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CROSSING LIMIT CYCLES FOR A CLASS OF PIECEWISE
LINEAR DIFFERENTIAL CENTERS SEPARATED BY A CONIC

JOHANA JIMENEZ, JAUME LLIBRE, JOAO C. MEDRADO

ABSTRACT. In previous years the study of the version of Hilbert’s 16th prob-
lem for piecewise linear differential systems in the plane has increased. There
are many papers studying the maximum number of crossing limit cycles when
the differential system is defined in two zones separated by a straight line. In
particular in [I1} T3] it was proved that piecewise linear differential centers
separated by a straight line have no crossing limit cycles. However in [14] [15]
it was shown that the maximum number of crossing limit cycles of piecewise
linear differential centers can change depending of the shape of the discontinu-
ity curve. In this work we study the maximum number of crossing limit cycles
of piecewise linear differential centers separated by a conic.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The study of discontinuous piecewise linear differential systems in the plane
started with Andronov, Vitt and Khaikin in [I]. After that these systems have
been a topic of great interest in the mathematical community because of their
applications in various areas. They are used for modeling real phenomena and
different modern devices, see for instance the books [4, [24] and references therein.

In the qualitative theory of differential systems in the plane a limit cycle is a
periodic orbit which is isolated in the set of all periodic orbits of the system. This
concept was defined by Poincaré |20} 21]. In several papers as [3,[10}[25] it was shown
that the limits cycles model many phenomena of the real world. After these works
the non-existence, existence, the maximum number and other properties of the limit
cycles have been extensively studied by mathematicians and physicists, and more
recently, by biologists, economist and engineers, see for instance [4, 17, 18] [19, 26].

As for the general case of planar differential systems one of the main problems
for the particular case of the piecewise linear differential centers is to determine the
existence and the maximum number of crossing limits cycles that these systems can
exhibit. In this paper we study the crossing limit cycles which are periodic orbits
isolated in the set of all periodic orbits of the piecewise linear differential centers,
which only have isolated points of intersection with the discontinuity curve.

To establish an upper bound for the number of crossing limit cycles for the family
of piecewise linear differential systems in the plane separated by a straight line has
been the subject of many recent papers, see for instance [2| [5, [7, 23]. In 1990 Lum
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and Chua [16] conjectured that the continuous piecewise linear systems in the plane
separated by one straight line have at most one limit cycle, in 1998 this conjecture
was proved by Freire et al [6]. Afterwards in 2010 Han and Zhang [8] conjectured
that discontinuous piecewise linear differential systems in the plane separated by a
straight line have at most two crossing limit cycles but in 2012 Huan and Yang [9]
gave a negative answer to this conjecture through a numerical example with three
crossing limit cycles, later on Llibre and Ponce in [I2] proved the existence of these
three limit cycles analytically, but it is still an open problem to know if 3 is the
maximum number of crossing limit cycles that this class of systems can have.

In [I1] the problem by Lum and Chua was extended to the class of discontinuous
piecewise linear differential systems in the plane separated by a straight line. In
particular it was proved that the class of planar discontinuous piecewise linear
differential centers has no crossing limit cycles. However, recently in [14] [15] were
studied planar discontinuous piecewise linear differential centers where the curve
of discontinuity is not a straight line. It was shown that the number of crossing
limit cycles in these systems is non-zero. For this reason it is interesting to study
the role which plays the shape of the discontinuity curve in the number of crossing
limit cycles that planar discontinuous piecewise linear differential centers can have.

In this paper we provide an upper bound for the maximum number of crossing
limit cycles of the planar discontinuous piecewise linear differential centers sepa-
rated by a conic X.

Using an affine change of coordinates, any conic can be written in one of following
nine canonical forms:

(p) 22+ y? = 0 two complex straight lines intersecting at a real point;

(CL) 22 + 1 = 0 two complex parallel straight lines;

(CE) 2% + %% +1 = 0 complex ellipse;

(DL) z? = 0 one double real straight line;

(PL) 22 — 1 = 0 two real parallel straight lines;

(LV) zy = 0 two real straight lines intersecting at a real point;
(E) 224+ y% — 1 =0 ellipse;
(H) 22 — y? — 1 = 0, hyperbola;
(P) y — 2% = 0 parabola.

We do not consider conics of type (p), (CL) or (CE) because they do not separate
the plane in connected regions.

We observe that we have two options for crossing limit cycles of discontinuous
piecewise linear differential centers separated by a conic . First we have the
crossing limit cycles such that intersect the discontinuity curve in exactly two points
and second we have the crossing limit cycles such that intersect the discontinuity
curve ¥ in four points; we study these two cases in the following sections.

1.1. Crossing limit cycles intersecting the discontinuity curve ¥ in two
points. The maximum number of crossing limit cycles of piecewise linear differen-
tial centers separated by a conic ¥ such that intersect ¥ in exactly two points is
given in the following theorems.

Theorem 1.1. Consider a planar discontinuous piecewise linear differential centers
where X2 is a conic. If X is of the type

(a) (LV), (PL) or (DL), then there are no crossing limit cycles.
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(b) (E), then the mazimum number of crossing limit cycles intersecting ¥ in
two points is two.

(a) (P), then the maximum number of crossing limit cycles intersecting ¥ in
two points is three.

The above Theorem is proved in section [2] In the cases studied up to now,
there is no a result determining the maximum number of crossing limit cycles for
discontinuous piecewise linear differential centers when ¥ is a hyperbola (H). We
determine it in the following Theorem

Theorem 1.2. Consider a family of planar discontinuous piecewise linear differ-
ential centers, Fo, where ¥ is a hyperbola (H). Then the following statement hold:

(a) There are systems in Fo without crossing limit cycles.

(b) There are systems in Fy having exactly one crossing limit cycle that inter-
sects ¥ in two points, see Figure[3

(¢) There are systems in Fo having exactly two crossing limit cycles that inter-
sect 3 in two points, see Figure[3

(d) For this family of systems Fo we have that the mazimum number of crossing
limit cycles that intersect ¥ in two points is two.

The above Theorem is proved in section

1.2. Crossing limit cycles intersecting the discontinuity curve ¥ in four
points. Here we do not consider the case where the discontinuity curve is the
conic (DL), because first in [II], [I3] it was proved that discontinuous piecewise
linear differential systems separated by a straight line have no crossing limit cycles
and second because the crossing limit cycles of these discontinuous piecewise linear
centers cannot have four points on the discontinuity curve.

In the following theorems we analyze the maximum number of crossing limit
cycles for planar discontinuous piecewise linear differential centers with four points
on discontinuity curve, where the plane is divided by the curve of discontinuity X
of the type (PL), (LV),(P),(E) or (H).

Theorem 1.3. Let F; be the family of planar discontinuous piecewise linear dif-
ferential systems formed by three linear centers and with ¥ of type (PL). Then for
this family the mazimum number of crossing limit cycles that intersect ¥ in four
points is one. Moreover there are systems in this class having one crossing limit
cycle.

Theorem [I.3] for a particular linear center between the two parallel straight lines
was done in [13], in section |4 we prove it for any linear center.

If the discontinuity curve ¥ is of the type (LV), then we have the following 4
regions in the plane:

Ri=|(z,y) €R®:2>0and y > 0],
Ry = [(z,y) €R?:2 < 0and y > 0],
Ry =|(z,y) €eR*:2 <0and y < 0],
Ry =|(z,y) €R?:2>0and y < 0].

Moreover, 3 =T'7 UT] UTS UT,, where
My =[@y) €R*:2=0,y>0], Ty =[(z,y) €R*:2=0y<0],
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Iy =[(z,y) €ER*:y=0,2>0], Ty =[xy cR*:y=0z<0.

In this case we have two types of crossing limit cycles, namely crossing limit cycles
of type 1 which intersect only two branches of ¥ in exactly two points in each
branch, and crossing limit cycles of type 2 which intersect in a unique point each
branch of the set 3.

Theorem 1.4. Let Fy be the family of planar discontinuous piecewise linear dif-
ferential systems formed by four linear centers and with X of the type (LV). The
mazimum number of crossing limit cycles type 1 is one. Moreover there are systems
in this class having one crossing limit cycle.

The above theorem is proved in Section

Theorem 1.5. Consider a family of planar discontinuous piecewise linear differ-
ential centers Fo. Then the following statement hold.

(a) There are systems in Fo with exactly one crossing limit cycle of type 2, see
Figure[7]

(b) There are systems in Fo with exactly two crossing limit cycles of type 2, see
Figure[§

(c) There are systems in Fo with exactly three crossing limit cycles of type 2,
see Figure[9

The above theorem is proved in Section [f] By the calculations made for this
case and the illustrated examples in Theorem we get the following conjecture

Conjecture 1.6. For the family of systems Fa, the mazimum number of crossing
limit cycles of type 2 is three.

Theorem 1.7. Let F3 be a family of planar discontinuous piecewise linear differ-
ential systems formed by two linear centers and with ¥ of type (P). Then for this
family the mazimum number of crossing limit cycles that intersect 3 in four points
is one. Moreover there are systems in this class having one crossing limit cycle.

The above theorem is proved in Section

Theorem 1.8. Let Fy be a family of planar discontinuous piecewise linear differ-
ential systems formed by two linear centers and with X of type (E). Then for this
family the mazimum number of crossing limit cycles that intersect X3 in four points
is one. Moreover there are systems in this class having one crossing limit cycle.

The above Theorem is proved in Section

Theorem 1.9. Let F5 be a family of planar discontinuous piecewise linear differ-
ential systems formed by three linear centers and with ¥ of type (H). Then for this
family the mazimum number of crossing limit cycles that intersect 3 in four points
is one. Moreover there are systems in this class having one crossing limit cycle.

The above theorem is proved in Section [0

1.3. Crossing limit cycles with four and with two points on the disconti-
nuity curve X simultaneously. Here we study the maximum number of crossing
limit cycles of planar discontinuous piecewise linear differential centers that inter-
sect the discontinuity curve ¥ in two and in four points simultaneously.

