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EXISTENCE OF SOLUTIONS FOR SEMILINEAR PROBLEMS
ON EXTERIOR DOMAINS

JOSEPH IAIA

ABSTRACT. In this article we prove the existence of an infinite number of
radial solutions to Au+ K () f(u) = 0 on RY such that lim,_, oo u(r) = 0 with
prescribed number of zeros on the exterior of the ball of radius R > 0 where
f is odd with f < 0 on (0,8), f > 0 on (8,00) with f superlinear for large u,
and K(r) ~r~¢ with a > 2(N —1).

1. INTRODUCTION

In this article we study radial solutions of

Au+ K(|z])f(u) =0 for R < |z| < o0, (1.1)
u(z) = 0 when |z| = R, ‘ 1|im u(z) =0, (1.2)
T|—00

where 4 : RN — R with N > 2, R >0, f : R — R is odd and locally Lipschitz with
(H1) f'(0) < 0, there exists 8 > 0 such that f(u) < 0 on (0,3), f(u) > 0 on
(8,00).
(H2) f(u) = |u|P~"'u + g(u) where p > 1 and

L low)

U—>00 |u|p

=0.

(H3) Denoting F(u) = fou f(¢t) dt we also assume that thee exists v with 0 < 8 <
~ such that F < 0 on (0,7) and F > 0 on (v, c0).

(H4) Further we assume K and K’ are continuous on [R, 00) and K (r) > 0, there
exists @ > 2(N — 1) such that lim, ,. rK'/K = —a.

(H5) There exist positive constants dy, ds such that

!

rK
2(N —1)+ %

Our main result read as follows.

<0, dir *<K(r)<dor @ forr>R.

Theorem 1.1. Assume (H1)—(H5) and N > 2. Then for each nonnegative integer
n there exists a radial solution, u,, of (1.1)—(1.2) such that w, has exactly n zeros
on (R,0).
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The radial solutions of (L.1)—(1.2) on R with K (r) = 1 have been well-studied.
These include [2, 3, 8, [, [10]. Recently there has been an interest in studying these
problems on RN\ B (0). These include [1,[5,[6,[7]. In these papers 0 < a < 2(N—1).
In this paper we consider o > 2(N — 1). Here we use a scaling argument as in [9]
to prove existence of solutions.

A key difference between the 0 < @ < 2(IN — 1) case and the a > 2(IN — 1) case
is that the function E(r) = %I'(‘(/i) + F(u) is non-increasing for 0 < o < 2(N — 1)
and nondecreasing for a > 2(N —1). For 0 < o < 2(NN — 1) this allows us to obtain
important estimates on the growth of solutions. For o > 2(N — 1) we are unable to
do this so instead we make the change of variables u(r) = u;(r?>~"V) and investigate
the differential equation for u; on [0, R2~"]. For this equation it turns out there

2
is a function F; = %% + F(uq) that is nondecreasing and so we can apply some

similar analysis as we did in the 0 < a < 2(N — 1) case.

The outline of this paper is as follows: in section two we establish existence of
a radial solutions of (L.I)—(T.2) with u(R) =0 and v/(R) > 0 on [R,c0). We then
make the change of variables u1(r) = u(r?>~"V) and transform our problem to the
compact set [0, R2~N] with u;(R*> V) = 0 and v} (R?>~N) = —b* < 0. The rest of
section two is devoted to showing that u; (1) stays positive if b* > 0 stays sufficiently
small and that u; (r) has more and more zeros as b* — co. In section 3 we prove the
main theorem by choosing appropriate values of the parameter b*, say b}, such that
u1 , is a solution with exactly n zeros on (0, R2~%) for each nonnegative integer n
and hence converting back to the original notation we get a solution of our original
equation with exactly n zeros on (R, 00) and u(r) — 0 as r — oco.

2. PRELIMINARIES
Since we are interested in radial solutions of (1.1)—(1.2), we denote r = |z| and
write u(x) = u(|z|) where u satisfies
" N-1 / —
'+ ——u' + K(r)f(u) =0 for R<r < oo, (2.1)
r
w(R) =0,u'(R) =b> 0. (2.2)

We will occasionally write u(r,b) to emphasize the dependence of the solution on
b. By the standard existence-uniqueness theorem [4] there is a unique solution of

(2.1)—(2.2) on [R, R + €) for some € > 0.

