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COMPLEX GINZBURG-LANDAU EQUATIONS WITH A

DELAYED NONLOCAL PERTURBATION

JESÚS ILDEFONSO DÍAZ, JUAN FRANCISCO PADIAL,

JOSE IGNACIO TELLO, LOURDES TELLO

Abstract. We consider an initial boundary value problem of the complex

Ginzburg-Landau equation with some delayed feedback terms proposed for
the control of chemical turbulence in reaction diffusion systems. We consider

the equation in a bounded domain Ω ⊂ RN (N ≤ 3),

∂u

∂t
− (1 + iε)∆u+ (1 + iβ)|u|2u− (1− iω)u = F (u(x, t− τ))

for t > 0, with

F (u(x, t− τ)) = eiχ0
{ µ

|Ω|

∫
Ω
u(x, t− τ)dx+ νu(x, t− τ)

}
,

where µ, ν ≥ 0, τ > 0 but the rest of real parameters ε, β, ω and χ0 do

not have a prescribed sign. We prove the existence and uniqueness of weak
solutions of problem for a range of initial data and parameters. When ν = 0

and µ > 0 we prove that only the initial history of the integral on Ω of the

unknown on (−τ, 0) and a standard initial condition at t = 0 are required to
determine univocally the existence of a solution. We prove several qualitative

properties of solutions, such as the finite extinction time (or the zero exact
controllability) and the finite speed of propagation, when the term |u|2u is

replaced by |u|m−1u, for some m ∈ (0, 1). We extend to the delayed case some

previous results in the literature of complex equations without any delay.

1. Introduction

It is well-known that feedback delayed term can be introduced to control very
complex phenomena (see for example the expositions in [4, 18, 29]). Our main in-
terest in this paper concerns a model, of complex Ginzburg and Landau equations
type, introduced for the control of turbulence in oscillatory reaction-diffusion sys-
tems made through a combination of global and local delayed feedback. We recall
that, after the pioneering work of Ginzburg and Landau [19] in 1950 in superconduc-
tivity, Ginzburg-Landau equation has been systematically used to study different
types of phenomena in superconductor theory. A rich variety of mathematical mod-
els of PDEs have also been inspired by the original model of Ginzburg and Landau
to study a large number of physical phenomena, (see for instance Kuramoto [23],
Levy [24], Temam [28] and references therein).
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In 1996, Battogtokh and Mikhailov [5], introduced a nonlocal delayed term in
the generalized equation in order to control the system and suppress turbulence (see
also Battogtokh, A. Preusser and Mikhailov [6]). The equation appears in the study
of some chemical reactions and models the concentration of various reacting species.
D. Battogtokh and A. Mikhailov analyze numerically this model and control the
turbulence thanks to the delayed term. The idea is to adjust two real parameters:
the feedback intensity µ and the delay time τ . The results were made rigorous later
in a series of articles, which we indicate below. This work is a natural companion
of those rigorous studies. For instance, a first rigorous approach was presented in
Casal and Dı́az [14], where the control of turbulence in oscillatory reaction-diffusion
systems is made through a combination of global and local feedback by means of
a pseudo-linearization technique (see also Casal and Dı́az [13, 14], Casal, Dı́az and
Stich [15, 16] and Casal, Dı́az, Stich and Vegas [17]). In this paper, we consider
weaker assumptions on the initial data and parameters than in the above mentioned
papers and others results in the literature (see, e.g. [2]).

Although our results can be stated under a great generality, here we consider
only the framework motivated by the control problem goal. As a first model we will
consider the case of a global delayed problem in which two real parameters play a
fundamental role: the feedback intensity, µ, and the delay time, τ . The problem
is reduced to find a complex valued field u in Q := Ω× (0, T ), where Ω ⊂ RN is a
bounded domain for N ≤ 3 with regular boundary ∂Ω and t > 0.

∂u

∂t
− (1 + iε)∆u+ (1 + iβ)|u|2u− (1− iω)u = F (u(x, t− τ)), in Q,

∂u

∂~n
= 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) on Ω,

F (u(s)) = F0(s) s ∈ (−τ, 0),

(1.1)

where the global delayed feedback term is

F (u(x, t− τ)) = F1(u(x, t− τ)) + iF2(u(x, t− τ))

:= µeiχ0
{ 1

|Ω|

∫
Ω

u(x, t− τ)dx
}
,

(1.2)

here ω, β, ε, τ , µ and χ0 are given real numbers without prescribed sign, u0(x) and
F0(s) are given complex functions and ~n is the outward normal vector to ∂Ω. We
point out that, in contrast with most of the delayed problems, here the initial past
history is composed of a pointwise information at t = 0 (the usual initial condition
u(x, 0) = u0(x) on Ω) and only a partial information on the function u(s) when
s ∈ (−τ, 0): only the integral of the unknown is prescribed s ∈ (−τ, 0). Under
suitable conditions on u0(x) and F0(s) we prove (in Theorems 2.3 and 3.1) that
there exists a unique solution of (1.1).

A second model concerns the case, already used in [5, 6, 14], in which the delayed
feedback term involves the unknown

F (u(x, t− τ)) = eiχ0
{ µ

|Ω|

∫
Ω

u(x, t− τ)dx+ νu(x, t− τ)
}
. (1.3)

In that case it is clear that the required initial past history must be more com-
plete and so the new formulation is the usual one for delayed problems. As a
matter of facts, as we mentioned later, the nonlinear perturbation can be easily
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treated under a more general growth condition of the type (1 + iβ)|u|m−1u, for all
m > 0. In particular, when m ∈ (0, 1) we comment how to apply the techniques
introduced in a series of works concerning the pure Schrödinger equation with a
non-Lipschitz perturbation to our case (see [7, 8, 10, 11]). See also the study, for
complex Ginzburg-Landau equations without any delayed term, made in [2]. Thus
our second problem can be formulated as

∂u

∂t
− (1 + iε)∆u+ (1 + iβ)|u|m−1u− (1− iω)u = F (u(x, t− τ)), in Q,

∂u

∂~n
= 0, on ∂Ω× (0, T ),

u(x, s) = U0(x, s), s ∈ [−τ, 0], x ∈ Ω.

