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DECAY OF ENERGY FOR VISCOELASTIC WAVE EQUATIONS

WITH BALAKRISHNAN-TAYLOR DAMPING AND MEMORIES

FEI WANG, JIANGHAO HAO

Abstract. In this article, we consider a viscoelastic wave equation with Balakrishnan-

Taylor damping, and finite and infinite memory terms in a bounded domain.

Under suitable assumptions on relaxation functions and with certain initial
data, by adopting the perturbed energy method, we establish a decay of en-

ergy which depends on the behavior of the relaxation functions.

1. Introduction

In this article, we study the following viscoelastic problem with Balakrishnan-
Taylor damping, a nonlinear source term and finite and infinite memories:

|ut|ρutt −M(t)∆u−∆utt −∆ut +

∫ t

0

g1(t− s) div(a1(x)∇u(s))ds

+

∫ ∞
0

g2(s) div(a2(x)∇u(t− s))ds+ γ(t)h(ut)

= |u|p−1u, in Ω× (0,∞),

u(x, t) = 0, on ∂Ω× (0,∞),

u(x,−t) = u0(x, t), in Ω× (0,∞),

ut(x, 0) = u1(x), in Ω,

(1.1)

where M(t) = a+ b‖∇u‖22 + σ
∫

Ω
∇u · ∇ut dx, a, b, σ are positive constants, Ω is a

bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω, g1 and g2 are positive
non-increasing functions defined on R+, a1(x) and a2(x) are essentially bounded
non-negative functions, h is a non-decreasing function, p and ρ satisfy

1 < p ≤ n

n− 2
, for n ≥ 3,

1 ≤ p <∞, for n = 1, 2,

0 < ρ ≤ 2

n− 2
, for n ≥ 3,

0 ≤ ρ <∞, for n = 1, 2.

(1.2)

From the physical point of view, equation (1.1) is related to the panel flutter
equation and spillover problem with memories and damping. The case of σ = 0,

2010 Mathematics Subject Classification. 35B35, 93D20.

Key words and phrases. Viscoelasticity; Balakrishnan-Taylor damping; decay; memory.
c©2020 Texas State University.

Submitted December 23, 2019. Published May 7, 2020.

1



2 F. WANG, J. HAO EJDE-2020/42

in the absence of the Balakrishnan-Taylor damping, equation (1.1) can be used
to describe the motion of viscoelastic materials. It is well known that viscoelastic
materials have a wide application in science and engineering because they have
the capacity of storage and dissipation of mechanical energy, which is modeled by
the convolution terms (as in (1.1)). Many authors have considered the behavior
of the partial differential equations (PDEs) with convolution term, see for example
[5, 14, 7, 16, 8, 4, 18] and references therein. Guesmia and Messaoudi [7] discussed
the problem

utt −∆u+

∫ t

0

g1(t− s) div(a1(x)∇u(s))ds

+

∫ ∞
0

g2(s) div(a2(x)∇u(t− s))ds = 0, in Ω× (0,∞),

u(x, t) = 0, on ∂Ω× (0,∞),

u(x,−t) = u0(x, t), in Ω× (0,∞),

ut(x, 0) = u1(x), in Ω.

(1.3)

Under suitable conditions on a1, a2 and for a wide class of relaxation functions g1

and g2, they established a general decay result, from which the usual exponential
and polynomial decay rates are only special cases. Guesmia and Messaoudi [8] were
concerned with the long-time behavior of the solution of the Timoshenko system

ρ1ϕtt − k1(ϕx + ψ)x + b(x)h(ϕt)

+

∫ ∞
0

g(s)(a(x)ϕx(t− s))xds = 0, in (0, L)× (0,∞),

ρ2ψtt − k2ψxx + k1(ϕx + ψ) = 0, in (0, L)× (0,∞),

ϕ(0, t) = ψx(0, t) = ϕ(L, t) = ψx(L, t) = 0, in (0,∞),

ϕ(x,−t) = ϕ0(t), ϕt(x, 0) = ϕ1(x), in (0, L)× (0,∞),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), in (0, L).

(1.4)

They showed that the dissipation generated by these two complementary controls
guarantees the stability of the system in case of the equal-speed propagation as
well as in the opposite case. Mustafa [18] studied the following equation with the
Dirichlet boundary condition

utt−∆u+

∫ t

0

div[a(x)g(t−τ)∇u(τ)]dτ +η(t)b(x)h(ut) = 0, in Ω× (0,∞), (1.5)

and established an explicit and general decay rate result, using some properties of
convex functionals.

The model in hand, with the Balakrishnan-Taylor damping (σ 6= 0) and in
the absence of ∆utt, the strong damping ∆ut and ρ = g1 = g2 = h = 0, was
proposed by Balakrishnan and Taylor [1], and Bass and Zes [2]. The model is
used to solve the overflow problem, that is, to set up an appropriate feedback
control function, which consists of a limited number of modes, to achieve a high
performance of the closed-loop systems. So far, there are many stability results
for the problem having the Balakrishnan-Taylor damping and memory term see for
example [3, 9, 11, 17, 23, 24]. Mu and Ma [17] considered the wave equations with



EJDE-2020/42 VISCOELASTIC WAVE EQUATIONS 3

Balakrishnan-Taylor memory terms and source terms:

utt − (a+ b‖∇u‖2 + σ

∫
Ω

∇u · ∇ut dx) +

∫ t

0

g1(t− s)∆u(s)ds

= f1(u, v), t > 0, x ∈ Ω,

vtt − (a+ b‖∇v‖2 + σ

∫
Ω

∇v · ∇vt dx) +

∫ t

0

g2(t− s)∆v(s)ds

= f2(u, v), t > 0, x ∈ Ω,

u(x, t) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, (x, t) ∈ Γ× [0,∞),

(1.6)

and proved that for a certain class of relaxation functions and certain initial data,
the decay rate of the solution energy is similar to that of relaxation functionals which
is not necessarily of exponential or polynomial type. In addition, they considered
problem (1.6) with the added terms ∆2u+ ∆2ut and ∆2v + ∆2vt, namely,

utt − (a+ b‖∇u‖2 + σ

∫
Ω

∇u∇ut dx) + ∆2u+ ∆2ut +

∫ t

0

g1(t− s)∆u(s)ds

= f1(u, v), t > 0, x ∈ Ω,

vtt − (a+ b‖∇v‖2 + σ

∫
Ω

∇v∇vt dx) + ∆2v + ∆2vt +

∫ t

0

g2(t− s)∆v(s)ds

= f2(u, v), t > 0, x ∈ Ω,

u(x, t) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, (x, t) ∈ Γ× [0,∞) .

