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S-ASYMPTOTICALLY w-PERIODIC MILD SOLUTIONS TO
FRACTIONAL DIFFERENTIAL EQUATIONS

DARIN BRINDLE, GASTON M. NGUEREKATA

ABSTRACT. This article concerns the existence of mild solutions to the semi-
linear fractional differential equation

Dgu(t) = Au(t) + D7 f(t,u(t)), t>0

with nonlocal conditions u(0) = ug + g(u) where D{(-) (1 < o < 2) is the
Riemann-Liouville derivative, A : D(A) C X — X is a linear densely defined
operator of sectorial type on a complex Banach space X, f: RT x X — X
is S-asymptotically w-periodic with respect to the first variable. We use the
Krsnoselskii’s theorem to prove our main theorem. The results obtained are
new even in the context of asymptotically w-periodic functions. An application
to fractional relaxation-oscillation equations is given.

1. INTRODUCTION

Consider the semilinear fractional differential equation with non-local conditions,

D¢u(t) = Au(t) + DY 1 f(tu(t), 1<a<?2,t>0, (1.1)
u(0) = uo + g(u), (1.2)

where A : D(A) C X — X is a linear densely defined operator of sectorial type on
a complex Banach space X, ug € X and D{(-) is the Riemann-Liouville derivative,
and g : C — C is a continuous mapping.

In 2012, Zhao, Chang and N’Guérékata [33] showed that there exists a mild solu-
tion u(t) that is asymptotically almost automorphic. We assume that the semilinear
function f is asymptotically almost automorphic. We show here that there exists
a mild solution u(t) that is S-asymptotically w-periodic, if the semilinear function.
We assume that f is S-asymptotically w-periodic function, a concept introduced in
2008, by Henriquez, Pierri and Tabos [I9]. Both sets containing each of these type
functions also contains the set of asymptotically w-periodic functions. Cuevas and
de Souza [9] proved the existence and uniqueness of an S-asymptotically w-periodic
solution of an equivalent problem with local conditions assuming a Lipschitz condi-
tion. Our results consider non-local conditions and provide assumptions where the
Lipschitz condition is not necessary.
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Many real world phenomena can be described very successfully by models using
mathematical tools of fractional calculus, such as dielectric polarization, electrode-
electrolyte polarization, electromagnetic waves, modeling of earthquakes, fluid dy-
namics, traffic models, measurements of viscoelastic material properties and vis-
coplasticity; see [I, @] and references therein.

A fractional oscillator equation is a generalization of the classical harmonic os-
cillator equation by replacing the second-order derivative by a fractional order de-
rivative; that is

Dfu(t) + Cult) = f(t), 1<a<2,t>0,ceR.

Damping effects can be expanded to fractional relaxation-oscillation and diffusion-
wave phenomena, which include generalized equations and (1.2)); see [3] 8 22]

The paper is organized as follows. In Section 2, we recall some properties of
S-asymptotically w-periodic functions and derive a variation of constants formula.
In Section 3 we prove our main results and present an example in Section 4.

2. PRELIMINARIES

In what follows, (X, || - ||) will denote a complex Banach space, BC(R™ will

X)
be the space of all bounded and continuous functions f : Rt — X, Co(R™, X) th
space of all continuous functions f : Rt — X such that lim;_, || f(¢)|| = 0. Bot
spaces are Banach spaces equipped with the supremum norm.

2.1. S-asymptotically w-periodic functions.
Definition 2.1 (Fréchet). Let g € BC(R™, X) and w > 0. We say that a continu-
ous and bounded function f : [0,00) — X is asymptotically w-periodic if it admits
the decomposition
f=g9+h,
where g € P,(X) and h € Cy(R™, X). The set of all such functions is denoted:
AP, (X) == P (X) ® Co(RT, X).