(1.4)

In the special case of m ∈ (0, 1) and F given by (1.3) with µ = 0 (i.e., with
only local delayed feedback terms) we prove that several qualitative properties
as the finite speed of propagation or the finite extinction time property obtained
previously in the literature for complex formulations problems without delayed term
(see [2, 7, 8, 10, 11]) can be easily extended to the mentioned delayed formulation.

This article is organized as follows: the existence of solutions for problems (1.1)
and (1.4) is obtained in Section 2. The proof of the existence of solutions use an
iterative argument as well as a Galerkin method when t ∈ [0, τ) jointly with suitable
a priori estimates which allow to justify the passing to the limit. The uniqueness
of solutions is given in Section 3 for N ≤ 3. Finally the study of some qualitative
properties, for m ∈ (0, 1) and F given by (1.3) with µ = 0, will be collected in
Section 4 where some energy methods will be applied.

Notation. W s,p(D) and Hs(D) denotes the standard Sobolev spaces which consist
of real scalar (or vector) valued functions defined on D (an open subset of RN or
RN+1). Sobolev spaces of complex valued functions are denoted by Ws,p(D) and
Hs(D) with calligraphic letters, as well, as continuous functions C(D) defined over
a domain D. We use ‖ · ‖ and (·, ·) for the usual norm and the inner product of
L2(D) (or L2(D)) respectively. Given a general Banach space B, ‖ · ‖B denotes
the norm of Banach space B. Its topological dual space will be denoted by B′. By
〈·, ·〉B′,B we denote the duality product between B′ and B.

2. Existence of solutions

We first introduce the notion of weak solution of problem (1.1).

Definition 2.1. Let T ≤ ∞, and assume u0 ∈ L4(Ω)∩H1(Ω) and F0 ∈ L2(−τ, 0).
A function u : Ω× (−τ, T )→ C is called a weak solution of problem (1.1) if

u ∈ C([0, T ] : L2(Ω)) ∩ L2(0, T : H1(Ω)) ∩ L4(0, T : L4(Ω)) ∩ L2(−τ, 0 : L1(Ω)),

ut ∈ L2(0, T : (H1(Ω))′),
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for every t ∈ (0, T )

〈 ∂
∂t
u, ϕ〉(H1(Ω))′×H1(Ω)

= (1− iω)

∫
Ω

uϕ̄dx− (1 + iβ)

∫
Ω

|u|2uϕ̄dx− (1 + iε)

∫
Ω

∇u · ∇ϕ̄dx

+ F (u(t− τ))

∫
Ω

ϕ̄dx, ∀ϕ ∈ H1(Ω),

u(x, 0) = u0(x) in L2(Ω)

(2.1)

and

F (u(·)) = F0(·) in L2(−τ, 0),

where F (u(t− τ)) is given by (1.2).

In the case of problem (1.4) a stronger notion of weak solution must be intro-
duced.

Definition 2.2. Let T ≤ ∞, and assume that U0 ∈ C([−τ, 0] : L2(Ω)), U0(·, 0) ∈
Lm+1(Ω)∩H1(Ω) (m > 0). A function u : Ω×(−τ, T )→ C is called a weak solution
of (1.4) if

u ∈ L2(0, T : H1(Ω)) ∩ Lm+1(0, T : Lm+1(Ω)) ∩ L2(−τ, 0 : L2(Ω)),

ut ∈ L2(0, T : (H1(Ω))′),

for every t ∈ (0, T )

〈 ∂
∂t
u, ϕ〉H−1(Ω)×H1(Ω)

= (1− iω)

∫
Ω

uϕ̄dx− (1 + iβ)

∫
Ω

|u|m−1uϕ̄dx− (1 + iε)

∫
Ω

∇u · ∇ϕ̄dx

+

∫
Ω

F (u(x, t− τ))ϕ̄dx, ∀ϕ ∈ H1(Ω)

u = U0 in C([−τ, 0] : L2(Ω)),

(2.2)

where F (u(x, t− τ)) is given by (1.3).

It is useful to rewrite the complex Gingzburg-Landau problem (1.1) in terms of
the real components (u1, u2) of the solution u, i.e. u = u1 + iu2. The associated
real system in Q is

∂u1

∂t
= ∆u1 − ε∆u2 + (u2

1 + u2
2)(−u1 + βu2) + u1 + ωu2 + F1(u(x, t− τ)), in Q,

∂

∂t
u2 = ε∆u1 + ∆u2 − (u2

1 + u2
2)(βu1 + u2) + u2 − ωu1 + F2(u(x, t− τ)), in Q,

u1(x, t) = Re(U0(x, t)) and u1(x, t) = Im(U0(x, t)), in (−τ, 0)× Ω,

∂u1

∂~n
=
∂u2

∂~n
= 0, on ∂Ω× (0, T ).

for F1 and F2 defined in (1.2) as the real and imaginary part of F respectively.
The main result of this section is stated as follows.

Theorem 2.3. (i) Assume F0 ∈ L2(−τ, 0) and let u0 be such that u0 ∈ L4(Ω) ∩
H1(Ω). Then there exists at least a weak solution to (1.1) in (0,∞).
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(ii) Assume U0 ∈ C([−τ, 0] : L2(Ω)), U0(x, 0) ∈ Lm+1(Ω) ∩ H1(Ω). Then, there
exists at least a weak solution to (1.4) in (0,∞).

Remark 2.4. Although there are some works in the literature dealing with a
partial information on the initial history (see, e.g. [1] and its references) we point
out that the initial information required in problem (1.1) is weaker than in those
series of works.

To prove the existence of weak solution of (1.1) we first obtain some a priori
estimates in the following lemma.

Lemma 2.5. Let T <∞ and assume F0 ∈ L2(−τ, 0) and let u0 be such that

u0 ∈ L4(Ω) ∩H1(Ω).

Let u ∈ L2(0, T : L4(Ω)) be a weak solution of (1.1). Then

u ∈ L∞(0, T : L2(Ω)). (2.3)

Moreover the norm of u in this space, as well as in the spaces L2(0, T : H1(Ω)) and
L2(0, T : L4(Ω)) has a bound only depending of F0, u0, µ, τ , β and T .