We do not consider planar discontinuous piecewise linear differential centers with
discontinuity curve a conic of type (DL), (PL) and (LV) because as in the proof of
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Theorem [I.1] they do not have crossing limit cycles that intersect the discontinuity
curve in two points. Then we study the maximum number of crossing limit cycles
with two and with four points in ¥ simultaneously by the families F3, F4 and Fs.

Theorem 1.10. The following statements hold.

(a) The planar discontinuous piecewise linear differential centers that belong to
the family Fs, can have simultaneous one crossing limit cycle that intersects
(P) in two points and one crossing limit cycle that intersects (P) in four
points.

(b) The planar discontinuous piecewise linear differential centers that belong to
the family Fy, can have simultaneous one crossing limit cycle that intersects
(E) in two points and one crossing limit cycle that intersects (E) in four
points.

(¢) The planar discontinuous piecewise linear differential centers that belong to
the family Fs, can have simultaneous one crossing limit cycle that intersects
(H) in two points and one crossing limit cycle that intersects (H) in four
points.

The above Theorem is proved in Section [I0] In Subsection we do not con-
sider the planar discontinuous piecewise linear differential centers in the family F3,
because they do not have crossing limit cycles that intersect the discontinuity curve
(LV) in two points. However in this family there are two types of crossing limit
cycles like it was defined in Subsection [1.2

1.4. Crossing limit cycles of types 1 and 2 simultaneously for planar dis-
continuous piecewise linear differential centers in F5. In this case we study
the maximum number of crossing limit cycles of types 1 and 2 that planar discontin-
uous piecewise linear differential centers in the family F, can have simultaneously.

Theorem 1.11. There are planar discontinuous piecewise linear differential centers
that belong to the family Fo such that have one crossing limit cycle of type 1 and
three crossing limit cycles of type 2 simultaneously.

The above theorem is proved in Section By the illustrated examples in
Theorem [1.11] we get the following conjecture

Conjecture 1.12. The planar discontinuous piecewise linear differential centers
that belong to the family Fo can have at most one crossing limit cycle of type 1 and
three crossing limit cycles of type 2 simultaneously.

2. PROOF oF THEOREM [L.1]

Analyzing the case of discontinuous piecewise linear differential centers with
discontinuity curve a conic of the type (LV), (PL) or (DL) the maximum number
of crossing limit cycles is equal to the maximum number of crossing limit cycles
in discontinuous piecewise linear differential centers in the plane separated by a
single straight line which was studied in [IT} [I3]. In these papers it was proved that
the discontinuous piecewise linear differential centers separated by one straight line
have no crossing limit cycles. This proves the statement (a) of Theorem [I.1

In [I5] the authors considered discontinuous piecewise linear differential centers
separated by the parabola y = 22 and proved that they have at most three crossing
limit cycles that intersect ¥ in two points, i.e. statement (b) of Theorem [1.1
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With regard to the discontinuous piecewise linear differential systems separated
by an ellipse, in the paper [I4] the authors shown that the class of planar discontin-
uous piecewise linear differential centers separated by the circle S' has at most two
crossing limit cycles. Moreover, there are discontinuous piecewise linear differential
centers which reach the upper bound of 2 crossing limit cycles, see Example
Then we have the statement (c¢) of Theorem [1.1

Example 2.1. We consider the discontinuous piecewise linear differential system
in R? separated by the ellipse (E) and both linear differential centers are defined
as follows:

i=-20—2y—V2—-1, §=4dz+2y+2,
in the unbounded region limited by the ellipse (E), and in the bounded region with
boundary the ellipse (E) we have the linear differential center

. n 5 1 1 . Lyt 1
T=—r4+-y——— -, =—z —.

TEAY, BT vt 5
This discontinuous piecewise differential system has exactly two crossing limit cy-
cles, see Figure

FIGURE 1. The two limit cycles of the discontinuous piecewise
linear differential of Example

3. PROOF OF THEOREM

For the systems of the class Fy we have following regions in the plane:
Ry =[(z,y) e R?:2? —y? > 1],
which is a region that consist of two connected components, and the region
Ry = [(z,y) € R? 1 22 — % < 1].

To have a crossing limit cycle, which intersects the hyperbola 2 — 32 = 1 in two
different points p = (21,y1) and ¢ = (z2, y2), these points must satisfy the closing

equations
Hi(zy,y1) = Hi(22,y2),
Hy(x2,y2) = Ha(x1,91),

2

3.1
xlfy%:L ( )

x%—y%:l.
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Proof of statement (a) of Theorem . We consider a discontinuous piecewise lin-
ear differential system which has the linear center

T = Y, y =, (32)

in the region R, the orbits of this center intersect the hyperbola in two or in four
points, when it intersects the hyperbola in exactly two points these are (£1,0),
which are points of tangency between the hyperbola and the solution curves of the
center , then it is impossible that there are crossing periodic orbits independent
of the linear differential center that can be considered in the region R;. So the orbits
which can produce a crossing limit cycle intersect the hyperbola in four points and
clearly these orbits cannot be crossing limit cycles with exactly two points on the
discontinuity curve (H). O

Proof of statement (b) of Theorem[1.4 In the region R; we consider the linear dif-
ferential center

B=27—vV5—-25y, §=-2+uz, (3.3)

this system has the first integral H;(z,y) = 4(—4 4 x)x + 4y(—54 4 2v/5 + 25y). In
the region Ry we have the linear differential center

3vV6 3
: Zog=—24 3.4
T 1 4 Y B Z, (3.4)

which has the first integral Hy(z,y) = 4(—=3 + 2)x + y(—16 4+ 63/5 + ).

FIGURE 2. The crossing limit cycle of the discontinuous piecewise
linear differential system formed by the centers (3.3]) and (3.4)).

This discontinuous piecewise differential system formed by the linear differential
centers and has one crossing limit cycle, because the unique real solution
(p, q) with p # g of the closing equations given in 7 isp=(1,0) and ¢ = (+/5,2).
See the crossing limit cycle of this system in Figure [2| O

Proof of statement (c) of Theorem . In the region R; we consider the linear dif-
ferential center

o 289 48V2+289v3-305V6 = 49

768 T3 1 .
y,:(sz\/ﬁ—ngﬁ)(1+\/2+\/§)+x y '

768 83
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which has the first integral

H(,y) = % (3842 + 2 ((32v3 — 289v/2) (14 /2 + V3) - 32v3y)

+y(98y - \/3(85057 — 9248/6) + 30516 — 289)).

In the region R we have the linear differential center
1 1
:i:=§(—3+8\/§+\/§—\/6)—§—%, yzé(—1—5\f2—\/§)+x+%, (3.6)

this system has the first integral
Hy(z,y) :4x2—m(1+5\/§+\/§—4y) +y(3—8\f—\/§+\/6+2y).

FiGURE 3. The two limit cycles of the discontinuous piecewise
linear differential system formed by the centers (3.5)) and (3.6).

This discontinuous piecewise differential system formed by the linear differen-
tial centers (3.5) and has two crossing limit cycles, because the unique real
solutions (p, q) of system are (1,0,v/2,1) and (v/2, —1,v/3,v/2), therefore the
intersection points of the two crossing limit cycles with the hyperbola are the pairs
(1,0), (v/2,1) and (v/2,—1), (v/3,v2). See these two crossing limit cycles in Fig-
ure [3 O

We will use the following lemma which provides a normal form for an arbitrary
linear differential center, for a proof see [13].

Lemma 3.1. Through a linear change of variables and a rescaling of the indepen-
dent variable every center in R? can be written

4b2 2
x':—bx—%y—i—d, y=ax+ by +c, (3.7)
with a # 0 and w > 0. This system has the first integral
Hy(x,y) = 4(az + by)* + Sa(cx — dy) + y>w?. (3.8)

Proof of statement (d) of Theorem . In the region R; we consider the arbitrary
linear differential center (3.7) which has first integral (3.8)). In the region Ry we
consider the arbitrary linear differential center

4B? + Q2

i =-B

y+D, y=Ax+ By+C, (3.9)
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with A # 0 and ©Q > 0. Which has the first integral
Hy(z,y) = 4(Ax + By)? + 8A(Cz — Dy) + y*Q°.

It is possible to do a rescaling of time in the two above systems. Suppose 7 = at in
R; and s = At in Ry. These two rescaling change the velocity in which the orbits of
systems and travel, nevertheless they do not change the orbits, therefore
they will not change the crossing limit cycles that the discontinuous piecewise linear
differential system can have. After these rescalings of the time we can assume
without loss of generality that a = A = 1, and the dot in system (resp. )
denotes derivative with respect to the new time 7 (resp. s).

We assume that the discontinuous piecewise linear differential system formed
by the two linear differential centers and has three crossing periodic
solutions. For this we must impose that the system of equations has three
pairs of points as solution, namely (p;,q;), ¢ = 1,2, 3, since these solutions provide
crossing periodic solutions. We consider

p; = (coshr;,sinhr;), ¢ = (coshs;,sinhs;), fori=1,2,3. (3.10)

These points are the points where the three crossing periodic solutions intersect the
hyperbola (H). Now we consider that the point (p1,q;) satisfies system (3.1) and
with this condition we obtain the following expression

1
d= S(sinh 1y — s s) (4 cosh? r1—4 cosh? s1 + 8coshry(c+ bsinhr)

— 8cosh sy (c+ bsinhsy) + (4% 4+ w?)(sinh? r; — sinh® 31)),

and D has the same expression that d changing (b, c,w) by (B, C, ).
We assume that the point (ps, ¢2) satisfies system (3.1)) and we get the expression

-1
~ 8(sinh(ry — 72) + sinh(ry — s1) — sinh(r; — s3) + sinh(s; — s3))
X ((sinh r9 — sinh s;) (4 cosh? s, + 4bsinh(2s;) — 4 cosh? r; — 4b sinh(2r1))

+ (sinh 7y — sinh s1) (4 cosh? ro —4 cosh? S9 + 8bcosh ry sinh ry
— 8bcosh s sinh s5 + (4b2 + wz)(sinh r9 — sinh so)(—sinh r; + sinhry
— sinh s; + sinh 52)>) ,

and C has the same expression that ¢ changing (b,w) by (B, ).
Finally we impose that the point (ps,gs) satisfies system (3.1)) and we get an
expression for w?. In this case w? = K/L, where the expression for K is

