transform in (3.8) and denoting the transform of V +(ξ, t) by

V̂ +(η, t), we obtain

V̂ +
1t (η, t) = −(d1|η|2 + ρ2(c) + iρ1(c)η)V̂ +

1 (η, t) + h′(0)e−cτ(λ+iη)V̂ +
2 (η, t− τ),

V̂ +
2t (η, t) = −(d2|η|2 + ρ4(c) + iρ3(c)η)V̂ +

2 (η, t) + g′(0)e−cτ(λ+iη)V̂ +
1 (η, t− τ),

V̂ +
i (η, s) = V̂ +

i0 (η, s), η ∈ R, s ∈ [−τ, 0], i = 1, 2.

(3.23)
Let

A(η) =

(
−(d1|η|2 + ρ2(c) + iρ1(c)η) 0

0 −(d2|η|2 + ρ4(c) + iρ3(c)η)

)
,

B(η) =

(
0 h′(0)e−cτ(λ+iη)

g′(0)e−cτ(λ+iη) 0

)
.

Then system (3.23) can be rewritten as

V̂ +
t (η, t) = A(η)V̂ +(η, t) +B(η)V̂ +(η, t− τ), (3.24)

where V̂ +(η, t) = (V̂ +
1 (η, t), V̂ +

2 (η, t))T .
By Lemma 3.6, the linear delayed system (3.24) has solution

V̂ +(η, t) =eA(η)(t+τ)eB1(η)t
τ V̂ +

0 (η,−τ)

+

∫ 0

−τ
eA(η)(t−s)eB1(η)(t−s−τ)

τ

[
∂sV̂

+
0 (η, s)−A(η)V̂ +

0 (η, s)
]
ds

:=I1(η, t) +

∫ 0

−τ
I2(η, t− s)ds,

(3.25)

where B1(η) = B(η)eA(η)τ . Let V +(ξ, t) := (V +
1 (ξ, t), V +

2 (ξ, t))T . Then by taking
the inverse Fourier transform in (3.25), one has

V +(ξ, t) = F−1[I1](ξ, t) +

∫ 0

−τ
F−1[I2](ξ, t− s)ds

=
1

2π

∫ ∞
−∞

eiξηeA(η)(t+τ)eB1(η)t
τ V̂ +

0 (η,−τ)dη

+
1

2π

∫ 0

−τ

∫ ∞
−∞

eiξηeA(η)(t−s)eB1(η)(t−s−τ)
τ

×
[
∂sV̂

+
0 (η, s)−A(η)V̂ +

0 (η, s)
]
dη ds.

(3.26)



EJDE-2020/46 GLOBAL STABILITY FOR NON-MONOTONE TRAVELING WAVES 15

From the definition of µ(·) and ν(·), we have

µ(A(η)) =
µ1(A(η)) + µ∞(A(η))

2

= max
{
−d1η

2 − ρ2(c),−d2η
2 − ρ4(c)

}
=− d2η

2 − cλ+ d2λ
2 − β,

since d1 > d2, α > β and λ2 < α−β
d1−d2 , and

ν(B(η)) = max{h′(0), g′(0)}e−λcτ .

By considering λ ∈ (λ\1(c), λ\2(c)), we obtain µ(A(η)) < 0 and

µ(A(η)) + ν(B(η)) = −d2η
2 − cλ+ d2λ

2 − β + max{h′(0), g′(0)}e−λcτ < 0.

Furthermore, we obtain

|µ(A(η))| − ν(B(η)) =d2η
2 + cλ− d2λ

2 + β −max{h′(0), g′(0)}e−λcτ

=−∆2(λ, c) + d2η
2,

where ∆2(λ, c) = dλ2 − cλ − β + max{h′(0), g′(0)}e−λcτ < 0 for c ≥ max{c∗, c\}.
It then follows from Lemma 3.7 that there exists a decreasing function ετ = ε(τ) ∈
(0, 1) such that

‖eA(η)(t+τ)eB1(η)t‖ ≤ C1e
−ετ (|µ(A(η))|−ν(B(η)))t ≤ C1e

−ετµ0te−ετdη
2t,

where C1 is a positive constant and µ0 := −∆2(λ, c) > 0 with c > c\. By the
definition of Fourier transform, we have

sup
η∈R
‖V̂ +

0 (η,−τ)‖ ≤
∫
R
‖V +

0 (ξ,−τ)‖dξ =

2∑
i=1

‖V +
i0 (·,−τ)‖L1(R).