Proof. Let u be a weak solution of (1.1). Let ϕ = u in (2.1) and let t ∈ (0, τ).
Taking the real part of the resultant equation,

1

2

d

dt

∫
Ω

|u|2dx

=

∫
Ω

|u|2dx−
∫

Ω

|u|4dx−
∫

Ω

|∇u|2dx+ Re
{(∫

Ω

ūdx
)
F0(t− τ)

}
.

(2.4)

Applying Hölder and Young inequalities we obtain

Re
{(∫

Ω

ūdx
)
F0(t− τ)

}
≤ 1

2

∫
Ω

|u(t)|2dx+
|Ω|
2
|F0(t− τ)|2. (2.5)

Then, from the last inequalities and equation (2.4), it results that

1

2

d

dt

∫
Ω

|u|2dx ≤ 3

2

∫
Ω

|u|2dx−
∫

Ω

|u|4dx−
∫

Ω

|∇u|2dx+
|Ω|
2
|F0(t− τ)|2.

That is

d

dt
‖u(t)‖2L2(Ω)

≤ 3‖u(t)‖2L2(Ω) − 2‖u(t)‖4L4(Ω) − 2‖∇u(t)‖2L2(Ω) + |Ω||F0(t− τ)|2.
(2.6)

Step 1. We first prove that u ∈ L∞(0, τ : L2(Ω)). Since L4(Ω) ↪→ L2(Ω), we have

‖u(t)‖4L4(Ω) =

∫
Ω

|u(t)|4dx ≥ 1

|Ω|
(

∫
Ω

|u(t)|2dx)2 =
1

|Ω|
(‖u(t)‖2L2(Ω))

2 (2.7)

and thanks to (2.6), we obtain

d

dt
‖u(t)‖2L2(Ω)

≤ 3‖u(t)‖2L2(Ω) −
2

|Ω|
‖u(t)‖4L2(Ω) − 2‖∇u(t)‖2L2(Ω) + |Ω||F0(t− τ)|2.

(2.8)
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Denoting f(t) := ‖u(t)‖2L2(Ω)(≥ 0), and dropping −2‖∇u(t)‖2L2(Ω) in the last equa-

tion, it results

d

dt
f(t) ≤ 3f(t)− 2

|Ω|
f2(t) + |Ω||F0(t− τ)|2, ∀t ∈ (0, τ). (2.9)

Let K1 be a positive constant defined by

K1 := e3τ
[
‖u0‖2L2(Ω) + |Ω|

∫ τ

0

e−3s|F0(s− τ)|2ds
]
. (2.10)

Then by Gronwall’s lemma, we obtain that f(t) ≤ K1 for t ∈ (0, τ).

Step 2. In this step we prove (2.3), i.e. u ∈ L∞(0, T : L2(Ω)). If t ∈ [τ, 2τ) we
argue in a similar way but taking ϕ(·) = u(·, t) in (2.1) we obtain now that

1

2

d

dt

∫
Ω

|u|2dx =

∫
Ω

|u|2dx−
∫

Ω

|u|4dx−
∫

Ω

|∇u|2dx

+ Re
{(∫

Ω

ūdx
)(µeiχ0

|Ω|

∫
Ω

u(x, t− τ)dx
)}
.

(2.11)

Then

|µe
iχ0

|Ω|

∫
Ω

u(x, t− τ)dx| ≤ µ

|Ω|
|
∫

Ω

u(x, t− τ)dx| ≤ µ

|Ω|1/2
‖u(t− τ)‖L2(Ω)

and therefore

Re
{(∫

Ω

ūdx
)(µeiχ0

|Ω|

∫
Ω

u(x, t− τ)dx
)}

≤ µ

|Ω|
∣∣ ∫

Ω

ūdx
∣∣ ∣∣ ∫

Ω

u(x, t− τ)dx
∣∣

≤ µ

|Ω|

[
|Ω|1/2

(∫
Ω

|u(t)|2dx
)1/2][

|Ω|1/2
(∫

Ω

|u(t− τ)|2dx
)1/2]

= µ
(∫

Ω

|u(t)|2dx
)1/2(∫

Ω

|u(t− τ)|2dx
)1/2

.

Finally, by Young’s inequality,

Re
{(∫

Ω

ūdx
)(µeiχ0

|Ω|

∫
Ω

u(x, t− τ)dx
)}

≤ 1

2

∫
Ω

|u(t)|2dx+
µ2

2

∫
Ω

|u(t− τ)|2dx.
(2.12)

Then, from the last inequalities and equation (2.4), it results that

1

2

d

dt

∫
Ω

|u|2dx ≤ 3

2

∫
Ω

|u|2dx−
∫

Ω

|u(t)|4dx−
∫

Ω

|∇u|2dx+
µ2

2

∫
Ω

|u(t− τ)|2dx.

That is

d

dt
‖u(t)‖2L2(Ω)

≤ 3‖u(t)‖2L2(Ω) − 2‖u(t)‖4L4(Ω) − 2‖∇u(t)‖2L2(Ω) + µ2‖u(t− τ)‖2L2(Ω).
(2.13)

Notice that if t ∈ (τ, 2τ) then t− τ ∈ (0, τ) we have

‖u(t− τ)‖2L2(Ω) ≤ K1 .
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Therefore, using again Gronwall’s inequality we arrive at

‖u(t)‖2L2(Ω) ≤ K2, (2.14)

for some K2 > 0 depending only on F0, u0, µ, τ,Ω and T . Iterating this argument
we obtain that u ∈ L∞(0, T : L2(Ω)) and, in particular, u ∈L2(Q) (for all T <∞).