4((1 + b2) csch (Tl T2t s 82) sinh (T?’ — 83)

2 2

X (cosh(r1 —T27" 4'251 _52—333) —cosh(m — Ty — T3 #—251 —332—33)
4—cosh(r1 _T2_3T3;51 _52_33) —COSh(Tl —37“2—1"3;51 —52—53)
_COSh(37’1+T2*T32+51+52*83)+Cosh(7"1+3T’271"32+51+52753)
—cosh(rl+r277n3+2381+32*53) Jrcosh(ﬁ +7”277"3+281+3$2—53)>
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+b2(cosh(3r1_r2+r3;51_52+33)_ Osh(rl—r2+3r3;sl—32+53))

—2b(sinh(r1_r2_734‘251—52—383>_Sinh(m—r2—r3+231—352_33)

— sinh (222 T2+2T32+51_52+83)Smh(r1;r3)
h(27‘1—|—27“2—7“32—|—81—|—82 53)Sinh<r1;r2)

—QCoSh(2T17T2+2T32+Sl732+53)sinh(rl77"3)

+2sinh(’"2 3 co (r172r272r32+sl—52753)

4+ 2cosh (L2778 +22(81+82)—83)Smh(31—32)

— 2cosh (2 rg—|—7“:;—|—231 4 sg) sinh (1522

_ 26 — _
+2(1+ b?) sinh (22 T2+T;+ o1 s2+83)sinh(51283))

and the expression for L is

CSCh(T‘lfTQﬁ*Sl782)Sinh(7"3;83)<7cosh(7’177‘277‘34’517527383)

2 2
+ cosh (7’1 T2 T3 4-281 S92 83) — cosh (7’1 T2 T3 ;— S1 S92 83)
—|—COSh(r1 T2 ’1"3;-81 So 83)+Csh( r1 + 7o T3;-81+82 83)
3ry — 1 — _ 3 _
—cosh(r1+ T2 T3;81+82 83)+COSh(r1+r2 7‘34-2 51+ 52 83)
ry+1re —rs+ s1 + 359 — s3 3ry —ro+1r3+ 51 — S22+ s3
— cosh ( 5 ) osh( 5 )
— 3 — — 261 —
+COSh(T1 ro + T3;-81 82+S3)_Sinh(’l“1 Tg—‘y—?‘;—f— S1 82 )

2 sinh (%)),

and the expression for 2 is the same than the expression for w? changing b to B.
Now we replace d,c,w? in the expression of the first integral Hy(z,y) and we
have

Hl(xa y) = 4(1‘2 - y2) + h(.’II, Y,T1,7T2,73,51, 52, 53)b7 (311)
and analogously we have
HQ(J?, ZU) = 4(1“2 - y2) + h(ﬂ?, Y,T1,7T2,73,S51, 52, 53)3 (312)

Now we analyze if the discontinuous piecewise linear differential system formed

by (3.7) and (3.9) has more crossing periodic solutions than the three supposed in
(3.10). Taking into account (3.11)) and (3.12)) the closing equations (3.1)) becomes

h(xlay177“177"2>7"3781752,33) = h($27y277“1a7“277’3,31a52>53)a
2 2
7 —yy =1, (3.13)

—y5 =1L
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This means, we must solve a system with three equations and four unknowns
1,91, %2, Y2, which we know that have at least the three solutions , S0 system
has a continuum of solutions which produce a continuum of crossing periodic
solutions, so such systems cannot have crossing limit cycles. Since in statement
(¢), we have proved that there are systems in Fy with two crossing limit cycles, it
follows that the maximum number of crossing limit cycles that intersect ¥ in two
points is two. This completes the proof of Theorem [T.2] (I

4. PROOF OF THEOREM [L.3|

When ¥ is of the type (PL), we have following three regions in the plane:

Ry =[(z,y) e R? 1z < —1],
Ry =[(z,y) e R?: -1 <z < 1],
R =[(z,y) € R? 1z > 1].
We consider a planar discontinuous piecewise differential system separated by

two parallel straight lines and formed by three arbitrary linear centers. By Lemma
[3:1] we have that these linear centers can be as follows

4b2 2
x’:_bz_iélzw y+d, y=ar+by+ec, in Ry,
4B?% + Q?
j:—BzfﬁerD, y=Az+ By+C, in Ry, (4.1)
) 4% + \2 , .
x:—ﬂx—ﬂTeré, y=axr+PBy+vy, in Rs.

These linear centers have the first integrals

Hy(z,y) = 4(ax + by)? + 8a(cz — dy) + y*w?,
Hs(z,y) = 4(Az + By)® + 8A(Cx — Dy) +y*Q?,
Hs(z,y) = 4(ax + By)? + 8a(yz — §y) + ¥ N2,

respectively.

We are going to analyze if the discontinuous piecewise linear differential center
has crossing periodic solutions. Since the orbits in each region R;, for i =
1,2, 3, are ellipses or pieces of one ellipse, we have that if there is a crossing limit
cycle this must intersect each straight line x = 41 in exactly two points, namely
(L,1), (1,92) and (—1,y3), (=1, y4), with y1 > y2 and y3 > y4. Therefore we must
study the solutions of the system

Hs(1,y2) = Hs(1, 1),
H(1,y1) = Ha(—1,y3),
Hy(=1,y3) = Hi(—=1,y4),
Hoy(—1,y4) = Hao( 1,42),
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or equivalently, we have the system
—(y1 — y2)(88 — 85 + (487 + A*)(y1 + y2) = 0,
16C — 8D (y1 — ys3) + 8B(y1 + y3) + (4B* + Q) (y7 — y3) =0,
(y3 — ya)(—8b — 8d + (4b* + w?)(y3 + ya) = 0,
—16C +8D(y2 — ya) — 8B(y2 +ya) — (4B* + Q%)(y5 — v3) = 0.

(4.2)

By hypothesis y; > y2 and y3 > y4 and therefore system (4.2)) is equivalently to
the system

Y3 — 03 +I3(y1 +y2) =0,
n—02(y1 — y3) + Y2y + ys) + l2(y7 —v3) =0,
= =01+ h(ys +ya) =0,
=1+ 02(y2 — ya) — 72(y2 +ya) — la(y3 — ¥3) = 0,
where 71 = 8b,v2 = 8B,73 = 83,01 = 8d,0o = 8D, 03 = 83,11 = 4b*> + w? 1, =
4B% + Q%13 = 4% + X2 and n = 16C. As I} # 0 and I3 # 0, we can isolated y;

and y4 of the first and the third equations of system (4.3]), respectively. Then, we
obtain

(4.3)

—l3ys + 3 — 03 _ —hystm+ 01

I 4
Now replacing these expressiins for y; and y4 in the sl;cond and fourth equations
of , we have the system of two equations
By = (lz(ls(yz —ys) + ) (I3(y2 + ys) + ts)
+la(la(n -+ (s = y2)12 + (v + 99)32) — vitn) ) /5,
By = (12%/1% — L1 (2lays + 72 + 62)

=B+ (y2 — y3)(la(y2 + y3) +72) — (y2 + y3)52))/l%-

Y1 =

Doing the Groebner basis of the two polynomials F; and E5 with respect to the
variables yo and y3, we obtain the equations

mo +miys +may3 =0, ko + kiys + kays = 0, (4.4)
with
1
mo = T (21:1)’537#3(13% (72 + 62) + 11(2l31m — Pa1)3))
1°3
— 113 (13008 — 67202 + 03) + Alalavra (2 + v (72 + 02))0sy
— 5120393) + 2 Bla(—363 (12 + 65) + 2011303 atis — 2 ayd)
+ 131320 + 1 (2 + 62))93 + 13 (st + L) (Ishr — 51¢3)2>,
_ Alapi (=2l + lis)) (2hlzde — la(lsyr — liyhs))
- i ,

Ao (l2(I391 + lips — 2ll372) ) (l2(l391 — libs — 2111262))
- 2 ,

my

ma



EJDE-2020/41 CROSSING LIMIT CYCLES 13

Ky = (L3 (31 (e + 02)Y + 1343)) ey = (213(I2¢01 — i (72 + 02))

33 I
ko = 2(131/12 - l2¢3)7

where 11 = 1 + d1, 102 = y2 — 62 and Y3 = y3 — I3.

We recall that Bézout Theorem states that if a polynomial differential system
of equations has finitely many solutions, then the number of its solutions is at
most the product of the degrees of the polynomials which appear in the system,
see [22]. Then by Bézout Theorem in this case, we have that system has
at most two solutions. Moreover, from these two solutions (yi,v3) and (y3,y3)
of (d.4), we will have two solutions of (4.3) which are of the form (yi,y3,v3,vi)
and (y?,y3%,vy%,vy3), but analyzing syste we have that if (y},y3,yd,vi) is a
solution, then (y3,yi,yi,y}) is another solution. Finally due to the fact that y; > yo
and y3 > y4, at most one of these two solutions will be satisfactory. Therefore we
have proved that the planar discontinuous piecewise differential systems of the
family 7, can have at most one crossing limit cycle.

Now we verify that this upper bound is reached, for this we present a discon-
tinuous piecewise linear differential system that belongs to the family F; and has
exactly one crossing limit cycle.

We consider the discontinuous piecewise linear differential center

. 3 T 5 . 1 Y .
1'771767571763/’ y—T6+$+§, lana
_ 67 x 29 _ 43 y
__ 67 = 29 B Y wR 45
T="%00 5 100” YT 000"ty M (45)
7 oz 131 y
=_—_Z_= == 4 Rs.
T=G60 3 3 YT gttty mis

These systems have the first integrals

Hy(z,y) = 162% + y(6 + 5y) + 22(1 + 8y),

1
Hy(w,y) = 4(z + 2)% +y? + ——(—43z + 134y),

5 125
8 14 4
Hy(w,y) = o — 2y +9° + 582 +9)%,
respectively.