(1.7)

They established the blow-up of the solution for (1.7) when relaxation functionals
and initial data satisfy some conditions even in presence of strong damping.

There are some methods developed to analyze the stability of the PDEs such
as Lyapunov’s energy method (see [10, 19]), Riesz basis approach (see [21, 13]),
frequency multiplier technique (see [15, 20]), Carleman estimates (see [6]) and so
on. Motivated by [7, 8, 18], we consider (1.1). Our major contributions in this
article are the following:

(1) We put together several useful models of viscoelasticity: dispersion term
|ut|ρ, the Balakrishna-Taylor damping

∫
Ω
∇u∇ut dx, strong damping term ∆ut,

infinite and finite time history memories
∫∞

0
g2(s) div(a2(x)∇u(t− s))ds,

∫ t
0
g1(t−

s) div(a1(x)∇u(s))ds, and a nonlinear source term |u|p−1u.
(2) Give the model in (1.1) which is a unified treatment.
(3) Our technical treatment offers, as far as we know, the sharpest assump-

tions/conditions for the study of the viscoelastic wave equation.
The rest of this article is organized as follows. In section 2, we present preliminary

material needed for our work. In section 3, we prove the global existence and the
uniform decay of energy.
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2. Preliminaries

In this section, we present some materials needed for our main results. Through-
out this article, we use the following assumptions and notation. We shall write ‖ · ‖
and ‖ · ‖p to denote the usual L2(Ω) norm and Lp(Ω) norm respectively, (·, ·) de-
notes the usual inner product in L2(Ω). We denote by c and ci (i ∈ N+) various
positive constants, which may be different at different occurrences.

Weuse the following hypotheses.

(A1) γ(t): R+ → R+ is a non-increasing continuous function.
(A2) gi(s): R+ → R+ (i = 1, 2) are differentiable non-increasing functions such

that

gi(0) > 0, a− ‖a1‖∞
∫ ∞

0

g1(s)ds− ‖a2‖∞
∫ ∞

0

g2(s)ds := l > 0.

(A3) There exists a positive differentiable non-increasing function ξ : R+ → R+

satisfying
g′1(t) ≤ −ξ(t)g1(t), t ≥ 0.

(A4) There exists a positive constant κ and an increasing strictly convex function
G : R+ → R+ of class C1(R+) ∩ C2(R+) satisfying

G(0) = G′(0) = 0, lim
t→+∞

G′(t) = +∞,

such that
g′2(t) ≤ −κg2(t), t ≥ 0, (2.1)

or ∫ ∞
0

g2(t)

G−1(−g′2(t))
dt+ sup

t∈R+

g2(t)

G−1(−g′2(t))
< +∞. (2.2)

(A5) h(s): R → R is a non-decreasing function with sh(s) ≥ 0 for all s ∈ R
and there exists a convex and increasing function H : R+ → R+ of class
C1(R+)∩C2(R+) satisfyingH(0) = 0, andH is linear on [0, ε1] orH ′(0) = 0
and H ′′ > 0 on (0, ε1] such that

m1|s| ≤ |h(s)| ≤M1|s|, if |s| ≥ ε1, (2.3)

h2(s) ≤ H−1(sh(s)), if |s| < ε1, (2.4)

where ε1, m1 and M1 are positive constants.
(A6) There exists a positive constant m0, such that

‖∇u0(., s)‖2 ≤ m0, s ∈ R+. (2.5)

(A7) ai(x) : Ω→ R+ (i = 1, 2) are in C1(Ω) such that, for positive constants ε2
and ε3 and for Γ1, Γ2 ⊂ ∂Ω with meas (Γi > 0),

inf
x∈Ω

(a1(x) + a2(x)) ≥ ε2,

ai = 0 or inf
Γi

ai(x) ≥ 2ε3, i = 1, 2.

As in [7], let d = min{ε2, ε3} and let αi ∈ C1(Ω) (i = 1, 2), be such that

0 ≤ αi(x) ≤ ai(x),

αi(x) = 0, if ai(x) ≤ d

4
,

αi(x) = ai(x), if ai(x) ≥ d

2
.

(2.6)



EJDE-2020/42 VISCOELASTIC WAVE EQUATIONS 5

Assumption (2.4) was introduced for the first time in [12].

Lemma 2.1 (Sobolev-Poincare inequality). Let q be a number with 2 ≤ q <∞ for
n = 1, 2, and 2 ≤ q ≤ 2n

n−2 for n ≥ 3. Then there exists a constant c∗ = c∗(Ω, q)
such that

‖u‖q ≤ c∗‖∇u‖2, u ∈ H1
0 (Ω).

From this lemma and (1.2) we know that there exists some positive constant η
such that for any u ∈ H1

0 (Ω) one has

‖u‖p+1
p+1 ≤ η(l‖∇u‖22)

p+1
2 . (2.7)

Using the Faedo-Galerkin method, we can obtain the following local solution.
We omit the proof.

Theorem 2.2. Suppose that (A1)–(A7) hold, and let (u0, u1) ∈ H1
0 (Ω)×L2(Ω) be

given. Then there exists a unique weak solution u of (1.1) such that

u ∈ C([0, T ), H1
0 (Ω)) ∩ Lp+1(Ω), ut ∈ C([0, T );H1

0 (Ω)) ∩ Lρ+2(Ω),

for some T > 0.