Definition 2.2 ([19]). A function f € BC(R*, X) is said to be S-asymptotically
w-periodic if there exists w > 0 such that

dm (f(t+w) = f(2)) =0

In this case we say that w is an asymptotic period of f. The set of all such functions
is denoted by SAP,,(X).
Additionally, if we set the shift operator II,, : BC(R*,X) — BC(R*, X) with

IL, f(t) = f(t + w), then

SAP,(X) = (T, — I)"'Co(RT, X).
Remark 2.3 ([19]). It is easy to check that AP, (X) C SAP,(X). The inclusion
is strict. Indeed we have the following example.

Example 2.4 ([19]). Let f: RT — ¢q where cg = {x = (Tn)nen : limy, 00 T, = 0}
equipped with the norm ||z|| = sup,,¢y |z(n)|, and

(f(t) - %)nel\!'

It is clear that f(¢) is uniformly continuous and f € SAP,(X). B f ¢ AP,(X),
because even though each coordinate f,, € AP,(X), fo(n) =1 = ||f(n)]| =
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for all n € N on this infinite dimensional space. Therefore, there does not exist
h(t) such that lim; ,o [|h(t)|| = 0. The function f above is a piecewise continuous
function that is bounded and non-convergent. Other examples of S-asymptotically
w-periodic functions can be found in [5l BT].

It is proved in [19] that SAP,(X) the space of all S-asymptotically w-periodic
functions on X is a Banach space if equipped with the supremum norm.

Definition 2.5 ([I9, BI]). A continuous function f : [0,00) x X — X is said to
be uniformly S-asymptotically w-periodic on bounded sets if for every bounded set
K C X, the set {f(t,x) : t > o,z € K} is bounded and lim; o || f(t + w,z) —
f(t,z)|| = 0 uniformly in z € K.

Definition 2.6 ([I9][31]). A continuous function f : [0,00) x X — X is said to be
asymptotically uniformly continuous on bounded sets if for every ¢ > 0 and every
bounded set K C X, there exist L. x > 0, d x > 0 such that for every t > L i
| f(t,x) — f(t,y)|l < e and for every x,y € K such that ||z — y| < e k-

Lemma 2.7 ([, T9]). If f : [0,00) x X — X is a function which is uniformly
S-asymptotically w-periodic and asymptotically uniformly continuous on bounded
sets and u(t) € SAP,(X), then the Nemytski operator N'(-) := f(-,u(-)) is also in
SAP,(X).

Proof. Let K = R(u) be the closure of the range of the function u. Since R(u)
is a bounded set, it follows that > () is a bounded function. It is also obviously
continuous. Let € > 0. From there exists T' > 0 such that for all ¢ > T,

1+ w,ult +w)) = f(tult + W) < 5
From Definition there exists dc x > 0, Le x > 0 such that for all ¢ > L. x > 0,
£t ult +w) = FEu®)]] < 5,
if Ju(t+w) —u(t)|| < d¢ k. Let t > max{T, L. x}. Then combining all of the above,
gives
1t +w, ult +w)) = f(E,u®))]|
SfE+w,ult +w)) = (& ult +w) |+ ([ ult +w) = FEu@)]

<L
2 27

The proof is complete. O

2.2. A variation of constants formula. Let us recall sectorial operators:

Definition 2.8 ([7, B2]). A closed and linear operator A is said to be sectorial if
there exist 0 < 0 < 5, M > 0 and 7 € R such that its resolvent exists outside the
sector 7+ Sp :={r+ A: A € C,|arg(—\)| < 7} and

I =)~ <

M
|)\—7’" )\¢T+SQ,

where A generates a family of strongly continuous operators F, : RT — B(X)

defined as )
E,(t) = — AT — A) 71N

are on a suitable path ¢ outside the sector 7 + Sy.
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Theorem 2.9 ([2 7, B3]). The equation
Diu(t) = Au(t) + D~ f(t,ult), 1<a<2,t>0,
u(0) = ug + g(u),

where A is sectorial with 0 < 0 < (1 —§) < /2, has a mild solution generated by
A:

u(t) = Eo(t)[uo + g(u /E t—s)f(s,u(s))ds, 0<t<T,

Proof. By applying the definition of the Riemann-Liouville derivative,

DEC ) = g | ey

to equation (T.1)) after using the Riemann-Liouville derivative D; ~®(-) on both sides
of equation (1.1)) with 8 =1 — « and since m = 2 (m = 0 for j),