‘We next we consider

1 u'?
E(r) = K0 + F(u). (2.3)
It is straightforward using and (H5) to show that
E'(r) = _27“:;{ 2(N — 1) + rgl] > 0. (2.4)
Thus E is non-decreasing. Therefore,
1 u'? 1 b
YA +F(U)ZE(T)2E(R):§K(R) for r > R. (2.5)

Next we let
u(r) = ul(TQ*N) (2.6)
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where we denote

bRN—l
=RV b= : 2.7
R =t (27)
This transforms our equation ([2.1)—(2.2) into
ul(t) +h(t)f(ui(t)) =0 for 0 <t< Ry, (2.8)
where
u(R*) =0, uj(R")=-b"<0, (2.9)
and )
2(N—1)
h(t) = ————t ==~ K(t1/C=N)y,
Since (r2W-DK) < 0 (by (H5)) and t = 7% with N > 2 it follows that
h'(t) >0 for0<t<R" (2.10)
In addition, from (H5) we see that
dq h(t) do
— < << —="  for0<t<R* 2.11
OSN 22 = S(w_ge 05t @11)
where ¢ = % > 0 (by (H4)).
Now let
1 uf?
== F . 2.12
L= 30 + F(u1) (2.12)
Then using (2.8]) and we see that
u'12h’
E} =— T 0.
Therefore,
1 uf? 1 (b*)2
- F > — t,R"). 2.13
Also we consider .
E, = iu/f + h(t)F (u1). (2.14)
Using ([2.8) this gives
Ejy = h(t)F(u1)
Integrating this on (¢, R*) gives
1 12 " / 1 *\2
Ul + h(t)F(uy) + W (s)F(uy)ds = i(b ). (2.15)
t

It follows from (H3) that F' is bounded from below so there exists Fy > 0 such that
F(uy) > —Fp for all u; € R. Also since h'(t) > 0 by (2.10) we see that

/t () F(uy) ds > —Fy [H(R®) — h(1)]. (2.16)

Therefore, since h(t) > 0 and h(t) is bounded on [0, R*] by (2.11) we see from
E19)-(216) that

S 4 B P () < S (67 + Folh(BY) — (1) < (%) + Foh(R"). (2.17)

NN
DO =
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It follows from (2.17) that for fixed b*, then u; and u} are uniformly bounded on
[0, R*] and therefore the solution u; exists on [0, R*]. Therefore, the solution u of

[2:1)—([2:2) exists on [R, c0).

Lemma 2.1. If b* > 0 is sufficiently small, then 0 < uq < 8 on (0, R*).

Proof. We first note that if u; has a local maximum then there exists My« with
uy <0 on (My«, R*), v} (Mp) = 0, and with u}(Mp) < 0. Thus f(u(Mp+)) >0
from and therefore uq (M) > . Thus while 0 < u; < § we see that uq is
monotone.

So suppose now that the lemma is false. Then for every b > 0 with b sufficiently
small there exists an sy« with 0 < sp« < R* such that uq(sp=) = S and v} < 0 on

(sp=, R*). Now integrating on (t, R*) and using gives
uy = —b* +/ * h(s)f(uy) ds.
t
Integrating again on (¢, R*) gives
wn(t) = b*(R* — 1) — / * / () () dr ds.
tJs
Observe from (H1) that there exists ¢; > 0 such that

f(ur) = —ec1ug when uy > 0. (2.18)
Then using (2.18]) and the fact that uy is decreasing on (sp+, R*) we obtain

.
w(t) < bR — 1)+ / crd(s)ua (s) ds (2.19)
where X
d(s) = / h(z)da > 0, (2.20)
Then we let ’
.
W(t) = /t d(s)uy(s)ds (2.21)

and from (2.21]) we observe W'(t) = —d(t)us (t). Next, multiplying (2.19) by d(t)

we obtain

—W' < b (R* —t)d(t) + c1d(t)W.
Thus

—b*(R* —t)d(t) < W' + crd(t)W.
Denoting D(t) = elo @1d(=)ds - () and multiplying the previous inequality by D(t)
gives

—b*(R* — t)d(t)D(t) < (D(t)W(t))".