Now, for (1.1), we consider the functionals

I(t) :=

∫
Ω

[
a− a1(x)

∫ t

0

g1(s)ds− a2(x)

∫ ∞
0

g2(s)ds
]
|∇u|2dx+ b‖∇u‖42

+ (g1 ◦ ∇u)(t) + (g2 }∇u)(t)− ‖u‖p+1
p+1,

(2.8)

and

J(t) :=
1

2

∫
Ω

[
a− a1(x)

∫ t

0

g1(s)ds− a2(x)

∫ ∞
0

g2(s)ds
]
|∇u|2dx+

b

4
‖∇u‖42

+
1

2
(g1 ◦ ∇u)(t) +

1

2
(g2 }∇u)(t)− 1

p+ 1
‖u‖p+1

p+1.

(2.9)

We define the energy functional of problem (1.1) as

E(t) :=
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2
‖∇ut‖22 + J(t), (2.10)

where

(g1 ◦ ∇u)(t) =

∫
Ω

a1(x)

∫ t

0

g1(t− s)|∇u(t)−∇u(s)|2 ds dx,

(g2 }∇u)(t) =

∫
Ω

a2(x)

∫ ∞
0

g2(s)|∇u(t)−∇u(t− s)|2 ds dx.

Lemma 2.3. E(t) is a non-increasing function for t ≥ 0, and

E′(t) =− σ
(1

2

d

dt
‖∇u‖22

)2

− ‖∇ut‖22 +
1

2
(g′1 ◦ ∇u)(t) +

1

2
(g′2 }∇u)(t)

− 1

2
g1(t)

∫
Ω

a1(x)|∇u|2dx−
∫

Ω

γ(t)uth(ut)dx ≤ 0,
(2.11)

where

(g′1 ◦ ∇u)(t) =

∫
Ω

a1(x)

∫ t

0

g′1(t− s)|∇u(t)−∇u(s)|2 ds dx,

(g′2 }∇u)(t) =

∫
Ω

a2(x)

∫ ∞
0

g′2(s)|∇u(t)−∇u(t− s)|2 ds dx.
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Proof. Multiplying the first equation in (1.1) by ut, integrating over Ω and using
integration by parts and hypotheses (A1)–(A7), we obtain (2.10). �

3. Global solution and energy decay results

Lemma 3.1. Suppose that (A1)–(A7) hold. Let (u0, u1) ∈ H1
0 (Ω)×L2(Ω), I(0) > 0

and

η
(2(p+ 1)

p− 1
E(0)

) p−1
2

< 1.

Then I(t) > 0 for all t ≥ 0.

Proof. Since I(0) > 0, by continuity, there exists T∗ ≤ T such that I(t) ≥ 0 for all
t ∈ [0, T∗). Using that a− ‖a1‖∞

∫∞
0
g1(s)ds− ‖a2‖∞

∫∞
0
g2(s)ds = l > 0, for any

t ∈ [0, T∗), we have

J(t) =
p− 1

2(p+ 1)

∫
Ω

(
a− a1(x)

∫ t

0

g1(s)ds− a2(x)

∫ ∞
0

g2(s)ds
)
|∇u|2dx

+
p− 3

4(p+ 1)
b‖∇u‖42 +

p− 1

2(p+ 1)

(
(g1 ◦ ∇u)(t) + (g2 }∇u)(t)

)
+

1

p+ 1
I(t)

≥ p− 1

2(p+ 1)
l‖∇u(t)‖22.

From the above inequality, and (2.7)–(2.11), we have

l‖∇u‖22 ≤
2(p+ 1)

p− 1
J(t) ≤ 2(p+ 1)

p− 1
E(t) ≤ 2(p+ 1)

p− 1
E(0), (3.1)

and

‖u‖p+1
p+1 ≤ η(l‖∇u‖22)

p+1
2

≤ η
(2(p+ 1)

p− 1
E(0)

) p−1
2

l‖∇u‖22 < l‖∇u‖22

<

∫
Ω

(
a− a1(x)

∫ t

0

g1(s)ds− a2(x)

∫ ∞
0

g2(s)ds
)
|∇u|2dx.

(3.2)

This shows that I(t) > 0 for all t ∈ [0, T∗). By repeating this procedure, we can
extended T∗ to T . This completes the proof of Lemma 3.1. �

Theorem 3.2. Suppose that (A1)–(A7) hold. If (u0, u1) ∈ H1
0 (Ω) × L2(Ω), then

the solution of (1.1) is global and bounded.

Proof. Using (2.11) and Lemma 3.1, we have

E(0) ≥ E(t) =
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2
‖∇ut‖22 + J(t)

≥ 1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2
‖∇ut‖22 +

p− 1

2(p+ 1)
l‖∇u‖22.

Therefore,

‖ut‖ρ+2
ρ+2 + ‖∇ut‖22 + ‖∇u‖22 ≤ cE(0),

where c is a positive constant that depends on l, ρ and p. This completes the
proof. �

By using the Hölder inequality and the properties of the functions α1 and α2,
we easily obtained the following Lemma. We omit the proof.
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Lemma 3.3. The following inequalities hold,∫
Ω

α1(x)
(∫ t

0

g1(t− s)(u(t)− u(s))ds
)2

dx ≤ c(g1 ◦ ∇u)(t), (3.3)∫
Ω

α1(x)
(∫ t

0

g1(t− s)(∇u(t)−∇u(s))ds
)2

dx ≤ c(g1 ◦ ∇u)(t), (3.4)∫
Ω

|∇α1(x)|
(∫ t

0

g1(t− s)(u(t)− u(s))ds
)2

dx ≤ c(g1 ◦ ∇u)(t), (3.5)∫
Ω

|∇α1(x)|
(∫ t

0

g1(t− s)(∇u(t)−∇u(s))ds
)2

dx ≤ c(g1 ◦ ∇u)(t), (3.6)∫
Ω

α2(x)
(∫ ∞

0

g2(s)(u(t)− u(t− s))ds
)2

dx ≤ c(g2 }∇u)(t), (3.7)∫
Ω

α2(x)
(∫ ∞

0

g2(s)(∇u(t)−∇u(t− s))ds
)2

dx ≤ c(g2 }∇u)(t), (3.8)∫
Ω

|∇α2(x)|
(∫ ∞

0

g2(s)(u(t)− u(t− s))ds
)2

dx ≤ c(g2 }∇u)(t), (3.9)∫
Ω

|∇α2(x)|
(∫ ∞

0

g2(s)(∇u(t)−∇u(t− s))ds
)2

dx ≤ c(g2 }∇u)(t). (3.10)