™~

N

FIGURE 4. The crossing limit cycle of the discontinuous piecewise
linear differential center (4.5) with three centers separated by the
conic (PL).
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Then the discontinuous piecewise differential system formed by the linear dif-
ferential centers formed by the linear differential centers has one crossing
limit cycle that intersects (PL) in four points, because the unique real solution
(Y1, Y2, Y3, ya) with y1 > yo and y3 > yy of system is the point (y1,y2,ys,y4) =
(3/2,—27/10,5/2,—1/2). See the crossing limit cycle of this system in Figure
This completes the proof of Theorem [T.3]

5. PROOF oF THEOREM [L.4]

We consider a planar discontinuous piecewise linear differential system with four
zones separated by (LV) and formed by four arbitrary linear centers. By Lemma
this piecewise linear differential system can be as follows

. 4b? + w? . .
xz—bﬂ_%y"‘dl, Yy =a1x+by+ecy, in Ry,
1
. 4b2 + w2 . .
!E=—bz$_% +da, Y =ax+by+co, in Ry,
2
b2 + w? (5-1)
T = —bgw — 34@3 Sy+ds, §=azx+bsy+cs, inRs,
4b? + w? . .
T = —byr — 44@ Ly +ds, §=asr+bsy+cs, in Ry,
4

with a; # 0 and w; > 0 for i = 1,2,3,4. The regions R; for i = 1,2, 3,4 are defined
just before the statement of Theorem[I.4 These linear differential centers have the
first integrals Hy, Hy, H3 and H,4 respectively, where

Hi(z,y) = 4(a;x + biy)* + 8a;(cix — diy) + y*w?, quadfor i = 1,2,3,4.  (5.2)

If the discontinuous piecewise linear center (5.1)) has two crossing limit cycles of
type 1, these two crossing limit cycles should be some of Figure

D

NN7/A N\

(g ”

N — oo
1

(a) (b) (© (@)

N

FIGURE 5. Possible cases of two crossing limit cycles of type 1 of
discontinuous piecewise linear center (/5.1)).

We observe that the cases of Figure [5| (b), (¢), and (d) are not possible because
in these cases the pieces of the ellipses of linear differential centers in the regions
R4, Ry and R, respectively would not be nested which contradicts that the linear
differential systems in each of these regions are linear centers. Therefore if the
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discontinuous piecewise linear center has two crossing limit cycles of type 1
these could be as in Figure [5] (a).

Now we study the conditions in order that the piecewise linear differential cen-
ter has crossing limit cycles of type 1 and we will show that the maximum
number of crossing limits cycles of type 1 is one. Without loss of generality we as-
sume that the crossing limit cycles intersect the branches I'{ and I'; in the points
(0,91), (0,y2) and (z1,0), (x2,0), respectively, where 0 < y; < y2 and 0 < 71 < .
Then taking into account the first integrals for each linear center, these points
must satisfy the following equations

Hy(w2,0) = H1(0,y2),
H(0,y2) = H2(0,91),
Hy(0,y1) = Hy(x1,0),
Hy(x1,0) = Hy(z2,0),

equivalently we have
4a3z3 + 8ai(c1az + diyz) — Y3l = 0,
—(y1 — y2)(—8azdz + (y1 + y2)l2) = 0,
—4aix? — 8ay(c1wy + diyy) +yily =0,
dag(xy — x2)(2¢4 + ag(z1 + 22)) =0,
where [} = 4b? + w?, I, = 4b3 + w2 and 1 = (asc; — aicy).

Moreover, by hypothesis 1 < 2 and y; < y2, then from the second and the
fourth equations of (|5.3)), we have

. 8asds — layo _ 2¢4 + agy

lQ ’ 2 a4 '

Substituting these expressions of y; and x2 in the first and third equations of (5.3))
we obtain the two equations

U1

. 40,%(204 =+ a4a:1)2 — 80,1@4(26184 + aqci1r1 — a4d1y2) — aZy%ll
= 2 )
ay

— 8ay <d1y2 —

Ey

ll(y2l2 — 8a2d2)2 8a2d1d2 )

5 — =171 ).
15 lo

Doing the Groebner basis of the two polynomials E; and Ey with respect to the

variables x1 and y, we get the two equations

2 2
Ey = 4aizy —

o+ arys +asys =0, Bo+ Piz1 + Pays = 0, (5.4)
where
a1047]2(—2a401 + a104) 16@%@26[%[1(&26[2[1 — 2a1d11112)
Qg = 4( 3 + l4
ay 2
1
+ (8a2d2(a1772d112 + agdg(Qa%aidf — ﬁzll))ﬁ),
2
o = 22D (30020202 (22 + w?) — dadaddBu? + Sarasaddidolls + a3CIEE
1= E azaybids (207 + wi) — dazaidiw; + 8arazaididalily + ajcilly

— 2&1@40104111% + a%(—4aid% + Cilllg),
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4a§d%l% _ 8a1a2d1d2l1)
12 Iy ’

_a10477 4a§a4d§ll 4a1a2a4d1d2

2 2 2 2 2 52
ag = 2a1a4c1c4ly — ajcyly + a4( —cily + 4aidi +

ﬁO = a4 l% - I s
asaydsl
B1=—an, P2 =aiasd; — %~

The Bézout Theorem (see [22]) applied to system (5.4]) says that this system
has at most two isolated solutions. Therefore system (5.3) has two solutions which
are of the form (z1,z3,y1,yd) and (22, 23,93, y3), but it is possible to prove that
if (z1,22,y1,y2) is a solution of system , then (z2,21,y2,¥1) is also a solution
of this system. Since we must have that 7 < x5 and y; < ys, then system
has a unique solution, and therefore the discontinuous piecewise linear differential
center that belongs to the family 5 can have at most one crossing limit cycle
of type 1 intersecting I‘f and 1"2+.

Now we verify that this upper bound is reached. That is, that there are piecewise
linear differential centers in the family F5 having one crossing limit cycle of type 1.
We consider the following discontinuous piecewise linear differential center

L2377 11 55T L I83T L
~ 9000 107 2507 YT 1o 10? L
.47 oz 53 y
= —_ — = = = — :1 =z
61 2 160 YTiretgy il (5.5)
t=-y—pB, y=z+a, in Rs,
17
:,;«:2—%—111, y:—2+x+%, in Ry.

In the region R3 we can consider any linear differential center, because the crossing
limit cycle will be formed by parts of the orbits of the centers of the regions R1, R
and R4.

FIGURE 6. The crossing limit cycle of type 1 of discontinuous
piecewise linear differential system (5.5 separated by the conic
(LV).

The centers in (5.5)) have the first integrals
Hi(z,y) = 450022 + 442(—334 + 225y) + y(—23177 + 5570y),

53
Hy(w,y) =42 + 42(2 + y) + gy(f9 + 2y),
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Hy(w,y) = (z+a)* + (y + B)?,
Hy(z,y) = 4(—4+ z)x + 4(—4 + 2)y + 17y,
in R;, 1 =1,2,3,4, respectively. Then for the discontinuous piecewise linear differ-
ential center system becomes
—14696x5 + 4500232 + (23177 — 5570y5)ys = 0,
(y1 —y2)(=9+2y1 +2y2) = 0,
1469621 — 450027 + y1(—23177 + 5570y1) = 0,
(1 — 22)(—4 4+ 21 +22) =0.

(5.6)

Taking into account that the solutions (x1, x2,y1,y2) must satisfy z; < z9 and y; <
12, we have that the unique solution of system is the point (21, x2,y1,y2) =
(1,3,1/2,4). See the crossing limit cycle of type 1 of discontinuous piecewise linear
differential system in Figure @ This completes the proof of Theorem

6. PROOF OF THEOREM

Proof of statement (a) of Theorem . In the region R; we consider the linear dif-
ferential center

r=———-—=—-= y:1+m+ya (61)

this system has the first integral Hy(z,y) = 2(22% + 22(2 +y) + y(13 + y)). In the
region Ry we have the linear differential center

_ 851 x 181 . 3 y
_ 81z _3 Yy 6.2
T="3600 3 o000 YTatiTy (6.2)

which has the first integral Ho(z,y) = 422 + 42(9 + 2y) /3 + y(851 + 362y) /450. In
the region R3 we have the linear differential center

43 x 5 1 Y

P T2 = s 4z 6.3
TE Tty Ty YT et (6.3)

which has the first integral Hs(z,y) = 42% — 32(2 + y) + y(—43 + 5y)/4. And in
the region R4 we have the linear differential center

137 = 25 3 y
L L L T | 6.4
TE oyt Ty VTt (6-4)

which has the first integral Hy(x,y) = 42(3 + z) — (137 + 24x)y/9 + 25y*/36.

To have a crossing limit cycle of type 2, which intersects the discontinuity conic
(LV) in four different points p1 = (21,0), ¢1 = (0,41), p2 = (22,0) and g2 = (0,y2),
with x1,y1 > 0 and 2, y2 < 0, these points must satisfy the closing equations

e = Hl(l‘l,O) — H1(0,y1) = 0,

(6.5)

Considering the four above linear differential centers (6.1), (6.2), (6.3) and (6.4)

and their respective first integrals H;(z,y), ¢ = 1,2,3,4, we have the following
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equivalent system
4131(2 + Il) — 2y1(13 + yl) = O,

—429(3 + 22) (851 + 361y;) = 0,

+ ﬁyl

1 (6.6)
Ay — D)z + (43 = 5ya)ya = 0,

1
—4$1(.731 + 3) + %yg(—548 + 25:1/2) =0,

FIGURE 7. The crossing limit cycle of type 2 of the discontinuous
piecewise linear differential system formed by the linear centers

(6.1), (6.2), (6.3)) and (6.4]) separated by (LV).