Integrating on (¢, R*) gives

.
D)W (t) < b* /t (R* — )d(s)D(s) ds

thus from (2.21]) and the definition of D(t) we see that

*

B
/ d(s)ui(s)ds = W(t) < b*e Jo Cld(s)ds/ (R* — s)d(s)elo rd@) dz g,
¢ t
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Then from (2.19) we see that
R*
ui(t) <b* ((R* —t) 4 cre Jo 1) ds/ (R* — s)d(s)eo crd(z)de ds). (2.22)
t

Since h(t) is bounded on [0, R*], it follows from (2.20) that d(t) is bounded on
[0, R*] and thus the term in the large parentheses in (2.22) is bounded on [0, R*].

Therefore, from (2.22)) we see there exists a co > 0 which is independent of b* such
that

up(t) < egb®  on [sp, R*].
Evaluating this at sp« give 0 < 8 < ¢2b* — 0 as b* — 0 which is a contradiction.
Thus we see that if b* > 0 is sufficiently small then 0 < u; < 8 on (0, R*). O

Lemma 2.2. If b* is sufficiently large then wy has a local maximum, My, and
My« — R* as b* — oo.

Proof. Using ([2.13]) we see that if

1 (b*)? uf?

F(up) < 1h(RY)’ then 0

(2.23)

In particular, in a neighborhood of t = R* we have F'(u;) <
0. Also since v} < 0 near ¢ = R* then from ([2.23):

—uy > bV on (t, R*) with ¢ near R".
2h(R*)
Integrating this on (¢, R*) gives
R* *\2
1 (b7)
Vh(s)ds when F(uy) < . 2.24
1/2h R / V= ThR (224

Now from (H2)-(H3) it follows that there is a c¢g > 0 such that F(uy) >
mmﬂp“ — ¢3 for all u; € R. From this and (2.23))-(2.24) we see that

1 b*)2 : F R* _
7R Since (ur (R*)) =

|

: W/ VG ds)" — e < Plun < 2

Rewriting this gives

/tR* Vi(s)ds < [2(p+ 1)((bf;+1 + 4h(R*)1(b*)p—1)]pil 2h(R*).  (2.25)

Since p > 1, the right-hand side of approaches 0 as b* — oo0. Since

fOR* Vh(s)ds > 0 we see that F(ul(t)) cannot be bounded by 1(b*)2h(R*) for
all t € [0, R*] and for all sufficiently large b*. Thus for sufﬁmently large b* there
exists tp» € (0, R*) such that

(b*)

Fln()) = 3777

(2.26)

where 0 < uy < uq(tp+) on (tp=, R*).
Now evaluating (2.25)) at ¢t = t3= and noticing the right-hand side of (2.25|) goes
to 0 as b* — oo it follows that

ty — R as b* — oo. (2.27)
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We also note that from (H2) and (H3), there is a ¢4 > 1 such that F(u;) <
|y [PFL for all u; € R. From this and (2.26]) we see that

p+1
C4 p+1 (b*)2
) > F the)) = 2.2
p+1u1 (to=) > F(uy(tp+)) Ih(R") (2.28)
and so
2 1 7T
up(tp) > c5(b*) P+ where c5 = (M) >0 (2.29)

Suppose now that u; does not have a local maximum for b* sufficiently large so
that u} < 0 on (0, R*) for large b*.
We then define . Fun)
. U1
Q") == inf At .
(®) 2 [Ltye tye] ) U1
Since tp« — R* as b* — oo by (2.27) it follows that the interval [%tb*,tb*] is bounded
from below by a positive constant as b* — oo and so h(t) is bounded from below
on [%tb*,tb*] by a positive constant for large values of b*. In addition, since u; is

decreasing on [%tb*,tb*] then by (2.29)),

1

wr () > ur(tye) > c5(b*) 751 on [5toe o] (2.30)

and since fgzl) — 00 as u; — oo by (H2) it follows that
Q") = oo as b* — oo. (2.31)

We now compare the solution of (2.8)), i.e.,
uy + [h(t)f(uul)]ul =0, (2.32)
1
with the solution of

v + Q(b*)v = 0, (2.33)

where vy (tp+) = u1(tp«) > 0 and v} (tp«) = u)(tp+) < 0. Since the general solution
of (2.33) is v1 = c¢gsin(+/Q(b*)(t — ¢7)) for some constants cg # 0 and ¢; we

see that any interval of length &b*) has a zero of v;. And since tp» — R* as

b* — oo by , it follows from that vy is zero somewhere on [%tb*,tb*}
. - . .
since Jaw) < gty for b* sufficiently large.