We define the perturbed energy functional

L(t) = ME(t) + εψ(t) + χ1(t) + χ2(t), (3.11)

where M and ε are positive constants that will be specified later, and

ψ(t) =
1

ρ+ 1

∫
Ω

|ut|ρutu dx+
σ

4
‖∇u‖42 +

∫
Ω

∇u · ∇ut dx+
1

2
‖∇u‖22,

χ1(t) =

∫
Ω

α1(x)(∆u+ ∆ut −
1

ρ+ 1
|ut|ρut)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx,

χ2(t) =

∫
Ω

α2(x)(∆u+ ∆ut −
1

ρ+ 1
|ut|ρut)

∫ ∞
0

g2(s)(u(t)− u(t− s)) ds dx.

Lemma 3.4. There exist two positive constants β1 and β2 such that the relation

β1L(t) ≤ E(t) ≤ β2L(t),

holds for ε small enough while M is large enough.

Proof. By using Young’s inequality, Hölder inequality and Lemma 3.3, we obtain∣∣ 1

ρ+ 1

∫
Ω

|ut|ρutu dx
∣∣

≤ 1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

(ρ+ 1)(ρ+ 2)
‖u‖ρ+2

ρ+2

≤ 1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
cρ+2
∗

(ρ+ 1)(ρ+ 2)
‖∇u‖ρ+2

2

≤ 1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
cρ+2
∗

(ρ+ 1)(ρ+ 2)

(2(p+ 1)

(p− 1)l
E(0)

)ρ/2
‖∇u‖22,
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∣∣ ∫
Ω

α1(x)∆u(t)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx
∣∣

≤
∣∣ ∫

Ω

∇α1(x)∇u(t)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx
∣∣

+
∣∣ ∫

Ω

α1(x)∇u(t)

∫ t

0

g1(t− s)(∇u(t)−∇u(s)) ds dx
∣∣

≤ δ‖∇u‖22 +
c

δ
(g1 ◦ ∇u)(t),∣∣ ∫

Ω

α1(x)∆ut(t)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx
∣∣ ≤ δ‖∇ut‖22 +

c

δ
(g1 ◦ ∇u)(t),

∣∣ 1

ρ+ 1

∫
Ω

α1(x)|ut|ρut
∫ t

0

g1(t− s)(u(t)− u(s)) ds dx
∣∣

≤ 1

(ρ+ 1)(ρ+ 2)

∫
Ω

α1(x)
(∫ t

0

g1(t− s)(u(t)− u(s))ds
)ρ+2

dx

+
1

ρ+ 2

∫
Ω

α1(x)|ut|ρ+2dx

≤ c

ρ+ 2
‖ut‖ρ+2

ρ+2 +
ccρ+2
∗

(ρ+ 1)(ρ+ 2)

(4(p+ 1)

(p− 1)l
E(0)

)ρ/2
(g1 ◦ ∇u)(t),

∣∣ ∫
Ω

α2(x)∆u(t)

∫ ∞
0

g2(s)(u(t)− u(t− s)) ds dx
∣∣ ≤ δ‖∇u‖22 +

c

δ
(g2 }∇u)(t),

∣∣ ∫
Ω

α2(x)∆ut

∫ ∞
0

g2(s)(u(t)− u(t− s)) ds dx
∣∣ ≤ δ‖∇ut‖22 +

c

δ
(g2 }∇u)(t),

∣∣ 1

ρ+ 1

∫
Ω

α2(x)|ut|ρut
∫ ∞

0

g2(s)(u(t)− u(t− s)) ds dx
∣∣

≤ 1

ρ+ 2

( 1

ρ+ 1

∫
Ω

α2(x)
(∫ ∞

0

g2(s)|u(t)− u(t− s)|ds
)ρ+2

dx

+

∫
Ω

α2(x)|ut|ρ+2dx
)

≤ c

ρ+ 2
‖ut‖ρ+2

ρ+2 +
cρ+2
∗ c

(ρ+ 1)(ρ+ 2)

∫ ∞
0

g2(s)‖∇u(t)−∇u(t− s)‖ρ+2
2 ds.

Now, using (3.1) and (A6) we obtain

‖∇u(t)−∇u(t− s)‖22 ≤ 2‖∇u(t)‖22 + 2‖∇u(t− s)‖22
≤ 4 sup

s>0
‖∇u(s)‖22 + 2 sup

τ<0
‖∇u(τ)‖22

≤ 4 sup
s>0
‖∇u(s)‖22 + 2 sup

τ>0
‖∇u0(τ)‖22

≤ 8(p+ 1)

(p− 1)l
E(0) + 2m2

0 := N1,∣∣ 1

ρ+ 1

∫
Ω

α2(x)|ut|ρut
∫ ∞

0

g2(s)(u(t)− u(t− s)) ds dx
∣∣

≤ c

ρ+ 2
‖ut‖ρ+2

ρ+2 +
cρ+2
∗ N

ρ/2
1 c

(ρ+ 1)(ρ+ 2)
(g2 }∇u)(t).
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Therefore, |L(t)−ME(t)| ≤ cE(t). The prof is complete. �

Lemma 3.5. Suppose that (1.2) and (A1)–(A7) hold. Then

ψ(t) =
1

ρ+ 1

∫
Ω

|ut|ρutu dx+
σ

4
‖∇u‖42 +

∫
Ω

∇u · ∇ut dx+
1

2
‖∇u‖22

along the solution of (1.1), and for any ε1 > 0,

ψ′(t) ≤ 1

ρ+ 1
‖ut‖ρ+2

ρ+2 + ‖∇ut‖22 − b‖∇u‖42 +
c

ε1

∫
Ω

h2(ut)dx

+
c

2ε1
(g1 ◦ ∇u)(t) +

c

2ε1
(g2 }∇u)(t) + ‖u‖p+1

p+1

−
∫

Ω

[a− a1(x)

∫ t

0

g1(s)ds− a2(x)

∫ ∞
0

g2(s)ds− ε1]|∇u|2dx.