D&u(t) = Au(t) + D f(tu(t), 1<a<2,t>0,
u(0) = ug + g(u)

r(s)ds, m—1<a<m,

implies
top_ o\—B—1
u'(t) = / “F(‘S)B)Au(s) ds+ f(t,u(t)), —-1<pB<0,t>0,
0 _
which implies
t a—
u'(t) = / MAu(S)ds + fltu(t), 1<a<2,t>0 (2.1)
0 _
u(0) = ug + g(u). (2.2)
Then integrating by t, we have

u(t) = uo + g(u) +/0 U (S); s)ds +/ f(s, u( (2.3)

forl<a<2andt>0.
Now we use Laplace transforms #(A) = [ e”*'r(t)dt to find the sectorial resol-
vent and its mild solution. The Laplace transform of equation is

Sy _wtgw) 1 1o
a(N) = 3 + o Aa(\) + /\f()\,u()\)).
Then @ = [(A* — A) =X (ug + g(u) + f). Let E,(\) = [(A* — A)"'A*~1]. Then
there exists the mild solution
u(t) = Eq(t)[uo + g(u /E t—s)f(s,u(s))ds, 0<t<T,

where the family of sectorial operators

1
E,(t) = — / e — A) 7T g)
27 J
are on a suitable path ¢ outside the sector 7 + Sp. (]

The previous proof connects theorems and lemmas from references [7, B3], and

shows that (2.1), (2.2)) is equivalent to (1.1}, (1.2).
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Lemma 2.10 ([2, [7, B3]). Let A: D(A) C X — X be a sectorial operator in a
complex Banauch space x satisfying T+ Sp := {7+ A: A € C,|arg(—\)| < 7} and

I =471 < AET+ Sy

M
A—7l’
for some M >0, 7 <0 and0 <0 <m(l—75)<n/2. Then there exists C > 0 such

that
CM

E, —— t>0.
1Ba®llan < Typpe ¢

Theorem 2.11 (Krasnosel’skii fixed point theorem). Let M be a closed convex and
non-empty subset of a Banach space X and A, B two operators such that

(i) Az + By € M whenever x,y € M;
(ii) A is compact and continuous
(iii) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

3. MAIN RESULTS

Lemma 3.1. Suppose h(t) € SAP,,(X). Then the function F : [0,00) — X defined
by

F(t) = /0 Ea(t — O)h(E)de,

is also in SAP,,(X), where the family of operators generated by the sectorial oper-
ator A,
1

=)
are on a suitable path ¢ outside the sector T + Sg, (as in Definition .

Eo(t) := AN — A" Tl 1<a<?,

Proof. Let us write

F(t+w) — / BEo(t +w — E)h(€)ds — /E (t — E)h(€)de
t

:/ Ea(t—g)h(Eer)dff/ Eqo(t = &h(§)dE

/E t—&)[h(E+w)— d§+/ Bo(t — E)h(€)dE.

Let € > 0 be given. Since h(t) € SAP,,(X), there exists T' > 0 such that for every
&€ > T, we have ||h(§ +w) — h(€)]| < e. This implies

[1F(t+w) = F@)]]

T t
< / [ Ea(t = &)[(E +w) — h(&)]]ldE + / [ Ea(t = &)[A(§ +w) — h(&)]lld¢
T

—w

0

+ / |Ea(t — )h(e)]de
T 0

s2nh||oo/ |Ealt - ©) |d§+e/ |Ealt — ¢ >||ds+||h||oo/ | Ealt - €)]de

w
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t+w t—T t+w
<l [ 1BONE+e [ IEOIdE + Il [ IEal)lde
t+w &)
<3lhl [ 1Bl +e [ BN

t+w )
< 3Hh||m/ C—dee/ _OM 4
t—T 0

L4 [rl¢e 14 |rlge
CM -1 T/
< 3||h T T = CM|r| ————
< 3lloo( er)1—i-|7'|(t—T)°“ te I sin(7/a)’
where the constants C' > 0, M > 0, and 7 < 0 are given by Lemma [2.10] Thus
|F(t +w) — F(t)|| — 0 as ¢ — co. The proof is now complete. O

We use the following assumptions:

(A1) The operator A is of sectorial of type 7 < 0, which generates a strongly
continuous family of linear operators E, (t);>0 C B(X).