The unique real solution (p1, g1, p2,q2) of is p1 = (3,0), ¢1 = (0,2), p2 =
(=7/2,0) and g2 = (0,—4), therefore the piecewise differential system formed by

the linear differential centers (6.1)), (6.2), (6.3)) and (6.4]) has exactly one crossing
limit cycle of type 2. See the crossing limit cycle of this system in Figure[7] ]

Proof of statement (b) of Theorem . In the region Ry we consider the linear dif-
ferential center

.25 x oy .11 Y

TEogtyty Ve Ty (6.7)
which has the first integral Hy(z,y) = 422 + 4z(—11 + y) + y(—25 + 2y). In the
region Ry we consider the linear differential center

POLL S N S (6.8)
= 7100 1007 Y7 7200 9 :

this system has the first integral Ho(2,y) = 20022+ (251 + 218y)+x(—586+400y).
In the region R3 we have the linear differential center
5 5 23 Y

E= — 4+ — — — )= — - = 6.9

Tt Y YTau Tt Ty (6.9)
this system has the first integral Hs(z,y) = 4% + (23/3 — 2y) + 5y(—1 + 3y)/12.
In the region R4 we have the linear differential center
73 x 29 31 y
—_— = - — )= —— - = 6.10
800 710 " 200Y YT a0 T a0 (6.10)
this system has the first integral Hy(z,y) = 40022 — 20x(31 + 4y) + y(73 + 29y).
This discontinuous piecewise linear differential center formed by the linear differ-

ential centers (6.7)), , and (6.10) has two crossing limit cycles of type 2,

jj:
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because the unique real solutions (p, qi, pb,qb), with i = 1,2 of system (6.5)) are
p% = (3/2,0), Q% = (073)71)% = (—5/2,0) and q% = (0,-2) and p% = (270)aQ% =
(0,9/2),p3 = (—4,0) and ¢35 = (0, —5). See these two crossing limit cycles in Figure

(]

FIGURE 8. The two crossing limit cycle of type 2 of the discon-
tinuous piecewise linear differential system formed by the linear

centers (6.7)), , and (6.10)) separated by (LV).

Proof of statement (c) of Theorem . In the region R; we consider the linear dif-
ferential center
813 =z 300 ) 1207 Yy

. 813 300 _ 1207 y 6.11
Y7303 2 83Y VY 30 TPy (6.11)

which has the first integral Hy(x,y) = 42? + 2(—4828/365 + 4y) + 24y(—271 +
50y)/803. In the region Ry we have the linear differential center

L 200061, 11 15760 63667 11 (6.12)
= 55055 10+ 11011Y YT 20020 107 '

this system has the first integral Ho(z,y) = 11011022 + (700337 — 242242y) +
4y(—210061 4 39400y). In the region R3 we have the linear differential center

T9SBL T 3875 . 421379 T
38904 107 48637 YT 194520 107

this system has the first integral Hz(x,y) = 9726022 + 5y(79831 + 15500y) +
7x(60197 + 19452y). In the region R4 we have the linear differential center

15513 2 5700 . 330343 2

Il = 2O 2 14
98057 5% " 28057 YT “2s0570 TV T 5V (6.14)

this system has the first integral Hy(z,y) = 14028522 +30y(5171+950y) —2(330343+
112228y). This discontinuous piecewise linear differential center formed by the lin-
ear differential centers (6.11), (6.12), (6.13) and (6.14) has three crossing limit
cycles of type 2, because the unique real solutions (p}, ¢}, %, ¢4), with i = 1,2, 3 of
system are p% = (9/5,0), Q% = (0,3), p% = (=7/2,0) and Q% = (0,—43/10);
p% = (270)7 q% = (0733/10)a p% = (_39/1070) and q% = (07 _47/10)’ and pi’ =
(17/10,0), ¢3 = (0,289/100), p3 = (—33/10,0) and ¢5 = (0, —411/100). See these
three crossing limit cycles of type 2 in Figure [0] O

(6.13)
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FIGURE 9. The three crossing limit cycle of type 2 of the discon-
tinuous piecewise differential center formed by the centers (6.11]),

(6:12). (6:13) and (6.19) separated by (LV).

7. PROOF OF THEOREM

If the discontinuity curve X is of the type (P), we have following two regions in
the plane: Ry = [(z,y) € R? : 2% < y], and Ry = [(z,y) € R? : 22 > y].

We consider a planar discontinuous piecewise linear differential system formed
by two linear arbitrary centers. By Lemma these piecewise linear differential
centers can be as follows

4b2 2
gb:—bm—%y—i—d, y=ax+by+c, in Ry,
2y 2 (7.1)
. 48° + w . :
x:—Bx—Ty—&—é, y=axr+ PBy+-vy, in Rs.
These linear differential centers have the first integrals
Hy(z,y) = 4(az + by)* + 8a(cz — dy) + y*w?, 2)

Hs(z,y) = 4(ax + By)” + 8a(ya — 8y) + y*Q,

respectively. After two rescalings of time as in the proof Theorem [I.2] we can assume
without loss of generality that a = o = 1.

In order that the piecewise linear differential centers (7.1) has crossing limit
cycles with four point on (P). We must study the solutions of the system:

€1 iHl(Ilal’l) Hy(zy 3):0,
es : To Hy(x3,23) =0,
o+ Ha(z9,23) — Ho 2) (7.3)
es: 1(I ) Hi(z4,27) =0,
eq : Hy(wyg,x3) — Hy(1,27) =0,
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or equivalently

er : 4x3(1 4 bay)? — 422 (1 + bxg)? + 8z (c — dxy) + Sxo(dry — C)
+ (21 — ap)w? =0,

eg : 4x2(1 4 Brg)? + 8xo(y — dx2)? — 422(1 + Ba3)? + 8xz(das — )
+ (SL‘% - mg)Q =0,

ez : 4x2(1 4 bag)? — 422 (1 + bxg)? + 8x3(c — das) + 8x4(dry — )
+ (23 — ap)w? =0,

eq : 4x2(1 4 Brg)® + 8x1(6xy — ) — 423 (1 + Bay)? + 8xa(y — d24)
+ (zf — 2HQ* = 0.

(7.4)

We assume that the discontinuous piecewise linear differential centers has two
crossing periodic solutions. For this we must have that system of equations
has two real solutions, namely (p1, p2, p3, psa) and (q1, g2, 3, ga), where p; = (k;, k?)
and q; = (L;, L?), with i = 1,2,3,4. These points are the points where the two
crossing periodic solution intersect discontinuity curve (P).

If the point (p1,p2, ps, ps) satisfies system (7.4]), by the equation e; of (7.4]) we
obtain the expression

_ 8c+A(ky + ko) (1 + b(ky + ko)) + 4b(k3 + k3) + (k1 + ko) (k7 + k3) 11
8(k1 + ko) ’
by equation es of we get the expression
_ 8y 4A(ka + k) (1 + Blko + ks)) + 4B8(k3 + k3) + (k2 + k) (k3 + k31
8(kg + ks3) ’
by equation eg of we obtain the expression
2 2
e —k11€3+—k]2€4)(/€3 ) (- #2) (W 1+ (L4 bk + )
ki + k3
k1 + ko
and by equation e4 of we obtain the expression
1
8(ky — ko — ks + ky)

— 2K + ko + 1) + (a + Ka) (5 + K3 (86 + k),

d

4]

Cc

+b )+ 260k — k) + (it — )L )

V= (85(161 + ka)ka — la(k3 + k3 — k) (k2 + k) (k1 + ka)

here we consider 1 = 4b% + w? and I, = 48% + Q2.
We assume that the point (g1, g2, g3, q4) satisfies system (7.4)), then we can obtain
the remaining parameters of discontinuous piecewise linear differential center (7.1).
By equation e; of (7.4) we obtain w? = S/T, where
_—ab(Ly — L)
Skt hy— k3 —ky

k(= bk + ha(bks + 2) (kg + g — Ly — La) — (K + haks + k3)(bky +2)

S

((bk1 ¥ (bka +2)) (ks + ka — Ly — Lo)k?

Y BL3 4 (L2 + Ly Lo + L2)(bL1 + 2)) + Ko (b + 2) (ks + ka — L1 — Lo)
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+ ko ((bLl +2)(L2 + LyLg + L2) — (K2 + kaky + k2)(bky + 2) — bkg)
ks L + (Ly + L) (b5 + (s + ha) (ba — La)(b(ka + Ln) +2) + 13
(bks +2)) = L3k + ka)(bLy +2) — bLa)),

and
_ Ly — Lo
kit ke — ks —ky

o (ky + ko) (L1 + Lo) (L + L3) = (ks + ka) (k3 + K3) )

(063 + K3ky + kK3 + k) (ks + ka — Ly — L)

(ks + k) (L + Lo) (K + K3 — L3 — 13))),

by equation ey of (7.4) we obtain Q% = V/W, where

—45(Ly — L3)
ki — ko — ks + ky

— 2kq (kg + k'Q(k’3 — k‘4) + (kig — Lg)(kg — k4 + Lg) + L3(k}4 — LQ) — Lg)

V =

(K1 (Bk1 + (Bka +2))kz + ks — Lo — Ly)

+ By =k — K3ks + ka3 — k3) — K + kkd + (Lo + La) (k3 + L3 + L3) )
+ Bk3(—ky + Ly + L3) — k3(Bks +2)(ky — Lo — L3)

— Bk (K3 (ks — Ly — Ly) — K + (Lo + L) (L3 + L3))

~ ky (Lg k2 4 ky(ks — Lo — Ls) + LoLs + Lg)

— (k3 — k4)((ﬁk§ + k3(Bka +2))(ka — L2 — L3)

+ B(La + Ls)(—kj + L3 + L3) + 2< — ka(La + L3) + L3 + Lo L3 + L%)))

and
Ly — L3
ki — ko — k3 + ky

tky (kz(kz — k2) — K — k2ks — k3 + ksk? + (Lo + La)( — k2 + L3 + Lg))

W:

(kf(kg 4 ks — Lo — Ls)(ky + ka)

+ Lo (ks + ks) (3 + 3) = k3 ) — ha(ka + ko) (K3 + 3 — k3)
+ L3 (kS’ + kiks + kok3 — L3 (kg + ks — ka) + k3 — ki’)
— (k + kg = k) (L3 + L2L3 + L3) ),

by equations e3 and e4 we get that b = 8 = 0. This implies that the linear
differential systems in R; and in Ry are of the form

.1 .