(3.12)

Proof. By taking the time derivative of ψ(t) and using problem (1.1), we obtain

ψ′(t) =
1

ρ+ 1
‖ut‖ρ+2

ρ+2 + ‖∇ut‖22 − a‖∇u‖22 − b‖∇u(t)‖42

−
∫

Ω

u(t)

∫ t

0

g1(t− s) div(a1(x)∇u(s)) ds dx− γ(t)

∫
Ω

u(t)h(ut)dx

−
∫

Ω

u(t)

∫ ∞
0

g2(s) div(a2(x)∇u(t− s)ds)dx+ ‖u(t)‖p+1
p+1.

(3.13)

For the fifth term, by using Young’s inequality and Hölder inequality, we obtain

−
∫

Ω

u(t)

∫ t

0

g1(t− s) div(a1(x)∇u(s)) ds dx

=

∫
Ω

∇u(t)

∫ t

0

g1(t− s)a1(x)∇u(s) ds dx

=

∫
Ω

a1(x)

∫ t

0

g1(t− s)(∇u(s)−∇u(t))ds∇u(t)dx

+

∫ t

0

g1(s)ds

∫
Ω

a1(x)|∇u(t)|2dx

≤ ε1

2
‖∇u(t)‖22 +

1

2ε1

∫
Ω

a1(x)(

∫ t

0

g1(t− s)(∇u(s)−∇u(t))ds)2dx

+

∫ t

0

g1(s)ds

∫
Ω

a1(x)|∇u(t)|2dx

≤ ε1

2
‖∇u(t)‖22 +

1

2ε1

∫ t

0

g1(s)ds(g1 ◦ ∇u)(t) +

∫ t

0

g1(s)ds

∫
Ω

a1(x)|∇u(t)|2dx

≤ ε1

2
‖∇u(t)‖22 +

c

2ε1
(g1 ◦ ∇u)(t) +

∫ t

0

g1(s)ds

∫
Ω

a1(x)|∇u(t)|2dx.

(3.14)
Similarity, for the sixth term we obtain

−
∫

Ω

γ(t)u(t)h(ut)dx ≤ cε1‖∇u(t)‖22 +
c

ε1

∫
Ω

h2(ut)dx. (3.15)
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For the seventh term, we have

−
∫

Ω

u(t)

∫ ∞
0

g2(s) div(a2(x)∇u(t− s)) ds dx

≤ ε1

2
‖∇u(t)‖22 +

c

2ε1
(g2 }∇u)(t) +

∫ ∞
0

g2(s)ds

∫
Ω

a2(x)|∇u(t)|2dx.
(3.16)

By using (3.14)-(3.16) in (3.13), estimate (3.12) follows. �

Lemma 3.6. Suppose that (1.2) and (A1)–(A7) hold. Then

χ1(t) =

∫
Ω

α1(x)(∆u+ ∆ut −
1

ρ+ 1
|ut|ρut)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx, (3.17)

along the solution of (1.1), and for any ε2, ε3 > 0,

χ′1(t) ≤−
[ ∫ t

0

g1(s)ds− cε2

] ∫
Ω

α1(x)|∇ut|2dx+ c(ε2 + ε3)

∫
Ω

|∇u|2dx

− 1

ρ+ 1

∫ t

0

g1(s)ds

∫
Ω

α1(x)|ut|ρ+2dx+
c

ε3
(g1 ◦ ∇u)(t) + ε3(g2 }∇u)(t)

− c

ε2
(g′1 ◦ ∇u)(t)− σ 4(p+ 1)

p− 1
E(0)E′(t) + ε3

∫
Ω

h2(ut)dx.

Proof. Taking the derivative of χ1 and using (1.1), we obtain

χ′1(t)

= −
∫

Ω

α1(x)M(t)∆u

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

α1(x)

∫ t

0

g1(t− s) div(a1(x)∇u(s))ds

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

α1(x)

∫ ∞
0

g2(s) div(a2(x)∇u(t− s))ds
∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

α1(x)γ(t)h(ut)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

α1(x)|u|p−1u

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

α1(x)(∆u+ ∆ut −
1

ρ+ 1
|ut|ρut)(

∫ t

0

g′1(t− s)(u(t)− u(s)) ds dx

+

∫ t

0

g1(s)ds

∫
Ω

α1(x)(∆u+ ∆ut −
1

ρ+ 1
|ut|ρut)ut dx.

Therefore,

χ′1(t) =

∫
Ω

b‖∇u‖22∇α1∇u(t)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

−
∫ t

0

g1(s)ds

∫
Ω

α1|∇ut|2dx−
1

ρ+ 1

∫ t

0

g1(s)ds

∫
Ω

α1|ut|ρ+2dx

+

∫
Ω

α1b‖∇u‖22∇u(t)

∫ t

0

g1(t− s)(∇u(t)−∇u(s)) ds dx



EJDE-2020/42 VISCOELASTIC WAVE EQUATIONS 11

+

∫
Ω

∇α1

(
a− a1

∫ t

0

g1(s)ds− a2

∫ ∞
0

g2(s)
)
∇u(t)

×
∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

α1

(
a− a1

∫ t

0

g1(s)ds− a2

∫ ∞
0

g2(s)
)
∇u(t)

×
∫ t

0

g1(t− s)(∇u(t)−∇u(s)) ds dx

+

∫
Ω

(σ

∫
Ω

∇u∇ut dx)∇α1∇u(t)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

(σ

∫
Ω

∇u∇ut dx)α1∇u(t)

∫ t

0

g1(t− s)(∇u(t)−∇u(s)) ds dx

+

∫
Ω

∇α1a1(x)

∫ t

0

g1(t− s)(∇u(t)−∇u(s))ds

×
∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

α1a1(x)(

∫ t

0

g1(t− s)(∇u(t)−∇u(s))ds)2dx

+

∫
Ω

a2∇α1

(∫ ∞
0

g2(s)(∇u(t)−∇u(t− s))ds
)