In particular, v;1 must have a local maximum, mg«, with mp- > %tb*, v] <0 on
(mps, tp+], and vy > 0 on [Mmp=, tp+]. We claim now that uy also has a local maximum
on (mp-,tp+] for b* sufficiently large. So suppose not then uj < 0 and u; > 0 on
(mp, tp«]. Multiplying by vy, multiplying by w1, and subtracting we
obtain

(viu) —ugvh)" + (h(t)fszl) — Q(b*))uwl =0.
Integrating this on [mp«, tp«] gives
ty
— oy (e ol (e ) + / (h(t)%til) - Q(b*))uwl dt = 0. (2.34)

My
We note vy (mp+) > 0 and that both u; and vy are positive on [myp«,tp-]. Since
h(t) L) — Q(b*) > 0 on [mys, ty-], it follows from (2.34) that u (mp-) > 0 which

Ul
contradicts that uf < 0 on [mp«,tp+]. So we see that u; must also have a local
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maximum, My, with My« > myp+ and w) < 0 on (M-, R*]. This completes the first
part of the proof.
Next we show My« — R* as b* — oo. Integrating (2.8) on (Mp~,t) gives

—uj(t) = / h(s)f(uy)ds. (2.35)

My

Now since f(u1) > 3u} when u; > 0 is large (by (H2)) and since u; is decreasing
n (Mp, R*) then when b* is sufficiently large and when My« < ¢t < tp+ then

0
up(t) > uq(tp=) — 00 as b* — oo by (2.29)) so we obtain from ([2.35):
¢
—uy (t) > iuf(t)/ h(s)ds.

My

Dividing by u}, integrating on (Mp«,t+), and estimating gives

x)dxds. 2.36)
(p - 1)u1 (tp+) /Mb* /Mb* (

Now the left-hand side of | goes to 0 as b* — oo by thus we see from
that ty« — My — 0 as b* — 00. Also from we know that tp- — R* as
b* — 0o. Therefore, combining these two statements we see M~ — R* as b* — oo.
This completes the proof. (I

Lemma 2.3. If b* is sufficiently large then uy has an arbitrarily large number of
zeros on (0, R*).

Proof. From Lemma [2.2) we know u; has a local maximum, M«, with M- — R*
as b* — oco. Recalling it follows that u(r) = u;(r?~%) has a local maximum,
My, and

My, —+ R asb— oo. (2.37)

Now we let

wa(r) = AP Tu(M, + g)

where A7°T = u(Mp). Then

N -1
w4 K (M + —)\iE f(ATT 0,
T+ KO+ AT SO Ty = 23

wy(0) = l,wA(O) =0.
Since K'(r) < 0 and F(u) > —F, for some Fy > 0 (by (H3)), we see that

wgf-&-

1 /
(iwf K (M, + g)x S RO 1w,\))

N-1 9 =20 g 2
= - — K —1
(AMb+ )wA + A (My + )\) (A7=Tw,)
< AT 1K’(Mb+£)

Fy.

Integrating this on (0,r) gives

2(p+1)

1
SR+ KMy + N FATTwy)

2
< K(My)A“72 FOET) - A T35 By [K (M, + g)

(2.39)

— K(My)].
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Since K is bounded on [R, c0) it follows that

2(p+ )

AR Ry [K (M), + g) ~ K(M,)] >0 as A — oo.

2(

Also from (H2) and (H3) it follows that F(\#7) = ~L A" 4 G(A#T) where

= [, 9(s)ds and thus by (H2) and L’Hépital’s rule \G;ff\ — 0 as u — oo.
Therefore

ST RO = 1% S GO S ]ﬁ as A — o0,
Also by (H2) and(H3) we see that
AT PO Twy) = iﬁ“iﬂ AT GO T wy).
Then by for sufficiently large A,
%wA + K (M, + A)?| AP < @ AT GO ). (2.40)
Since |fp(f1| — 0 as u — oo it follows that |G(u)| < 555 +1) |u[PT! for |u| > A where

A is some positive constant and |G(u)| < Gy for |u| < A since G is continuous.
Thus |G(u)| < p1+1 |u|PT + Gy for all u and therefore from (2.40)):

1 |w,\|p+1 K(R) |w,\|”+1 _ 2(p+1)

24 K(My+ < T FGo).
2" ( >\> p+1 ~ p+1 20p+1) 0
Therefore, for sufficiently large A and since K is bounded we have

1 [P+ K(R)
K (M <
gUx K b+)\)2( +1) ~ p+1

Thus we see that |wy| and |w)| are uniformly bounded on [R,o00) for large X. So
by the Arzela-Ascoli theorem a there is a subsequence (still labeled wy) such that
wy — W uniformly on compact sets. Also, since w) is uniformly bounded it follows

that

+ 14 K (M, +A)(

+ 2.