Therefore,

sup
ξ∈R
‖F−1[I1](ξ, t)‖ = sup

ξ∈R

∥∥ 1

2π

∫ ∞
−∞

eiξηeA(η)(t+τ)eB1(η)tV̂ +
0 (η,−τ)dη

∥∥
≤C

∫ ∞
−∞

e−ετdη
2te−ετµ0t‖V̂ +

0 (η,−τ)‖dη

≤Ce−ετµ0t sup
η∈R
‖V̂ +

0 (η,−τ)‖
∫ ∞
−∞

e−ετdη
2tdη

≤Ce−µ2tt−1/2
2∑
i=1

‖V +
i0 (·,−τ)‖L1(R),

(3.27)

with µ2 := ετµ0.
By using the property of Fourier transform, we obtain

sup
η∈R
|diη2V̂ +

i (η, t)| = sup
η∈R

∣∣diF [V +
iξξ](η, t)

∣∣
= di‖∂ξξV +

i (·, t)‖L1(R)

≤ di‖V +
i (·, t)‖W 2,1(R)

and

sup
η∈R
|(iη)V̂ +

i (η, t)| = sup
η∈R
|F [∂ξV

+
i ](η, t)|
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≤
∫
R
|∂ξV +

i (ξ, t)|dξ

= ‖∂ξV +
i (·, t)‖L1(R),

for i = 1, 2. Thus,

sup
η∈R
‖A(η)V̂ +

0 (η, s)‖ ≤ C
2∑
i=1

‖V +
i0 (·, s)‖W 2,1(R).

Similarly, we can derive that

sup
ξ∈R
‖F−1[I2](ξ, t− s)‖

= sup
ξ∈R

∥∥ 1

2π

∫ ∞
−∞

eiξηeA(η)(t−s)eB1(η)(t−s−τ)[∂sV̂
+
0 (η, s)−A(η)V̂ +

0 (η, s)]dη
∥∥

≤ C
∫ ∞
−∞

e−ετdη
2(t−s)e−ετµ0(t−s)∥∥∂sV̂ +

0 (η, s)−A(η)V̂ +
0 (η, s)

∥∥dη
≤ Ce−ετµ0teετµ0s sup

η∈R
‖∂sV̂ +

0 (η, s)−A(η)V̂ +
0 (η, s)‖

∫ ∞
−∞

e−ετdη
2(t−s)dη

≤ Ce−ετµ0t(t− s)−1/2E(s),

(3.28)

where

E(s) = ‖∂sV +
0 (·, s)‖L1(R) + ‖V +

0 (·, s)‖W 2,1(R).

Furthermore, one has∫ 0

−τ
(t− s)−1/2E(s)ds

≤ (1 + t)−1/2

∫ 0

−τ

(1 + t)1/2

(t− s)1/2
E(s)ds

≤ Ct−1/2
(
‖∂sV +

0 (s)‖L1([−τ,0];L1(R)) + ‖V +
0 (s)‖L1([−τ,0];W 2,1(R))

)
.

(3.29)

Substituting (3.27), (3.28) and (3.29) in (3.26), we obtain the the decay rate

2∑
i=1

‖V +
i (t)‖L∞(R) ≤ Ct−1/2e−µ2t.

This proof is complete. �

Let us choose that V +
i0 (ξ, s) such that

V +
i0 ∈ C([−τ, 0];W 2,1(R)), ∂sV

+
i0 ∈ L

1([−τ, 0];L1(R)),

V +
i0 (ξ, s) ≥ |Vi0(ξ, s)|, (ξ, s) ∈ R× [−τ, 0], i = 1, 2.

Combining Lemmas 3.5 and 3.8, we obtain the convergence rates for V (ξ, t).

Lemma 3.9. If Vi0 ∈ C([−τ, 0];W 2,1(R)) and ∂sVi0 ∈ L1([−τ, 0];L1(R)), then

‖Vi(t)‖L∞(R) ≤ Ct−1/2e−µ2t,

for some µ2 > 0, i = 1, 2.
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Since Vi(ξ, t) =
√
w(ξ)Ui(ξ + x0, t) = e−λξUi(ξ + x0, t) and

√
w(ξ) = e−λξ ≥ 1

for ξ ∈ (−∞, 0], it follows that

sup
ξ∈(−∞,0]

|Ui(ξ + x0, t)| ≤ ‖Vi(t)‖L∞(R) ≤ Ct−1/2e−µ2t.

Thus, we obtain the following estimate for the unshifted U(ξ, t).

Lemma 3.10. It holds that

sup
ξ∈(−∞,x0]

|Ui(ξ, t)| ≤ Ct−1/2e−µ2t, i = 1, 2,

for some µ2 > 0.

Proof of Proposition 3.2. By Lemmas 3.3 and 3.10, we immediately obtain (3.4)
for 0 < µ < min{µ1, µ2}. �
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