T = 57 y=ax,
which is a contradiction because by hypothesis each of the linear differential systems
considered is a center. Therefore we have proved that the maximum number of

crossing limit cycles of the discontinuous piecewise linear differential centers in F3
is one.
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Now we verify that this upper bound is reached. That is, that there are piecewise
linear differential centers in the family F3 having one crossing limit cycle. We con-
sider the discontinuous piecewise linear differential system formed by the following
linear differential centers

. 831 17 . 587 .

x7@+x7176y’ yf@+a:fy, in Ry, (7.5)
. 21145 x5 . 127 y
x_74176 —l—g—l—gy, y—l—m—i—x—g, in Ry. (7.6)

These linear differential centers have the first integrals
H,(x,y) = 642 + 2(587 — 128y) + y(—831 + 68y),
1

2
Hy(,y) = 55 (30482 — 21145y) + 4 (o- %) +?,

respectively.

F1GURE 10. The crossing limit cycle of the discontinuous piecewise
differential center formed by (7.5) and (7.6]) separated by the conic

(P).

The discontinuous piecewise differential center formed by the linear differential
centers and has one crossing limit cycle, because the unique real solution
(p1, 2,3, pa) of system is p1 = (6,36), p2 = (=5,25), p3 = (=3/2,9/4), and
ps = (2,4). See the crossing limit cycle of this discontinuous piecewise differential
center in Figure

8. PROOF OF THEOREM [L.8|

When the discontinuity curve ¥ is of the type (E), we have following two regions
in the plane: Ry = [(z,y) € R? : 22 + y? < 1], and Ry = [(z,y) € R? : 22 + ¢* > 1].
By Lemma 3.1| a piecewise linear differential center of family F, can be consider as
(7.1) where the first integrals are given in .

Now we study the conditions in order that a piecewise linear differential center
in the family F, has crossing limit cycles intersecting the discontinuity curve (E)
in exactly four points. Taking into account the first integrals a piecewise
linear differential center in F4 has crossing limit cycles if there are points (x;,y;)
for i = 1,2, 3,4 satisfying the equations

e1 = Hy(x1,y1) — Hi(x2,92) =0,
ez = Ha(w2,y2) — Ha(xs,y3) = 0,
es = Hy(x3,y3) — Hi(z4,y1) = 0,
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eqa = Ha(wq,y4) — Ha(21,91) = 0,
By =2l +y; —1=0,
Ey=x3+y;—1=0,
By=uai+yi—1=0,
Ey=zi+y;—1=0,
considering 1 = 4b% + w? and Iy = 482 + Q2, we have the equivalent system
e =4(x] — 23) + 8(bx1y1 — brays + clxy — 32) — dy1 + dy»)
+h(y —v3) =0,
ea =4(z5 — a3) + 8wa (v + By2) — 8r3(y + Sys)
+ (y2 — y3)(l2(y2 + y3) — 89) =0,
es =4(x3 — 27) + 8(bsys — brays + c(xs — x4) — dys + dys) (8.1)
+h(y: — i) =0,
ex =88(y1 — ya) + 8za(y + Bya) — 4(a] — 23) — 8z1(v + By1)
+la(yf — i) =0,
FE1=0, E;=0, E3=0, E;=0.
Where we consider without generality a = a = 1 as in the proof Theorem
We assume that this piecewise linear differential center has two crossing pe-

riodic solutions. For this we have that system (8.1) has two pairs of solutions,
(1,2, p3,p4) and (q1,2,q3,94) With p; # pj, and ¢; # gq;, for i # j and i,j =
1,2,3,4. Since these solution points are on the circle (E), then we can consider
them in the following way
pi = (kiy A;), with k; = coss;, A; =sins;, -

¢; = (mj,n;), with m; = cost;, n;=sint;, (8.2)
where s;,t; € [0,27), for i = 1,2, 3, 4.

Substituting the first solution (p1,p2,p3,ps) with p; as in (8.2)) in (8.1) we can
determine the parameters d, d, ¢,y of the piecewise linear differential centers (7.1),
and obtain

(86(/€1 — /ﬂg) + 4(/€1 — ko +bA — b)\g)(kl + ko + b()q + )\2)) + ()\% — )\%)oﬂ)

d= :
8(A1 — A2)
5 4k3 — 4k3 + 8k2(\aB +7) — 8ks(\aB+7) + 0 = o
8(A2 — A3) ’
1
C =

8((ks — ka) (A1 — A2) — (k1 — k2) (A3 — Ag))
X (4()\1 — Xo) (k3 — k3 — 2bAs3k3 + 2bkaAg) + (A3 — \g)(4(k] — k3)
+8b(ki A — kada) + (A — A2) (AL + Ao — Ag — z4)zl)),

1
T TRk — k1) (s — Ag) + (k2 — Ea) (At — M)

x (4()\1 — M) (k2 — k2 + 2k3A3f8 — 2kodg) 4+ (Mo — A3)(4k% — 4k? + 8k M\ B




EJDE-2020/41 CROSSING LIMIT CYCLES 25

= 8kaAaB + (= A)(h1 = ha = g + Mo)la) ).

Analogously, substituting the second solution (g1, g2, g3, q4) with ¢; as in (8.2)) in
we get remaining parameters w, €2, b, 5. Substituting k;, A;, m;, n; like (8.2) we
obtain that b = 8 = 0, therefore we get that the piecewise linear differential centers
is formed by linear differential center £ = —y,y = x, in the regions R; and Rs.
This is a contradiction because with this linear differential center is not possible
to generate crossing limit cycles. Then we proved that the maximum number of
crossing limits cycles for piecewise linear differential centers in Fy is one. Moreover
this maximum number is reached, that is, there are piecewise linear differential
centers in F4 such that have one crossing limit cycle with four points on (E), as we

see below.

FIGURE 11. The crossing limit cycle of the discontinuous piecewise
differential center formed by the centers (8.3]) and (8.4) separated
by the conic (E).

Consider the discontinuous piecewise differential center in the family F, formed
by the following two linear differential centers

. —107T—89v2 5 345 . —T1+89v2 5 .
=122 16° 6% VT 1om TPty mEu (83
1 1
i:717x72y, y:1+:c+y, in Ry. (8.4)

These linear differential centers have the first integrals
Hy(z,y) = 5122% + 2(—71 + 89v/2 + 320y) + y(107 + 89v/2 + 690y),
Hy(z,y) = @ + 22% +y + day + 497,

respectively. Then the discontinuous piecewise differential center formed by the
linear differential centers and has one crossing limit cycle, because the
unique real solution (p1, p2, ps, pa) of system isp1 = (1,0), p2 = (—v/2/2,1/V/2),
ps = (—1,0), and pgy = (0, —1). See the crossing limit cycle of this system in Figure
!

9. PROOF OF THEOREM [L.9|

If the discontinuity curve X is of the type (H) we have following three regions in
the plane: Ry = [(z,y) € R? : 22 —y? > 1,2 > 0], Ry = [(z,y) € R? : 22 — % < 1]
and Rz = [(z,y) € R? 122 — 4% > 1,2 < 0].



26 J. JIMENEZ, J. LLIBRE. J. C. MEDRADO EJDE-2020/41

We consider a planar discontinuous piecewise linear differential system formed
by three linear arbitrary centers. By Lemma these linear differential centers
can be as follows

4b2 2
T =—bx— 1w +di, y=a1x+by+c, in Ry,
4@1
b2 2
b= —bpr— 2Ry dy = mrtbyte, Ry, (0)
a2
4b3 + w3 . .
&= —byx — 34a 3y+ds, Uy =asx+bsy+cs, in Rs.
3

These linear differential centers have the first integrals
Hy(z,y) = 4(arz + b1y)® + 8ar (12 — dry) + y°w?,
Hy(z,y) = 4(agx + boy)? + 8ag(caw — day) + ywi, (9.2)
Hs(z,y) = 4(azx + b3y)? + 8az(csz — dzy) + y*w3,

respectively.

To have a crossing limit cycle, which intersects the discontinuity curve (H) in four
different points p; = (z;,y;), ¢ = 1,2, 3,4, these points must satisfy the following
equations

e1 = Hi(z1,y1) — Hi(z2,92) = 0,
es = H(22,y2) — Ha(23,y3) =0,
es = H3(z3,y3) — H3(4,y1) =0,
eqs = Ho(x4,ys) — Ha(x1,91) = 0,

Ei=a]—y; —1=0, (9:3)

By=a2—y2-1=0,
Ey=a25—y;—1=0,
Ey=a23 —yi—1=0,
equivalently, we have
e1 =4(x] — a3) + 8(c1 (w1 — 22) — drys + brxays + diys — bizays)
+ (¥} — y3)h = 0,
ez =4(x3 — 23) + 8(ca (w2 — w3) — daya + bamoya + days — baxsys)
+ (Y3 —y3)l =0,
e3 =A(a3 — x7) + 8(cs (w3 — x4) — dsys + bswsys + dsys — bsrays) (9.4)
+ (5 — yi)ls =0,
eq =4(z] — 27) + 8(ca(wa — 21) — doya — bawryr + dayr + bazaya)
+ (¥ — v}l = 0,
Ei=0, Ey=0, E3=0, E4=0,

where I; = 4b? + w?, for i = 1,2,3. Here we are taking without generality a; =
as = az = 1 as in the proofs of the previous theorems.