×
∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

a2α1

(∫ ∞
0

g2(s)(∇u(t)−∇u(t− s))ds
)

×
∫ t

0

g1(t− s)(∇u(t)−∇u(s)) ds dx

+

∫
Ω

α1γh(ut)

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

α1|u|p−1u

∫ t

0

g1(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

∇α1∇u
∫ t

0

g′1(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

α1∇u
∫ t

0

g′1(t− s)(∇u(t)−∇u(s)) ds dx

−
∫

Ω

∇α1∇ut
∫ t

0

g′1(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

α1∇ut
∫ t

0

g′1(t− s)(∇u(t)−∇u(s)) ds dx

− 1

ρ+ 1

∫
Ω

α1|ut|ρut
∫ t

0

g′1(t− s)(u(t)− u(s)) ds dx
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−
∫ t

0

g1(s)ds

∫
Ω

ut∇α1∇u dx

−
∫ t

0

g1(s)ds

∫
Ω

α1∇ut∇u dx−
∫ t

0

g1(s)ds

∫
Ω

ut∇α1∇ut dx.

Using Young’s inequality, Poincare inequality and that |∇α1| ≤ ca1(x), we obtain
(3.17). �

With a similar proof as that of Lemma 3.6 we can obtain the following Lemma.

Lemma 3.7. Suppose that (1.2) and (A1)-(A7) hold. Then

χ2(t) =

∫
Ω

α2(x)(∆u+ ∆ut −
1

ρ+ 1
|ut|ρut)

∫ ∞
0

g2(s)(u(t)− u(t− s)) ds dx

along the solution of (1.1), and for any ε2, ε3 > 0,

χ′2(t) ≤−
[ ∫ ∞

0

g2(s)ds− cε2

] ∫
Ω

α2(x)|∇ut|2dx+ ε3(g1 ◦ ∇u)(t)

− 1

ρ+ 1

∫ ∞
0

g2(s)ds

∫
Ω

α2(x)|ut|ρ+2dx+ c(ε2 + ε3)

∫
Ω

|∇u|2dx

+
c

ε3
(g2 }∇u)(t)− c

ε2
(g′2 }∇u)(t)− σ 4(p+ 1)

p− 1
E(0)E′(t)

+ ε3

∫
Ω

h2(ut)dx.

(3.18)

Assumption (A2) guarantees that for any t0 > 0, we have

g0 := min
{∫ t0

0

g1(s)ds,

∫ ∞
0

g2(s)ds
}
.

A differentiation of L, together with Lemmas 3.5, 3.5 and 3.7, give

L′(t) ≤− 1

ρ+ 1

∫
Ω

[g0(α1 + α2)− ε]|ut|ρ+2dx+ (
M

2
− c

ε2
)(g′1 ◦ ∇u+ g′2 }∇u)

−
∫

Ω

[(g0 − cε2)(α1 + α2)− ε+M ]|∇ut|2dx+ ε‖u‖p+1
p+1

+ (
cε

ε1
+

c

ε3
+ ε3)(g1 ◦ ∇u+ g2 }∇u)− σ 8(p+ 1)

p− 1
E(0)E′(t)

+ (2ε3 +
cε

ε1
)

∫
Ω

h2(ut)dx− bε‖∇u‖42 − [(l − ε1)ε− cε3]

∫
Ω

|∇u|2dx.

We choose ε small enough and M large enough such that

cε3

l − ε1
< ε < (g0 − cε2)(α1 + α2), M >

2c

ε2
.

Therefore, there exist positive constants κ1, κ2, κ3, and κ4 such that for all t ≥ t0
we have

L′(t) ≤ −κ1E(t) + κ2(g1 ◦ ∇u+ g2 }∇u) + κ3

∫
Ω

h2(ut)dx− κ4E
′(t).

We define F1(t) = L(t) + κ4E(t). Thus, we have

F ′1(t) ≤ −κ1E(t) + κ2(g1 ◦ ∇u+ g2 }∇u) + κ3

∫
Ω

h2(ut)dx. (3.19)
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Now, we are ready to prove our main results by adopting and modifying the
arguments in [22]. Firstly we give the following Lemma.

Lemma 3.8. If condition (2.2) holds, then for any ε0 > 0, we have

G′(ε0E(t))(g2 }∇u) ≤ −cE′(t) + cε0E(t)G′(ε0E(t)). (3.20)

Proof. Since E(t) is non-increasing and the assumption (A6), we have∫
Ω

a2(x)(∇u(t)−∇u(t− s))2dx

≤ 2‖a2‖∞
∫

Ω

|∇u(t)|2dx+ 2‖a2‖∞
∫

Ω

|∇u(t− s)|2dx

≤

{
cE(0), if 0 ≤ s < t,

cE(0) + c
∫

Ω
|∇u0(s− t)|2dx, if s ≥ t,

≤ A,

in which A is a positive constant.
Let ε0, δ1, δ2 > 0. Then

(g2 }∇u)(t)

=

∫
Ω

a2(x)

∫ ∞
0

g2(s)(∇u(t)−∇u(t− s))2 ds dx

=
1

δ1G′(ε0E(t))

∫ ∞
0

G−1
(
− δ2g′2(s)

∫
Ω

a2(x)(∇u(t)−∇u(t− s))2dx
)

×
δ1G

′(ε0E(t))g2(s)
∫

Ω
a2(x)(∇u(t)−∇u(t− s))2dx

G−1
(
−δ2g′2(s)

∫
Ω
a2(x)(∇u(t)−∇u(t− s))2dx

)
ds

≤ 1

δ1G′(ε0E(t))

∫ ∞
0

G−1
(
− δ2g′2(s)

∫
Ω

a2(x)(∇u(t)−∇u(t− s))2dx
)

× Aδ1G
′(ε0E(t))g2(s)

G−1(−Aδ2g′2(s))
ds.

Let G∗ be the dual function of the convex function G defined by

G∗(t) = sup
s≥0
{ts−G(s)}, t ∈ R+.