Step 3. Here, we obtain ∇u ∈L2(0, T : (L2(Ω))N ). Again we start arguing on
(0, τ). By integrating inequality (2.6) over (0, t), for t ∈ (0, τ) we obtain∫ t

0

d

dt
‖u(s)‖2L2(Ω)ds ≤ 3

∫ t

0

‖u(s)‖2L2(Ω)ds− 2

∫ t

0

‖u(s)‖4L4(Ω)ds

− 2

∫ t

0

‖∇u(s)‖2L2(Ω)ds+ |Ω|
∫ t

0

|F0(s− τ)|2ds

Thus ∫ t

0

‖∇u(s)‖2L2(Ω)ds

≤ 1

2
‖u(0)‖2L2(Ω) −

1

2
‖u(t)‖2L2(Ω) +

3

2

∫ t

0

‖u(s)‖2L2(Ω)ds

−
∫ t

0

‖u(s)‖4L4(Ω)ds+
|Ω|
2

∫ t

0

|F0(s− τ)|2ds.

(2.15)

Since

|Ω|
∫ t

0

‖u(s)‖4L2(Ω)ds ≥
(∫ t

0

‖u(s)‖2L2(Ω)ds
)2

we obtain that∫ t

0

‖∇u(s)‖2L2(Ω)ds ≤
|Ω|
2
‖F0‖2L2((−τ,0),C) +

3

2
‖u‖2L2(Q) −

2

|Ω|
‖u‖4L2(Q)ds.

Analogously, when t ∈ (τ, T ), By integration over (0, t), (2.13) becomes∫ t

0

d

dt
‖u(s)‖2L2(Ω)ds ≤ 3

∫ t

0

‖u(s)‖2L2(Ω)ds− 2

∫ t

0

‖u(s)‖4L4(Ω)ds

− 2

∫ t

0

‖∇u(s)‖2L2(Ω)ds+ µ2

∫ t

0

‖u(s− τ)‖2L2(Ω)ds,

and since∫ t−τ

0

‖u(s)‖2L2(Ω)ds =

∫ 0

−τ
‖u(s)‖2L2(Ω)ds+

∫ t−τ

0

‖u(s)‖2L2(Ω)ds,

we obtain the desired estimate by using the previous step.

Step 4. From (2.15), we obtain∫ t

0

‖u(s)‖4L4(Ω)ds

≤ 1

2
‖u(0)‖2L2(Ω) +

3

2

∫ t

0

‖u(s)‖2L2(Ω)ds+
µ2

2

∫ t−τ

−τ
‖u(s)‖2L2(Ω)ds,

(2.16)

so that u ∈ L4(0, T : L4(Ω)). Finally, from the above estimate and (2.14) we have
the last assertion of the lemma. �
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Lemma 2.6. Let T <∞ and assume u0 ∈ L4(Ω) ∩H1(Ω), F0 ∈ L2(−τ, 0). Let u
be a “strong” solution of (1.1). Then

u ∈ H1(0, T : L2(Ω)) ∩ L∞(0, T : H1(Ω)) ∩ L∞(0, T : L4(Ω)).

Moreover, there exists K > 0 such that

1

2

∫ t

0

∫
Ω

|ut|2dx+
1

4

∫
Ω

|u(t)|4dx+
1

4

∫
Ω

|∇u(t)|2dx

≤ K
∫ 0

−τ
|F0(s)|2ds+

1

4

∫
Ω

|u0(x)|4dx+
1

4

∫
Ω

|∇u0(x)|2dx
(2.17)

for almost every t ∈ (0, T ).

Proof. The proof is similar to the proof of Lemma 2.5 (step 1). We assume that u
is a “strong” solution of (1.1) (i.e., such that u ∈ H1(0, T : L2(Ω))) and we take
ϕ = ut in the identity (2.1). By taking the real part of the resultant equation, then,
for all t ∈ (0, τ)∫

Ω

|ut|2dx =
d

dt

1

2

∫
Ω

|u|2dx− d

dt

1

4

∫
Ω

|u|4dx− d

dt

1

2

∫
Ω

|∇u|2dx

+ Re
{(∫

Ω

ūtdx
)
F0(t− τ)

}
.

Since

Re
{(∫

Ω

ūtdx
)
F0(t− τ)

}
≤ |
∫

Ω

ūt(t)dx||F0(t− τ)|

≤ |Ω|1/2
(∫

Ω

|ūt(t)|2dx
)1/2

|F0(t− τ)|,

by Young’s inequality,

Re
{(∫

Ω

ūtdx
)
F0(t− τ)

}
≤ 1

2

∫
Ω

|ūt(t)|2dx+
|Ω|1/2

2
|F0(t− τ)|2.

Then, from the last inequalities it results

1

2

∫
Ω

|ut|2dx

≤ d

dt

1

2

∫
Ω

|u|2dx− d

dt

1

4

∫
Ω

|u(t)|4dx− d

dt

1

4

∫
Ω

|∇u|2dx+
|Ω|
2
|F0(t− τ)|2,

after integration we obtain the estimate (2.17) result on (0, τ) with K = |Ω|. By
iterating, we obtain the desired estimate on (0, T ). �

Proof of Theorem 2.3. To prove part (i) we use Galerkin’s method. We consider
the set of pairs (λk, ϕk)k≥1 of eigenvalues and eigenfunctions of the −∆ operator
with Neumann boundary conditions such that∫

Ω

ϕiϕjdx = δi,j .

Let Vm be the complex vector space spanned by {ϕ1, . . . , ϕm}. For all v ∈ Vm,
v =

∑m
j=1 v

jϕj . The approximate problem on the interval (0, τ) is the following:
to find

um ∈ L2(0, τ : Vm), um(t) =

m∑
j=1

ujm(t)ϕj ,
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satisfying∫
Ω

ϕ̄
∂um
∂t

dx = (1− iω)

∫
Ω

umϕ̄dx− (1 + iβ)

∫
Ω

|um|2umϕ̄dx

− (1 + iε)

∫
Ω

∇um · ∇ϕ̄dx+ F0(t− τ)

∫
Ω

ϕ̄dx,

(2.18)

for all ϕ ∈ L2(0, τ : Vm), and

um(0) = um0 :=

m∑
j=1

uj0mϕj with uj0m =

∫
Ω

u0(x)ϕjdx. (2.19)

The approximate problem becomes a coupled system of m non homogeneous ODEs
on the coefficients ujm(t). The standard results on the existence and uniqueness of
local solutions with a right hand side in L2(0, τ) apply to (2.18)-(2.19). Moreover,
the a priori estimates found in Lemmata 2.5 and 2.6 also holds for this special solu-
tions and thus we know that there exist some positive constants Ki (only dependent
on the norms of u0 in L4(Ω)∩H1(Ω) and the norm of F0(t) in L2(−τ, 0)) such that

‖um(t)‖L2(Ω) ≤ K
1/2
1 ,

‖um‖L2((0,τ)×Ω) ≤ |τK1|1/2,

‖∇um‖L2((0,τ)×Ω) ≤ [K2]1/2,

‖um(t)‖L4(Ω) ≤ K3,∫ τ

0

∫
Ω

|∂um
∂t
|2dx ≤ K4.