We assume that the discontinuous piecewise linear differential system formed by
the three linear differential centers in has two crossing periodic solutions. For
this we must impose that the system of equations has two of real solutions,
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namely (p1, ps2, ps,p4) and (q1, g2, g3, qa). Since these solutions provide crossing pe-
riodic solutions and these points are the points where the crossing periodic solutions
intersect the hyperbola (H) we can consider

p; = (ki, A;) = (coshr;,sinhr;) and ¢ = (my,n;) = (cosh s;,sinhs;),  (9.5)

with 7;,8; € R for : = 1,2,3,4.
Now we assume that the point (p1,pe,ps,ps) with p; = (ki N\), @ = 1,2,3,4
satisfy (9.4), and then we obtain the following expressions

d; = (801‘(/% —kix1) +4(k; — kg1 + b — Nige1)) (ki + Kiv1 + bi(Ni + Niv1))

(2 =2 )w?) /(B = i),
fori=1,2,3, and
o — 1
27 8((k2 — ka) (M — A1) — (k1 — ka)(h2 — Ag))

x (4083 + b2k — K = 2b2ka2) (0 = Aa) + (A2 = As) (4(KE — k)

+ 8b2(k1/\1 — ki4/\4) + ()\1 — )\4)()\1 — Xy — A3+ /\4)[2))

We assume that the point (g1, ¢2,¢s,q4) with ¢; as in (9.5)) satisfies system (9.4]).
By the first equation in (9.4) we obtain that

1
8((A1 = A2)(my — m2) — (k1 — k2)(n1 — n2))

X (()\1 — )\2)(—4(m§ — mg) — 8byming

C1 =

+ 8bimang + (A1 + A2)wi (1 —ng) — (nf —n3)h)
4(]{}1 — k2 + b1(>\1 — )\2))([91 + kg + bl()\l + )\2))(77,1 — TLQ))
+ .
A1 — A2
By the second equation of ([9.4) we obtain that w3 = K/S where
4
(k1 — ka)(A2 — Ag) — (k2 — k3) (A1 — Ag)

x (03 = ) (O = iz = (ky = ka)ein) + (A2 — a)

x (k3 4+ b3(A — Aa) (A — Az — A3 + Aa) — k3) o

+ ks (2 — b3(X2 + A3 — ma — m3) Y1 + 2ba(—Aathz + mano — mans))

ke (= o+ b2(Na + As — na — ng)vhr + 2by(Arthy — mans + mgng)))

+ k‘z((/\l — M) (e — b5 (A1 4+ As — na2 —nz)n) — (k§ — k3)n

— 2, (Ag(fxm — (k= ka)t) + Aa((ma — ka)ne + (ks — mz)ng) A (Aot
+ (k1 — ma)na + (m3 — k‘l)”i%))) + k3((Aa — A2 + (k7 — kD)n

+ b3 (A1 — Aa) (A1 + Ay — ng — ng)hy + 20y (Ag(—M@bz — (k1 — ka)ib1)

K =

+ Aa(mang — katpr — manz) + A1 (As2 + k11 — mang + m3n3))v
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and

1
S:

(k1 —ka) (M2 — A3) — (k2 — k3) (A1 — A\4)
X (A%sz + A3\ + (k1 — ka)(N3ng — Agnd) + (k3 — k2)(Aing — \yn3)

+ AT (ke — k3)n — (Ao — Az)ha) + A5 (Aatha + (k1 — ka)¢hn)

+ (ks — k1)A3 + (k2 — k3)AD)ns + (k1As — kads — kaXg + ksAg)n3
+ A ((AF = A3)vhe — (ko — k3)1 (na + ng)) + Aa(Aftha

+ (k1 — ka)ibr(no + n3)))

By the third equation we obtain that
_ -1
“ - 8(Agthy — A3ta + (ks — ka)tn))
n 4(ks — kg + b3(A3 — Ag)) (k3 + kg 4+ b3( A3 + X))t
A3 — A\g
+ (A3 + M)wity — (nf —nj)ls)),

where 11 = ny — ng, Y2 = ma — ma3, Y3 = n3z — ng and Py = M3 — My.

Finally by the fourth equation in we have that by = 0. With these expres-
sions for da, ¢, ws and by we obtain that the linear differential system in the region
Ry is ¢ =y, 9 = x, which is a linear differential system type saddle. This is a
contradiction because we are working with centers in each region R; for ¢ = 1,2, 3.
Therefore we have proved that the maximum number of crossing limit cycles for
systems in F5 is one.

Moreover it is possible to show that there are piecewise linear differential centers
in F5 such that have one crossing limit cycle. Indeed, consider the discontinuous
piecewise linear differential system in the family /5 formed by the following linear
differential centers

(A3 = Aa)(4(m§ — m3) + 8bs(many — mgns)

— 4v1 21 2
L 735546 0+80\F7§779y’ y:1+x+%, i R,

64(6 + v/21) 2 16
) xz 101 . Yy .
— K- = - — - K J
X 1 10 100y7 Y 2+ + 103 m R27
.3 337(-3+2v3) 3 45 . 3 .3 .
=2(~11+2 DATET VI 22 i ,
x 4( +2V/3) + 6175 58~ 1gY Y 5% T 5Y; in R3
(9.6)
Where
1
K

1 =
2001/81 — 12¢/35(—20v/2 + 26/3 — 14y/5 + 7v/7 — 133/15 + 2/70)
x (27300 — 62790v/2 + 87503 — 31356v/5 + 15678v/7 + 2500v/30

— 2730v/35 — 600V/42 + 627970 — 420\/105)
Ky = (3(200 — 8002 + 5226v/3 — 1846V/5 + 4037 — 2613v/15 + 240v/35
+ 80\%))/(400(—20\/5 + 263 — 14v/5 + TVT — 13V/15 + 2\%)).
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These linear differential centers have first integrals
Hi(x,y) = (355 — 64v10 — 80v21)y + 2(6 + v/21)(162(2 + z) + 16xy + 29y?),

1
H2($7y) =
2001/27 — 4/35(—20v/2 + 26+/3 — 14v/5 + 7TV/7 — 13/15 + 2/70)

2 Y2
< (7 + (+ 55)7 + (3y/27 - 4V/35(200 — 800v/2 + 52263
— 18465 + 403v/7 — 2613V/15 + 240v/35 + 80v/70)x

— 2(8750 + 91003 — 20930V/6 + 2500v/10 — 600v/14 — 10452v/15
+ 522621 — 420v/35 — 910v/105 + 2093v210)y) )
Hi(z,y) = 42® + 122(—1 4+ y) + %Oy(2640 —480v/3 + 1011V/5
— 674V/15 4 450y),

respectively.

F1GURE 12. The crossing limit cycle of the discontinuous piecewise
linear differential center with discontinuity curve the conic

(H).

The unique real solution (p1, p2,p3,p4) that satisfies (9.4) in this case is p; =

(V10,-3), p2 = (=5/2,\/21/4), ps = (=4, V15), and py = (=7/2, —\/45/4). See

the crossing limit cycle of this system in Figure

10. ProOF oF THEOREM [L.10]

Proof of statement (a) of Theorem[I.1(} In this case we use the notations given
in the proof of Theorem then we consider the planar discontinuous piece-
wise linear center and the first integrals . In order that the discon-
tinuous piecewise linear center has crossing limit cycles with four points,
namely (x1,7?), (72, 23), (23,23), (x4,23) and one crossing limit cycle with two
points, namely (x5, x2), (x6,22) on (P), we must study the solutions

(z1, 22,23, %4, 5, x6) Of System and the equations

es = H (w5, 23) — Hy (v, 25) =0,

e6 = Ha(e,x5) — Ha(ws,23) = 0,
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or equivalently systems ([7.4)) and

es =422 (1 4 bas)? + 8ws(c — dus) — 4ai(1 + bxg)? + 8x6(drg — c)
+ (23 — zg)w? =0,

e6 =4ra(1 4+ 268)* — 4aZ(1 + x56)? + 8x5(x50 — ) + 8x6(y — 260)
+ (wg — 3)Q* = 0.

(10.1)

We assume that systems and have two real solutions where each real
solution provides one crossing limit cycle with four points on (P) and one crossing
limit cycle whit two points on (P), but by Theorem we have that discontinuous
piecewise linear center has at most 1 crossing limit cycle with four points on
(P), therefore if we have two real solutions of systems and they are of
the form (x1,x9,x3, x4, x5, x6) = (k1, ko, k3, k4, k5, ke) and (21, 9, 3, T4, T5, Tg) =
(/fl, kz, kg, k4, A5, >\6); with k;, )\57 X6 € R for i = 1,2,3,4,5,6.

If the point (k1, k2, k3, k4, ks, k¢) satisfies systems and (10.1), by the equa-
tions e1, €3, e3 and ey of ([7.4) we obtain expressions for the parameters d, d, c and 7
as in the proof of Theore by the equation es of system (10.1]) we obtain an ex-
pression for w? = S/T with S and T as in the proof of Theore changing L1 and
L by ks and kg, respectively. By equation eg of system we obtain Q? = V/W
where the expression for V and W are the same expressions that in the proof of
Theorem changing L3 by ks. We assume that the point (ki, k2, k3, k4, A5, A6)
satisfies systems and (10.1), then we have e; = e; = e3 = e4 = 0 and
by the equations es and eg of system we obtain b = § = 0. As in the
proof of Theorem we can conclude that the two linear centers in ([7.1)) became
& =1/2, y = z, which is a contradiction. So systems and (10.1) have at
most one solution and therefore planar discontinuous piecewise linear centers in F3
have at most one crossing limit cycle with four point on (P) and one crossing limit
cycle with two points on (P) simultaneously. Moreover this upper bound is reached,
this is there are systems in F3 with one crossing limit cycle with four points on (P)
and one crossing limit cycle with two points on (P) simultaneously.

10

FicURE 13. The two crossing limit cycles of the discontinuous
piecewise linear differential system formed by the centers (10.2))

and (T03).
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We consider the discontinuous piecewise linear differential system formed by the
linear centers

1225 2 310 103

e -2 ' 10.2
529 T3 oY YT Ty TT Ty i (10.2)
6411 =z 85 . 3359 y

= —_——— — — — = — — - . 1 .
1224 8 so¥ VT T tetyg mib (10.3)

These linear differential centers have the first integrals

Hi(z,y) = 22922 + 10y(—245 + 31y) — (206 + 229y),

Hy(z,y) = 42° + 2 — 3359 +y) + —( 6411 + 680y),
89 178
respectively.