)\M A — 0as A — oo. In addition, from (H2) we have

T —2p _2
K(My + A)>\p HPOFTw) = K(My + D)wf + At g(AFTwy)].

A
Since M, — R by Lemma then K(M, + $)w} — K(R)wP uniformly on
compact sets. And since % — 0 as u — oo by (H2) it follows that K (M, +
'))\%g()\% wy) — 0 uniformly on compact sets as A — oco. It follows then from
(2.38)) that |w}| is uniformly bounded. Then by the Arzela-Ascoli theorem we see
for some subsequence (still labeled w)y) that wy — w and w} — w’ uniformly on
compact sets as A — oo and then from (2.38]) we see that w satisfies
w” + K(R)|w|P~w = 0,
w(0) = 1,w'(0) = 0.

Now it is straightforward to show that this has infinitely many zeros on [0, 00)
and therefore wy and hence u has an arbitrarily large number of zeros on (R, o0)
provided b is chosen sufficiently large. Also it follows that w; has an arbitrarily

large number of zeros provided b* is chosen sufficiently large. This completes the
proof. [
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3. PROOF OF THE MAIN THEOREM

From Lemma [2.3] we see that the set
{b* : u1(r,b*) has at least one zero on (0, R*)}

is nonempty. And since 0 < ui(r,b*) < S on (0, R*) for b* > 0 sufficiently small by
Lemma[2.2] then we see that this set is bounded from below by a positive constant.
So we let

by = inf{b* : u1(r,b*) has at least one zero on 0 < t < R*}

and note that b > 0. In addition, it follows by continuity with respect to initial
conditions that wu(r,b§) > 0 on (0, R*). We claim next that wu(r,b§) > 0 for
0 <t < R*. If not then there is a z with 0 < z < R* such that u;(z,b{) = 0. Since
up(r,bf) > 0 it follows that u] (2, b) = 0. This however implies u; = 0 contradicting
uj (R*,b3) = —b§ < 0. Thus it must be that uy(¢,05) > 0 for 0 < t < R*. Also, for
b* > bjy then by definition of by there is a 2z~ such that wuq(2p-,bj5) = 0. It follows
that zp« — 0 as b* — (b)) otherwise a subsequence of these would converge to
a zop with 0 < zg < R* such that wu;(29,b3) = 0. Since b > 0 it follows that
uj (R*, b)) = —b§ < 0 and so zp < R* but then this contradicts that uy(r,bf) > 0
for 0 < ¢t < R*. Thus z,- — 0 as b* — (b§)". Then 0 = uy(zp+,b*) — u1(0,0f)
as b* — (b)) thus we see that u1(0,5) = 0. Thus us(t,b§) is a positive solution
of —. Now if we let by = (]};;2,)1176 then it follows that u(r, by) is a positive
solution of 1' and lim,_, o u(r, by) = 0.
Next by Lemma [2.3] we see that the set

{b" : uy(¢,b") has at least two zeros on 0 < t < R*}

is nonempty and from Lemma this set is bounded from below. And so we let
T =1inf{b" : uy(r,b") has at least two zeros on 0 < t < R*}.

By [7, Lemma 2.7] it follows that if b is close to by then u(r,b) has at most one
zero on (R, 00) and consequently uq (¢, b*) has at most zero on (0, R*) if b* is close
to b5. Therefore b§ < by. It can then be shown that wy(¢,b7) has exactly one zero
on (0, R*) and u1(0,b5) = 0. So if we let by = (]1\;;2_)117; then w(r,b1) is a solution of
23)-([2-2) with lim, e u(r, b1) = 0 with exactly one zero on (R, c0).

Similarly it can be shown that there is a solution, wu,, of 1) such that
lim, oo u(r, by ) = 0 and with n interior zeros on (R, 0o) where n is any nonnegative
integer. This completes the proof.
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