Obviously, G′ is increasing and defines a bijection from R+ to R+, and then, for
any t ∈ R+, the function s 7→ ts−G(s) reaches its maximum on R+ at the unique
point (G′)−1(t). Therefore

G∗(t) = t(G′)−1(t)−G((G′)−1(t)), t ∈ R+.

Using the general Young’s inequality: s1s2 ≤ G(s1) +G∗(s2), for

s1 = G−1
(
− δ2g′2(s)

∫
Ω

a2(x)(∇u(t)−∇u(t− s))2dx
)
,

s2 =
Aδ1G

′(ε0E(t))g2(s)

G−1(−Aδ2g′2(s))
,

we obtain

(g2 }∇u)(t)

≤ 1

δ1G′(ε0E(t))

∫ ∞
0

G∗(
Aδ1G

′(ε0E(t))g2(s)

G−1(−Aδ2g′2(s))
)ds− δ2

δ1G′(ε0E(t))
(g′2 }∇u)(t).
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Using that G∗(s) ≤ s(G′)−1(s) and the definition of E′(t), we obtain

(g2 }∇u)(t)

≤
∫ ∞

0

Ag2(s)

G−1(−Aδ2g′2(s))
(G′)−1(

Aδ1G
′(ε0E(t)g2(s))

G−1(−Aδ2g′2(s))
)ds− 2δ2

δ1G′(ε0E(t))
E′(t).

Condition (2.2) implies

sup
s∈R+

g2(s)

G−1(−g′2(s))
= m2 < +∞.

Then, using that (G′)−1 is non-decreasing, for δ2 = 1
A we obtain

(g2 }∇u)(t)

≤
∫ ∞

0

Ag2(s)

G−1(−g′2(s))
(G′)−1(m2Aδ1G

′(ε0E(t)))ds− 2

Aδ1G′(ε0E(t))
E′(t).

Choosing δ1 = 1
m2A

and using that∫ ∞
0

Ag2(s)

G−1(−g′2(s))
ds = m3 < +∞,

we obtain

(g2 }∇u)(t) ≤ −2m1

G′(ε0E(t))
E′(t) +m3ε0E(t).

Thus, (3.20) holds. �

We define the following partition of Ω

Ω+ := {x ∈ Ω : |ut| ≥ ε1}, Ω− := {x ∈ Ω : |ut| < ε1}.

Now we state our main result of this article.

Theorem 3.9. Assume that (1.1) and (A1)–(A7) are satisfied. Then there exist
positive constants ε0, τ0, c′ and c′′ such that the solution of (1.1) satisfies

E(t) ≤ c′′(G2)−1
(∫ t

0

c′ζ(s)ds
)
, t ≥ 0, (3.21)

where

G2(t) =

∫ 1

t

1

H1(s)
ds,

G1(s) =

{
s, if (2.1) holds,

sG′(ε0s), if (2.2) holds,

H1(s) =

{
G1(s), if H is linear on [0, ε1],

G1(s)H ′(τ0G1(s)), otherwise,

ζ(t) = min{ξ(t), γ(t)}.

Proof. Case (2.1) holds. At this point we use (2.10) to obtain

(g2 }∇u)(t) ≤ − 1

κ
(g′2 }∇u)(t) ≤ − 2

κ
E′(t). (3.22)

Case (2.2) holds. We have (3.20).
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For the two cases, from (3.20) and (3.22) we deduce that

G1(E(t))

E(t)
(g2 }∇u)(t) ≤ −cE′(t) + cε0G1(E(t)). (3.23)

Therefore, multiplying (3.19) by G1(E(t))
E(t) , and using (3.23) we obtain

G1(E(t))

E(t)
F ′1(t) ≤− κ1G1(E(t)) + κ2

G1(E(t))

E(t)
(g1 ◦ ∇u)(t)− κ2cE

′(t)

+ κ3
G1(E(t))

E(t)

∫
Ω

h2(ut)dx+ κ2cε0G1(E(t)).

Choosing ε0 small enough, we arrive at

G1(E(t))

E(t)
F ′1(t) + κ2cE

′(t) ≤− cG1(E(t)) + κ2
G1(E(t))

E(t)
(g1 ◦ ∇u)(t)

+ κ3
G1(E(t))

E(t)

∫
Ω

h2(ut)dx.

(3.24)

Let

F2(t) =
G1(E(t))

E(t)
F1(t) + κ2cE(t).

By recalling that t → G1(E(t))
E(t) is non-increasing, we deduce that F2(t) ∼ E(t) and

by exploiting (3.24), we conclude that for t ≥ t0,

F ′2(t) ≤ −cG1(E(t)) + κ2
G1(E(t))

E(t)
(g1 ◦ ∇u)(t) + κ3

G1(E(t))

E(t)

∫
Ω

h2(ut)dx. (3.25)

We use (A3) to obtain

ζ(t)(g1 ◦ ∇u)(t) ≤ ξ(t)(g1 ◦ ∇u)(t)

=

∫
Ω

a1(x)

∫ t

0

ξ(t)g1(t− s)(∇u(t)−∇u(s))2 ds dx

≤
∫

Ω

a1(x)

∫ t

0

ξ(t− s)g1(t− s)(∇u(t)−∇u(s))2 ds dx

≤ −c(g′1 ◦ ∇u)(t)

≤ −cE′(t).

Multiplying (3.25) by ζ(t) and using that t→ G1(E(t))
E(t) is non-increasing, we obtain

ζ(t)F ′2(t) ≤− cζ(t)G1(E(t)) + κ2
G1(E(t))

E(t)
ζ(t)(g1 ◦ ∇u)(t)

+ κ3
G1(E(t))

E(t)
ζ(t)

∫
Ω

h2(ut)dx

≤− cζ(t)G1(E(t))− cE′(t) + cζ(t)

∫
Ω

h2(ut)dx.