The unique real solution of systems and is (z1,z2, T3, T4, 25,26) =
(3,—-2,-3/2,1,2,12/5), therefore we have one crossing limit cycle that intersects
(P) in the points (3,9), (—2,4), (=3/2,9/2) and (1, 1), and one crossing limit cycle
that intersects (P) in the pOlIltb (2,4) and (12/5,144/25). See these crossing limit
cycles in Figure [T3] O

Proof of statement (b) of Theorem . In this case we consider the notation of
the proof of Theorem [I.8 and therefore we consider the planar discontinuous piece-
wise linear center and the first integrals . In order that the discontinuous
piecewise linear center has crossing limit cycles with four points on (E), namely
(x1,91), (x2,y2), (z3,y3), (4,y4) and one crossing limit cycle with two points on
(E), namely (x5,v5), (z6,¥ys), we must study the solutions (p1,p2, ps, P4, Ps,Ps) of

systems and
e5 =4(x3 — xg) + 8(c(ws — w6) — dys + basys + dys — breys)
+ (45 —yg)h =0,
e6 =4(x5 — x2) + 8(Breys — Pr5Ys + Y56 — w57 + T6Y — Yed) (10.4)
+ (45 — ¥3)l2 = 0,
Es=a24+4y2-1=0, Eg=a2+y2-1=0.
We assume that systems and have two real solutions where each real
solution provides one crossing limit cycle with four points on (E) and one crossing
limit cycle with two points on (E), like in Theorem 1.8 we proved that discontinuous
piecewise linear center has at most 1 crossing limit cycle with four points on
(E), then we have that if there are two real solutions of systems and
they are of the form (p1,p2,ps, pa,ps, ps) and (p1,p2, P3, P4, G5, gs), With p; and g;
as (8.2) fori=1,2,3,4,5,6 and j = 5,6.

Substituting the first solution (pl,pg,pg,p4,p5,p6) in systems (8.1) and ( -
we obtain from the equations ey, ez, e3 and e4 of the same expressions than
in the proof of Theorem [I.8] for d, 4, ¢, v, and by the equations e5 and eg of system
we obtain the same expressions than in the proof of Theorem - 8| for w and
Q changlng (my,n1) by (ks, As) and (me,n2) by k6,)\6 respectively. We assume
that the point (p1,p2, ps, P4, s, ¢s) satisfies systems (8.1) and (10.4)), then we have
e1 = ey = ez = e4 = 0 and by the equatlons es and eg of system ((10.4]) we obtain
b= =0. As in the proof of Theorem we obtain that both linear centers in
become & = —y, Yy ==z, in contradiction that they have limit cycles. So we
can conclude that systems and have at most one solution and therefore
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planar discontinuous piecewise linear centers in 4 have at most one crossing limit
cycle with four points on (E) and one crossing limit cycle with two points on (E)
simultaneously.

Now we verify that this upper bound is reached, that is there are systems in Fy
with one crossing limit cycle with four points on (E) and one crossing limit cycle
with two points on (E) simultaneously. We consider the discontinuous piecewise
linear differential system in F, formed by the linear centers

(=6 +3v2 + V64 (6 — 4v/2 — 6v3)z + 8(—1 + V2 + 2v/3)y
A(=3+2V2+3V/3) ’
_—4+3\@+2\/§+\/6+m_y in Ry

2(—6 + 4v2 + 6V/3) 2’
i=— (18 —93v/2 + 4v/3 + 33v6 — 230(1 4+ V3)x + 4(335 — 2v/2

+261V3 + 20\/6)y)/(920(1 +V3)), (10.6)

(10.5)

1
y:x—l—%(9+34\/§—67\/§—41\/6—230y), in R,.

FIGURE 14. The two limit cycles of the discontinuous piecewise
linear differential system formed by the centers (10.5) and ((10.6).

The unique real solution of systems and in this case is (p1, P2, P3, P4, D5, D6)
with p; = (cos (7/2),sin (7/2)), p2 = (cos (1), sin (7)), ps = (cos (37/2),sin (37/2)),
pa = (cos (—7/3), sin (—7/3)), ps = (cos (7/4),sin (7/4)) and ps = (cos (0), sin (0)).
See these crossing limit cycles in Figure O

Proof of statement (c) of Theorem , Here we consider the notation of the proof
of Theorem and therefore we consider the planar discontinuous piecewise linear
center and the first integrals . In order that the discontinuous piece-
wise linear center has crossing limit cycles with four points on (H), namely
(z1,91), (x2,Y2), (x3,¥3), (x4,y4) and one crossing limit cycle with two points on
(H), namely (x5, ys), (6, ys), we must study the solutions (p1,p2,ps,pa, ps,ps) of
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systems (9.4) and ((10.7)

es =4(x3 — 23) + 8(ca(ws — w6) — days + basys + days — batys)
+ (¥ — yg)h =0,
ee =4(xg — 23) + 8(brweys — brwsys + ysd1 — w501 + TeC1 — Yod1) (10.7)
+ (v — y3)l2 =0,
Es=a22—y:—1=0, Eg=a5—ys—1=0.

We assume that systems and have two real solutions where each real
solution provides one crossing limit cycle with four points on (H) and one crossing
limit cycle with two points on (H). By Theorem the discontinuous piecewise
linear center has at most 1 crossing limit cycle with four points on (H), then
we have that if there are two real solutions of systems and they are of
the form (p1,p2,ps, pas ps,pe) and (p1,p2,p3, s, Gs, Gs), with p; and g; as for
1=1,2,3,4,5,6 and j = 5,6.

Considering the first solution (p1, p2, 3, P4, P5, Pe) of systems and we
obtain the same expressions that in the proof of Theorem for dy, ds, ds3, ca,c1,wo
changing (m1,n1) by (ks, As) and (mg,ns) by (ke, A¢), respectively.

Now we assume that the point (p1,p2, D3, D4, ¢s5,qs) satisfies systems and
10.7), then we have ey = es = e3 = e4 = 0, and by the equation e5 of system
% we obtain by = 0 and with this the linear system in the region Rs becomes
a saddle which is a contradiction, because we are working with linear centers in
each regions R; for i = 1,2,3. Therefore the discontinuous piecewise linear center
has at most one crossing limit cycle with four points on (H) and one crossing
limit cycle with two points on (H) simultaneously. Moreover this upper bound is
reached, that is there are piecewise linear differential centers in F5 such that have
one crossing limit cycle with four points on (H) and one crossing limit cycle with
two points on (H) simultaneously. Indeed consider the piecewise linear differential
system formed by the linear centers

o 1215 - 5762+ 256v7 + 11213 —384V15 = 29

192(2v/7 + V13 — Va) 2~ 167
75 _ 64v/7 — 28V/13

, 1
(-
48( =142,/ +,/13 4
8( + \/;7L a) (10.8)
2 7 945 [13 2
+288\/(23—4\/30)+945\f+\/+144,/
7 o 2 « «
1 1
+192\/ﬁ+96\/§)+x+y in Ry,
o o 2

4 1125 4 432V/14 + 189/26 + 207V/30 + 160v/105 + 70V195 =

6¢ 2
_ 54v/2 4 3367 + 17413 + 24v/15 4 68v/210 + 35v/390 — n,
U T (10.9)
_ 855V2+43516v/7 + 179713 + 315v/15 + 6441/210 + 329v/390
- m

+z+g

2, in RQ,
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9 73 3 45 3 3
Tyt R e 2t T qeY YT g totgy i (10.10)
here a = 234+4v/30, ) = 42+48/144-241/26+9v/30+241/105+12v/195 and £ = 87+
108+/14 + 54v/26 + 164/30 4+ 40/105 + 204/195. The unique real solution of systems
" and " in this case is (p17p27p37p47p57p6) with P11 = (37_\/§)a P2 =
(4a V 15)7 pP3 = (_3a \/g)a P4 = (_150)7 Ps = (7/6a _\/E/G) and Pe = (4/37 \/?/3)
O

See these crossing limit cycles in Figure [I5]

FiGURE 15. The two limit cycles of the discontinuous piecewise
linear differential center formed by the centers ([10.8]), (10.9) and
(110.10)).

11. PROOF OF THEOREM [L.11]

Proof. To have a crossing limit cycle of type 1 and one crossing limit cycle of
type 2, simultaneously, we must study the real solutions (p1, g1, p2, 42, P3, 43, P4, g4 ),
of systems and respectively, where p; = (z;,0) and ¢; = (0,y;), with
T1,%2,23,Y1,Y2,ys > 0 and z4,y4 < 0.

FIGURE 16. One crossing limit cycle of type 1 and three crossing
limit cycles of type 2 of the discontinuous piecewise linear differen-
tial system formed by the linear centers (11.1]), (11.2]), (11.3)) and
(11.4) separated by (LV).

In the region R; we consider the linear differential center

193 « 58 149 Y
L _ 193w o 14 Yy 11.1
TEmr T3 ety VT Tttty (11.1)
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this system has the first integral Hy(z,y) = 20122 +2(134y — 447) + 3y (58y — 193)).
In the region R, we have the linear differential center
.9 =z . 1 y
_2_% 9 = _z 4 11.2
b=5 52 Y=ot (11.2)
which has the first integral Ho(z,y) = 22(2z — 1) + 4y(z — 9) + 8y2. In the region
R3 we have the linear differential center

3 3
& = 1.068079 - - - + %x 1448022, ..y, = —3.860171-- 4z — %y, (11.3)
which has the first integral Hz(w,y) = 2? + x(-7.720342--- — 0.866025..y) +

y(—2.136159 - - - + 1.448022...y). And in the region R; we have the linear dif-
ferential center

. 51831 — 59516909 «x 6775 — 119416909 . Y

= - y, y=-24z-=, (11.4)

35912 2 17956 2
which has the first integral Hy(x,y) = 1795622 — 17956x(4 + y) + y(—51831 +
5954/16909 + (—6775 + 1194/16909)y). The unique real solutions for systems (5.3))
and (6.5) are (p1,q1,p2,42, P3,q3,Pa,q1) With p1 = (1,0), g1 = (0,1/2), po =
(370)7 q2 = (0a4), b3 = (570)7 q3 = (076)3 bs = (_470) and qs = (07_5)7
(P1, 41, P2, G2, I3, M3, ls, ma) with I3 = ((149 + 3v/16909)/134,0), mz = (0,5), l4 =
(_2a 0) and my = (0, _3)7 and (plv q1,P2, 92, )‘3a 13, )\4a n4)a where
As = (4.319114....0), 73 = (0,53/10),
Ay = (—2.672755...,0), 4= (0,—3.703965...).

See these crossing limit cycles of types 1 and 2 in Figure [16] O
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