(A2) f :[0,00) x X — X is a function which is uniformly S-asymptotically
w-periodic and asymptotically uniformly continuous on bounded sets.

(A3) There exists Ly > 0 such that |[f(t,z) — f(t,y)|| < L¢llz — yl|, for all
t>0,z,y € X.

(A3’) There exists ¢; > 0 such that || f(¢,z)|| < ¢f(1+ ||z||) for all ¢ > 0,

(A4) There exists L, > 0 such that for all w,v € C := BC([0,00),X) — C,
llg(u) — g(v)|| < Lg||lt — v||oo. We assume CM Ly < 1.

Remark 3.2. Tt is clear that (A3) implies (A3’). Indeed by (A3), we obtain
1f @) < [1f (@) = fFOU + NFO < Lyllzll + (1O < ep(ll] +1)
where ¢y = max{Ly, | f(0)|l}.
Now we state and prove our first result.

Theorem 3.3. Under assumptions (Al)—(A4), . ) possesses a unique So-
lution in SAP,,(X) provided CM (L + Lf|7'|* < 1.

sm(7r/oz)

Proof. Consider the operator Q : SAP,,(X) — SAP,(X) defined by

Qu(t) == Eq(t)[uo + g(u /E (t = &) f(& u(&))ds.

In view of Lemmas and [3.1] 2 is well-defined.
Now if u,v € SAP,(X), we obtain

1(Qu)(t) = Qo)D)

< [[Ea@®)]lllg(w) — g(v)]l +/O [ Ea(t = O & u(€) — f(&v(E))ldE
CM oM
= (1+|T|taL9+Lf/o 1+|T|gad5>”“_“”°°
7w/ o
sin(m /a))”u loo -

Therefore ||Qu — Q0|00 < Vf.g.alltt — V|00, Where

< CM(Ly+ Lilr| &

T/

-1
0a=CM(L,+ L¢|T| e ——— 1.
V9, ( o+ Lylr] sin(ﬂ'/a)) <
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We conclude the existence of a unique solution using the Banach’s fixed point
theorem. (]

Remark 3.4. When equation ([1.2)) is the local condition g(u) = 0, we recover the
results by Cuevas and de Souza [9].

Theorem 3.5. Assume (Al), (A2), (A3’), (A4). Then problem (1.1)-(1.2]) has at
least one mild solution u(t) € SAP,(X) if we assume that E,(t) is compact for
any t > 0.

Proof. Note that (A4) implies the existence a constant ¢, > 0 such that |g(u)| <
cg(1+ [Jul|) for any u € BC([0,00), X), as in Remark [3.2}

We consider the same operator € as in the previous theorem and use several
steps to achieve our conclusion.

Step 1. Let B, := {u € SAP,(X) : ||u|lo < p}, where

: —1/a
b max{ CM (asin(m/a)cq + c|7] ) ; }

asin(r/a) — CM (asin(r/a) + asin(w/a)cy + cf| 7|~V om
Define the operators P,Q : SAP.(X) — SAP,(X) by
(Po)(t) : Ea(t)[vo + g(v)],
(@u)(t) = [ Ealt~ )7(6 ule))de.
0

Using (A3’) we obtain
[(Pv)(#) + (Qu)(®)]

< ||Ea(t)||||u0+g(v)]|\+/0 [Ea(t = &) (& u(§))lldE

< om( (ol +ls)) + | gy I u(elae)

1
1+ |7]t>

t
1
< oM (Juull+ )l + e 1+ ul) | e )

< OM (Jluoll + e+ 0]} + e (L + ful)lr| = % )

crlr|~Veom

SCM[p+<cg+ )(1+p)}§p-

We conclude that For all u,v € B,, Pv+ Qu € B,,.
Step 2. The operator P is contractive. Indeed, for u,v € SAP,(X) we have

1
1+ |7t

asin(m/a)

[(Pu)(t) + (Po) ()] < [[Ea(®)lllg(w) — g(v)]| < CM Lygllu = vloo -

Therefore
|Pu— Pv|oo < CMLgllu— s -
We conclude by using the assumption CM L, < 1.