For N ≤ 3, we have that H1(Ω) ⊂ Lk(Ω) for k = 2 and 4 is a compact embedding.
Then, thanks to Aubin-Lions Lemma we claim that there exists a subsequence
{uj}j∈N of {um}m∈N, such that

uj → u∗, in L2(0, τ : L2(Ω));

uj → u∗, in L4(0, τ : L4(Ω));

∂uj
∂t

⇀
∂u∗

∂t
, in L2(0, τ : L2(Ω));

uj ⇀ u∗, in L2(0, τ : H1(Ω)).

Then we take limits in the weak formulation (2.18) to obtain the existence of so-
lutions to (1.1) in (0, τ). Moreover, as consequence of Aubin-Lions Lemma, we
also obtain that u ∈ C([0, τ ] : L2(Ω)). By an iterative argument on the intervals
(nτ, (n+ 1)τ) with n ≥ 1 we obtain the existence of solution on the whole interval
(0, T ), for all fixed T > 0.

The proof of part (ii) is entirely similar when m ≥ 1 (it suffices to apply Hölder
and Young inequalities in their general version with the corresponding exponents
p, p′ ∈ (1,+∞), 1/p+ 1/p′ = 1). Notice that, in fact uj → u∗, in L2(−τ, τ : L2(Ω))
and since u ∈ C([0, τ ] : L2(Ω)) and U0 ∈ C([−τ, 0] : L2(Ω)) we conclude (as in of [29,
Theorem 1.1]) that u ∈ C([−τ, τ ] : L2(Ω)) and that u = U0 in C([−τ, 0] : L2(Ω)).
Finally, to treat the case m ∈ (0, 1) it is enough to start by considering the initial
interval (0, τ) and to apply the existence results given in [2] for a right hand side
f(x, t) in L2(0, τ : L2(Ω)) and then to proceed by iteration on the rest of intervals
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(nτ, (n + 1)τ) with n ≥ 1. Notice that although the formulation of the equation
considered in [2] was slightly different

∂u

∂t
− eiγ∆u+ eiγ |u|m−1u = f(x, t)

their key assumption γ ∈ (−π2 ,
π
2 ) allows to extend their main arguments to our

framework in which the diffusion coefficient is (1+iε) and the absorption coefficient
is (1 + iβ) (i.e. always with a positive real part). �

3. Uniqueness of a solution

In this section we prove the uniqueness of a weak solution of (1.1) and (1.4). The
proof follows a contradiction argument using the estimates obtained in the previous
section. We recall that in all the paper we are assuming that N ≤ 3.

Theorem 3.1. Assume the conditions on F0, u0, and U0 given in parts (i) and
(ii) of Theorem 2.3. Then problems (1.1) and (1.4) have at most one weak solution
for the following cases:

• m ∈ [1,∞), if N = 1, 2,
• m ∈ [1, 5), if N = 3,
• m ∈ (0, 1), if N = 1, 2, 3 provided β satisfies

|β| ≤ 1−m
2m1/2

. (3.1)

Proof. Let us start by considering problem (1.1). We assume there exists two
solutions u = u1 + iu2 and v = v1 + iv2. We consider U = U1 + iU2 defined by
U = u− v = u1 − u2 + i(u2 − v2), then it satisfies

∂U

∂t
= (1− iω)U − (1 + iβ)(|u|m−1u− |v|m−1v) + (1 + iε)∆U

+ µeiχ0(L)−1

∫
Ω

U(x, t− τ)dx+ νU(t− τ), in Ω× (0, T ),
(3.2)

U(t) = 0, on t ∈ (−τ, 0), (3.3)

∂U

∂~n
= 0, on ∂Ω× (0, T ). (3.4)

Thus, on the initial interval (0, τ) the weak solution U of (3.2)–(3.4) satisfies

〈 ∂
∂t
U, ϕ〉W−1,2(Ω)×W1,2

0 (Ω)

= (1− iω)

∫
Ω

Uϕ̄dx− (1 + iβ)

∫
Ω

(|u|m−1u− |v|m−1v)ϕ̄dx

− (1 + iε)

∫
Ω

∇U · ∇ϕ̄dx, ∀ϕ ∈ H1(Ω).

Thanks to Lemmas 2.5 and 2.6, we replace ϕ by U in the definition of weak solution
and take the real part of the identity to obtain

∂

∂t

1

2

∫
Ω

|U |2dx =

∫
Ω

|U |2dx− Re
{

(1 + iβ)

∫
Ω

(|u|m−1u− |v|m−1v)Ūdx
}

− (1 + iε)

∫
Ω

|∇U |2dx,
(3.5)

for every t ∈ (0, τ). We now consider two cases: m ∈ (0, 1) and m ∈ [1, 3].
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Case 1: m ∈ (0, 1). Note that, for any two complex numbers x, y and m > 0 we
have that (see [25, Lemma 2.2] and [2, 12])

Re[(|x|m−1x− |y|m−1y)(x̄− ȳ)] = |x|m+1 + |y|m+1 − (|x|m−1 + |y|m−1) Re(xȳ)

i.e.

Re[(|x|m−1x− |y|m−1y)(x̄− ȳ)] = |x|m+1 + |y|m+1 − (|x|m−1 + |y|m−1)|x||y| cosω

where ω = arg(xȳ). In view of Young inequality we obtain

Re[(|x|m−1x− |y|m−1y)(x̄− ȳ)] ≥ 0.