(3.26)

Using that ζ(t) is a non-increasing continuous function, ξ(t) and η(t) are non-
increasing, and ζ(t) is differentiable, with ζ ′(t) ≤ 0, then the functional

F3(t) := ζ(t)F2(t) + cE(t)
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satisfies F3(t) ∼ E(t), and

F ′3(t) ≤ −cζ(t)G1(E(t)) + cζ(t)

∫
Ω

h2(ut)dx. (3.27)

Case 1. H is linear on [0, ε1]. In this case, there exists κ5 > 0 such that

ζ(t)

∫
Ω

h2(ut)dx ≤ κ5γ(t)

∫
Ω

uth(ut)dx ≤ −κ5E
′(t),

which together with (3.27) implies

(F3(t) + cE(t))′ ≤ −cζ(t)G1(E(t)), (3.28)

which gives J(t) := (F3(t) + cE(t))δ0 ∼ E(t) and

J ′(t) ≤ −cδ0ζ(t)G1(J(t)) =: −c′ζ(t)H1(J(t)). (3.29)

We choose δ0 small enough so that

J(t) ≤ E(t) and G2(J(t0))− c′
∫ t0

0

ζ(s)ds > 0.

By integrating (3.29) over (t0, t) and noting that G2 is non-increasing, we deduce
that

J(t) ≤ G−1
2 (G2(J(t0)) + c′

∫ t

0

ζ(s)ds− c′
∫ t0

0

ζ(s)ds) ≤ G−1
2 (c′

∫ t

0

ζ(s)ds).

Consequently, the relation between of J(t) and E(t) yields

E(t) ≤ c′′G−1
2 (c′

∫ t

0

ζ(s)ds).

Case 2. H ′(0) = 0 and H ′′ > 0 on (0, ε1]. In this case, we first estimate
∫

Ω
h2(ut)dx

on the right-hand of (3.27). Noting that H−1 is concave and increasing, and using
Jensen’s inequality, (A5) and (2.10), we deduce that∫

Ω

h2(ut)dx =

∫
Ω+

h2(ut)dx+

∫
Ω−

h2(ut)dx

≤M1

∫
Ω+

uth(ut)dx+

∫
Ω−

h2(ut)dx

≤ −M1E
′(t) +

∫
Ω−

H−1(uth(ut))dx

≤ −M1E
′(t) + cH−1(S(t)),

(3.30)

where S(t) = 1
vol(Ω−)

∫
Ω−

uth(ut)dx. Hence (3.27) becomes

F ′3(t) ≤ −cζ(t)G1(E(t))− cM1ζ(t)E′(t) + cζ(t)H−1(S(t)). (3.31)

Now, we define F4(t) := F3(t) + cM1ζ(t)E(t). Then, we have

F ′4(t) ≤ −cζ(t)G1(E(t)) + cζ(t)H−1(S(t)). (3.32)

We define

F5(t) := H ′(τ0G1(E(t)))F4(t) + κ6E(t), (3.33)
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where τ0 > 0 and κ6 > 0 to be determined later. Then, using E′(t) ≤ 0, G′1(t) ≥ 0,
H ′′(t) ≥ 0, and (3.31), we obtain

F ′5(t)

= τ0G
′
1(E(t))E′(t)H ′′(τ0G1(E(t)))F4(t) +H ′(τ0G1(E(t)))F ′4(t) + κ6E

′(t)

≤ H ′(τ0G1(E(t)))F ′4(t) + κ6E
′(t)

≤ −cζ(t)G1(E(t))H ′(τ0G1(E(t))) + cζ(t)H−1(S(t))H ′(τ0G1(E(t)))

+ κ6E
′(t).

(3.34)

Let H∗ be the convex conjugate of H in the sense of Young, then

H∗(s) = s(H ′)−1(s)−H
(
(H ′)−1(s)

)
, s ∈ R+, (3.35)

and H∗ satisfies

AB ≤ H∗(A) +H(B), A,B ≥ 0. (3.36)

Furthermore, using (3.35) and H ′(0) = 0, (H ′)−1 is increasing, and H is also
increasing yield

H∗(s) ≤ s(H ′)−1(s), s ≥ 0. (3.37)

Taking H ′(τ0G1(E(t))) = A and H−1(S′(t)) = B in (3.34), applying (3.36) and
(3.37), and noting that 0 ≤ H ′(τ0G1(E(t))) ≤ H ′(τ0G1(E(0))) due to H ′ is in-
creasing, we obtain

F ′5(t) ≤− cζ(t)G1(E(t))H ′(τ0G1(E(t))) + cζ(t)H∗(H ′(τ0G1(E(t))))

+ cζ(t)S(t) + κ6E
′(t)

≤− cζ(t)G1(E(t))H ′(τ0G1(E(t))) + cζ(t)τ0G1(E(t))H ′(τ0G1(E(t)))

− cE′(t) + κ6E
′(t).

Consequently, with a suitable choice of τ0 and κ6, we obtain

F ′5(t) ≤ −cζ(t)G1(E(t))H ′(τ0G1(E(t)) =: −cζ(t)H1(E(t)). (3.38)

Thus, by defining R(t) = δ3F5(t) ∼ E(t), and by computation, we have

R′(t) ≤ −cδ3ζ(t)G1(R(t))H ′(τ0G1(R(t))) =: −c′ζ(t)H1(R(t)). (3.39)

We choose δ3 small enough so that

R(t) ≤ E(t) and G2(R(t0))− c′
∫ t0

0

ζ(s)ds > 0.

By integrating (3.39) over (t0, t) and noting that G2 is non-increasing, we deduce

R(t) ≤ G−1
2 (G2(R(t0) + c′

∫ t

0

ζ(s)ds− c′
∫ t0

0

ζ(s)ds) ≤ G−1
2 (c′

∫ t

0

ζ(s)ds).

Consequently, the equality relation between of R(t) and E(t) yields

E(t) ≤ c′′G−1
2 (c′

∫ t

0

ζ(s)ds).

This completes the proof. �
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[23] A. Zaräı, N. Tatar; Global existence and polynomial decay for a problem with Balakrishnan-

Taylor damping, Arch. Math. (BRNO), 46 (2010), no. 3, 157-176.



EJDE-2020/42 VISCOELASTIC WAVE EQUATIONS 19
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