In the same way we have

Im[(|x|m−1x− |y|m−1y)(x̄− ȳ)] = (|x|m−1 − |y|m−1)|x||y| sinω.

Thanks to [25], Lemma 2.2, we have that

Im[(|x|m−1x− |y|m−1y)(x̄− ȳ)] ≤ 1−m
2m1/2

Re[(|x|m−1x− |y|m−1y)(x̄− ȳ)]

then, thanks to (3.1)we have |β| ≤ |m−1|
2m1/2 and then

Re[(1 + iβ)(|x|m−1x− |y|m−1y)(x̄− ȳ)]

= Re[(|x|m−1x− |y|m−1y)(x̄− ȳ)]− βIm[(|x|m−1x− |y|m−1y)(x̄− ȳ)] ≥ 0.

Therefore

Re
{

(1 + iβ)

∫
Ω

(|u|m−1u− |v|m−1v)Ūdx
}
≤ 0,

and (3.5) becomes

∂

∂t

1

2

∫
Ω

|U |2dx ≤
∫

Ω

|U |2dx− (1 + iε)

∫
Ω

|∇U |2dx, (3.6)

Case 2: m ≥ 1. In this case the real part of (1 + iβ)
∫

Ω
(|u|m−1u − |v|m−1v)Ūdx

satisfies

Re
{

(1 + iβ)

∫
Ω

(|u|m−1u− |v|m−1v)Ūdx
}
≤ C(β,m)

∫
Ω

(|u|m−1 + |v|m−1)|U |2dx.

Substituting in (3.5) it results,

∂

∂t

1

2

∫
Ω

|U |2dx ≤ C(β,m)

∫
Ω

(1 + |u|m−1 + |v|m−1)|U |2dx−
∫

Ω

|∇U |2dx.

Since u and v are weak solutions of the problem, and u, v ∈ L∞(0, T : H1(Ω)) and
H1(Ω) ⊂ Lm+1(Ω), it results that∫

Ω

(1 + |u|m−1 + |v|m−1)|U |2dx

≤ (‖u‖L∞(0,T :Lm+1(Ω)) + ‖v‖L∞(0,T :Lm+1(Ω)))
m−1
m+1 |

∫
Ω

|U |m+1dx|
2

m+1

≤ c
∣∣∣ ∫

Ω

|U |m+1dx
∣∣∣ 2
m+1

.

Then
∂

∂t

∫
Ω

|U |2dx ≤ c
∣∣∣ ∫

Ω

|U |m+1dx
∣∣∣ 2
m+1 −

∫
Ω

|∇U |2dx. (3.7)
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So, if m = 1 we have
∂

∂t

∫
Ω

|U |2dx ≤ c
∣∣ ∫

Ω

|U |2dx
∣∣. (3.8)

And for m > 1 and N ≤ 3, we apply Gagliardo Nirenberg inequality to obtain

‖U‖Lm+1(Ω) ≤ c‖U‖αH1(Ω)‖U‖
1−α
L2(Ω) + c‖U‖L2(Ω)

for

α = N
(1

2
− 1

m+ 1

)
.

Then, after some computations we obtain

‖U‖2Lm+1(Ω) ≤ ε‖U‖
2
H1(Ω) + c(ε)‖U‖2L2(Ω).

We replace in (3.7) for ε small enough to obtain

∂

∂t

∫
Ω

|U |2dx ≤ c
∫

Ω

|U |2dx. (3.9)

To complete the proof, we apply Gronwall’s lemma to (3.6), (3.8) and (3.9) to
obtain uniqueness of solutions on the interval (0, τ). By induction in intervals of the

form (nτ2 ,
(n+1)τ

2 ), we obtain again the uniqueness of solutions for t ∈ (0,∞). �

Remark 3.2. The results of this and the precedent section also holds, with minor
changes, for other type of boundary conditions such as, Dirichlet boundary condi-
tions or periodic boundary conditions (as considered in [5, 6, 14]). We also point
out that the assumption (1 + iε) on the coefficient of the complex diffusion opera-
tor is absolutely crucial since when the real part of such a coefficient vanishes the
equation becomes a nonlinear Schrödinger delayed equation and some additional
conditions on the coefficient of the nonlinear part (in this paper assumed of the
form (1 + iβ)) are required (see, e.g. the existence and uniqueness results for the
case m ∈ (0, 1) given in [12]).

4. Properties of solutions of the delayed problem when m ∈ (0, 1)

The main goal of this section is to explain how to adapt to the case of delayed
problems the energy methods presented in the monograph [3] and, more concretely,
their adaptation to complex Ginzburg-Landau equations with absorption made in
[2]. Because of the presence of the “bad term” −(1− iω)u in the equation in all this
section we shall need a extra information on the solutions: we will always assume
that the solution is bounded. This condition could be avoided in absence of such a
term in the equation.

Our first result concerns the so called finite extinction time. This property is
of interest in many different contexts. For instance in Control Theory it usually
associated to the “zero exact controllability property”.

Theorem 4.1. Let m ∈ (0, 1) and α ∈ (0, 1) such that

‖u‖L∞(Q) ≤ |1− α|
1

1−m . (4.1)

(i) Assume that

‖u0‖2L2(Ω) is small enough. (4.2)

Assume also that there exists t∗ ∈ (0, τ) such that

|F0(s)|
m+1
m ≤ c [(t∗ − τ)− s]

δ
1−δ
+ for a.e. s ∈ (−τ, 0), (4.3)



EJDE-2020/40 DELAYED COMPLEX GINZBURG-LANDAU EQUATIONS 13

for some c > 0 and some δ ∈ (0, 1). Then any bounded solution of the nonlocal
problem (1.4) (i.e. with ν = 0) satisfies

‖u(·, t)‖2L2(Ω) ≤ cκ[t∗ − t]
1

1−δ
+ for all t ∈ [0, τ)

for some c > 0. In particular u(·, t) ≡ 0 in Ω for all t ∈ [t∗, τ). In addition,
u(·, t) ≡ 0 in Ω for all t ∈ [nt∗, nτ) for all n ∈ N.

(ii) Assume that

‖U0(·, s)‖
2(m+1)
m

L2(Ω) ≤ κ [(t∗ − τ)− s]
δ

1−δ
+ for a.e. s ∈ (−τ, 0), (4.4)

for some κ > 0 and some δ ∈ (0, 1). Then any bounded solution of the (1.4), with
ν > 0, satisfies that

‖u(·, t)‖2L2(Ω) ≤ cκ[t∗ − t]
1

1−δ
+ for all t ∈ [0, τ)

for some c > 0. In particular u(·, t) ≡ 0 in Ω for all t ∈ [t∗, τ). In addition
u(·, t) ≡ 0 in Ω for any t ∈ [nt∗, nτ), for all n ∈ N.

Roughly speaking, for the proof of this results we follow the energy method
presented in Section 6.2 of the monograph [3] (see the applications to complex
equations made in [2] and [12]). In fact, we will use the following improvement of
a suitable energy inequality.

Lemma 4.2 ([12]). Let y ∈ W 1,1
loc

(
[0,∞);R

)
with y ≥ 0 over [0,∞), δ ∈ (0, 1),

α, T0 > 0, and

y? = (κ δδ(1− δ))
1

1−δ , (4.5)

x? = (κ δ (1− δ)T0)
1

1−δ . (4.6)

If y(0) ≤ x?, and if for almost every t > 0,

y′(t) + κ y(t)δ ≤ y?(T0 − t)
δ

1−δ
+ ,

then there exists k∗ > 0 such that

y(t) ≤ k∗(T0 − t)
1

1−δ
+ for all t > 0. (4.7)

Proof of Theorem 4.1. As in the proof of Lemma 2.5, we take ϕ = u as test function
in the equation

∂u

∂t
− (1 + iε)∆u+ (1 + iβ)|u|m−1u− (1− iω)u = F (u(x, t− τ)) .

Integrating by parts, thanks to Hölder and Young inequalities, we obtain

1

2

d

dt

∫
Ω

|u(x, t)|2dx+

∫
Ω

[|∇u(x, t)|2 + (1− α

2
)|u(x, t)|m+1]dx

≤
∫

Ω

|u(x, t)|2dx+ c(α)|F0(t− τ)|
m+1
m .

Since ‖u‖L∞(Q) ≤ |1− α|
1

1−m , we have∫
Ω

|u(x, t)|2dx ≤ |1− α|
∫

Ω

|u(x, t)|m+1dx,

and therefore
1

2

d

dt

∫
Ω

|u(x, t)|2dx+

∫
Ω

[
|∇u(x, t)|2 +

α

2
|u(x, t)|m+1

]
dx ≤ c2|F0(t− τ)|

m+1
m (4.8)
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for some positive constants α and c2. We then use the Gagliardo-Nirenberg in-
equality [2, Theorem 6.1] to arrive to the energy inequality

y′(t) + c3y(t)δ ≤ c2|F0(t− τ)|
m+1
m

for some δ ∈ (0, 1) and some c3 > 0, with

y(t) = ‖u(·, t)‖2L2(Ω) .

Since we arrive to the energy inequality

y′(t) + c3y(t)δ ≤ c2|F0(t− τ)|
m+1
m

for some δ ∈ (0, 1) and some c3 > 0, with

y(t) = ‖u(·, t)‖2L2(Ω).

Then we apply Lemma 4.2 on the interval t ∈ [0, τ), with κ = c3 and T0 = t∗ ∈
(0, τ), so if we assume that

‖u0(·)‖2L2(Ω) ≤ (c3 δ (1− δ)t∗)
1

1−δ ,

c2|F0(t− τ)|
m+1
m ≤ y?(t∗ − t)

δ
1−δ
+

with y? = ( c3δ
δ(1− δ))

1
1−δ . Then we conclude that

‖u(·, t)‖2L2(Ω) ≤ k
∗(t∗ − t)

1
1−δ
+ for all t ∈ [t∗, τ), (4.9)

which proves the first conclusion of part (i). Arguing in a similar way, now on the
interval t ∈ [τ, 2τ), we obtain

y′(t) + c3y(t)δ ≤ ĉ2
∣∣∣ ∫

Ω

u(x, t− τ)dx
∣∣∣m+1
m

for the same δ ∈ (0, 1) and c3 > 0 and some ĉ2 > 0. Applying the Hölder inequality
and conclusion (4.9) we have∣∣∣ ∫

Ω

u(x, t− τ)dx
∣∣∣m+1
m ≤ |Ω|

m+1
2m k∗

2(m+1)
m ((t∗ + τ)− t)

2
(1−δ)

m+1
m

+

for all t ∈ [t∗ + τ, 2τ). Then, since

2

(1− δ)
m+ 1

m
>

δ

1− δ
,

we van apply again Lemma 4.2 to conclude that

‖u(·, t)‖2L2(Ω) ≤ k
∗((t∗ + τ)− t)

1
1−δ
+ for all t ∈ [t∗, τ). (4.10)

The proof of part (ii) is similar but now, on the initial interval [0, τ) we require
the stronger assumption (4.4). �

Remark 4.3. If the initial history F0(s) and u0 (respectively U0(·, s)) does not
vanishes also for s ∈ [−τ, t) ∪ {0}, for some t < 0 then Theorem 4.1 proves that
the solution of the nonlocal (1.4), i.e. with ν = 0 (respectively the local case, with
ν > 0) is discontinuous at the time t = nτ for all n ∈ N. The technique of proof
in Theorem 4.1 could also be used to prove that the solutions may vanishes on
intervals of the form [nτ, nτ + ε] avowing the above mentioned discontinuity.
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Remark 4.4. The detailed analysis made in [2] shows that, in fact,

δ =
m+ 1

θ(m+ 1) + 2(1− θ)
with θ =

N(1−m)

N(1−m) + 2(1 +m)
.

Remark 4.5. The above assumptions are, in some sense, necessary. Indeed, if for
instance ‖u0‖2L2(Ω) is big enough then it is possible to take the parameters such

that any function y(t) satisfying the ordinary differential inequality with zero in
the right hand side satisfy that y(τ) > 0 and thus the contribution of the global
initial memory can not be of any help in the rest of values of time t ∈ [τ,+∞).
Analogously, the decay condition indicated in the assumption (4.3) is the optimal
decay which is compatible with the decay of any function y(t) satisfying the ordinary
differential inequality with zero in the right hand side and with an exponent δ ∈
(0, 1). On the other hand, it is well known that if δ ≥ 1 then y(t) > 0 for all
t ∈ [0,+∞).

Remark 4.6. Assumption (4.1) is used to obtain the finite time extinction of the
solution. If assumption (4.1) is not satisfied, for some initial data the solution
achieves an homogeneous in space function in finite time, such function is, in fact,
the average (in space) of the solution and its behavior is determined by an ordinary
differential equation. See for instance [3], Chapter 2, section 7.2 and references
therein where finite time convergence to the average of the solution is studied for a
porous-media type equation.

The assumption m ∈ (0, 1) (jointly with the structure conditions on the coeffi-
cients (1 + iβ) of the corresponding nonlinear term) makes possible the finite speed
of propagation property and other qualitative properties related with the spatial
support of the solutions u(·, t) for a fixed time t > 0. That was show in the nice
paper [2] for the case without any delayed term and can be easily adapted to the
problems considered in this work once that suitable conditions on the initial history
are assumed. We shall follow the usual notations in this type of local methods (see
[3]): Bρ denotes the open ball of radius ρ of RN contained in Ω (we shall not specify
the dependence with respect the center of the ball x0). Moreover, we shall use the
notation Qρ,T0

:= (0, T0)× Bρ and Σρ,T0
:= (0, T0)× ∂Bρ. We introduce the local

energies

E(ρ, T0) =

∫
Qρ,T0

|∇u|2 dx dt,

b(ρ, T0) =
1

2
ess sup0≤t≤T0

∫
Bρ

|u(x, t)|2dx,

c(ρ, T0) =

∫
Qρ,T0

|u|m+1 dx dt.

Theorem 4.7. Let m ∈ (0, 1) and α ∈ (0, 1) be such that

‖u‖L∞(Q) ≤ |1− α|
1

1−m . (4.11)

(i) Assume that there exists ρ0 > 0 such that

u0 = 0 in Bρ0 . (4.12)

Assume also that there exists sF0 ∈ (0, τ) such that

F0(s) = 0 for a.e. s ∈ (−τ,−sF0
). (4.13)
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Let u be a bounded solution of the nonlocal (1.4) (i.e. with ν = 0). Then there
exists ρ1 ∈ (0, ρ0) and t1 ∈ (0, τ) (both depending of the energies associated to u)
such that u = 0 in Qρ1,t1 .

(ii) Assume that there exists sF0
∈ (0, τ) and ρ0 > 0 such that

U0(·, s) = 0 on Bρ0 for s = 0 and for a.e. s ∈ (−τ,−sF0
). (4.14)

Let u be a bounded solution of the local (1.4) (i.e. with ν > 0). Then there exists
ρ1 ∈ (0, ρ0) and t1 ∈ (0, τ) (both depending of the energies associated to u) such
that u = 0 in Qρ1,t1 .

Proof. (i) It is an easy modification of the adaptation, made in [2, Theorems 5.1
and 6.1], of the local energy method (presented in [3, Chapter 3]) to the case of
complex Ginzburg-Landau equations without delay terms. By multiplying by u and
integrating on Bρ, for almost all ρ ∈ (0, ρ0), and using assumptions (4.12), (4.13)
s ∈ (−τ,−sF0

), and the boundedness of u we obtain the “local integration by parts
inequality” for T0 = sF0

b(ρ, T0) + E(ρ, T0) + c(ρ, T0) ≤
∫

Σρ,T0

|∇u||u| dx dt, a.e. ρ ∈ (0, ρ0)

≤ ‖Du‖L2(Σρ,T0 )‖u‖L2(Σρ,T0 ).

(4.15)

Here, again, we used the assumption (4.11) to obtain (4.8). The method continues,
as usual, by applying some interpolation-trace inequalities and some estimates of
the involved terms. Using that

‖Du‖2L2(Σρ,T0 ) =
∂E

∂ρ
(ρ, T0), (4.16)

we obtain the ordinary differential inequality

ρ2ϑE(ρ, T0)ξ ≤ CK(ρ0, T0)
∂E

∂ρ
(ρ, T0) (4.17)

for some ξ ∈ (0, 1), ϑ > 0 and some positive constants C and K(ρ0, T0), which im-
plies the conclusion. Assumption (4.14) also allows to get the same “local integra-
tion by parts inequality” and thus the proof of (ii) follows the same arguments. �

Remark 4.8. As in [2, Theorem 5.3], it is possible to show a “waiting time prop-
erty” (showing that in fact ρ1 = ρ0 for all t ∈ (0, t0), for some t0 ∈ (0, τ)) for the
solution u of the nonlocal (1.4) (i.e. with ν = 0), if we make the decay stronger
assumption ∫

Bρ

|u0(x)|2dx ≤ δ(ρ− ρ0)
1

1−ξ
+ for a.e. ρ ∈ (0, ρ0 + ε)

for some δ, ε > 0 and with ξ ∈ (0, 1) the exponent arising in (4.17). in the case
of the local (1.4) (i.e. with ν > 0) it must be required a similar decay stronger
assumption now on U0(·, s): to be more precise, we must assume that there exists
sF0 ∈ (0, τ ], ρ0 > 0 and δ, ε > 0 such that∫

Bρ

|U0(x, 0)|2dx+

∫ −sF0

−τ

∫
Bρ

|U0(x, s)|
m+1
m dx ds ≤ δ(ρ− ρ0)

1
1−ξ
+ (4.18)

for almost every ρ ∈ (0, ρ0 + ε).
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Remark 4.9. As in the case of the equation without delay terms, it remains an
open question to know if the above finite speed of propagation also holds for the
pure Schrödinger equation with the same absorption perturbation term. A partial
answer was given in [11].
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Departamento de Matemática Aplicada, E.T.S. de arquitectura, Universidad Politécnica
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