Step 3. The operator @ is continuous on B,. Let (u,) C B, such that u, — u
in B,. Then in view of Deﬁnition f&un(§) = f(&u()) as n — oo for all
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€ €10,00). Now we have
1(Qua)(t) — (Qu)(1)]] = II/ f(& un(€)) = f(& u(8)))de]|
CM/ TTRGE=0e | = & un N+ [1£ (&5 u(€)) 1) dE

<CMCf/O W{ + l[un (O] + [[u(€)[1d€
_ 20Mes(1 + p)|T|~ Ve
- asin(m/a)

< 0.

Therefore, Qu,, — Qu as n — oo by the Lebesgues’s Dominated Convergence
Theorem.

Step 4. The set (Qu,) where (u,) C B, is uniformly bounded. Indeed for all n,
we have

I@u O = | [ Ealt = 05(€ uae)ce]
<om [ e m©lde

<oty [ i+l ©lldg

< CMey(1+p)lr|” ”O‘W

_ CMes(1+ p)lr|Yor
- asin(m/a)

This shows that (Quy,) is uniformly bounded.

Step 5. (Qu,) with (u,) C B, is equicontinuous. Indeed taking ¢i,ts such that
0 <t < ty, we have

1(Qua) () — (Qua) (t2)]
| / Eults — €) (€, un(€))de — / " Balts — ) F(€ un(€)de]
oy / 1[Ea(t2 ) = Balty — (€ un(€))dE / " Bty — €)1(6, un())de]

<| / [Balts — €) — Falts — 1€ un(@)de] + | [ Ealts — )16 un(€))de]

ty

1

t1 1
<ores( [ (e — T =g 1 el
to 1
g e lae)

ty 1 t1 1
<omes+( [ rrrmge [ Trmm g
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t2 1
+/t1 T4 17(ts >ad5)

gCMcf(l—F,O)(/O 1+|T‘ adE - / 1+|T\ )

t1 1
< CMes(1+ —d
< Catesti-+p) | e ¢
20MCf(1+p)| | 1/« < 00
« Oébln(ﬂ'/a) '
Since
. CMCf(].-i-,O)/ 1 o
L L T =0

we conclude the equicontinuity of (Quy,).

Step 6. @ is compact. First, we show that the set {(Qu)(t) : u(t) € B,} is
relatively compact in X for each ¢ > 0. To this end, fix ¢ > 0 and €y such that
0 < €9 < t. We have

[(Quyu)(t) := / Bt - o — )16, u(€))de)

is uniformly bounded for v € B,,. This with the assumption that F, (eg) is compact
yield the set {Eq(€0)(Qe,u)(t) : u € B,} is relatively compact.

Since from Definition E,(0) =1 and E,(t)z is continuous for every x € X,
we obtain

R(e0) (Quyt)(t) = Ea(eo) / T Bt — co — ©)F(6,u(€))de),
which shows that
T Ba(0)(@eg)(1) = (Qu)(1).

We conclude that {(Qu)(t) : u(t) € B,} is relatively compact in X. Finally, Q is
compact as claimed. From all of the above, we conclude that problem -
has at least one mild solution u(t) € SAP,,(X), using the Krasnosel’ski’s fixed point
theorem. O

These results are new even in the context of asymptotically w-periodic functions.

4. AN EXAMPLE

As an application, we investigate the following fractional relaxation-oscillation
equations, that are similar to those introduced in [2] 9] 33].

Example 4.1.
2

Wu(t,
+B(=1)"In(1 + ) — 20+ D)sin(ut, 2)) ),
for e —1<t<et? -1, neN,

u(t,0) =u(t,7) =0, l<a<2 t>0,x¢€]l0,n],
u(0,n) =uo(n) +g(u), n€[0,7],

Déu(t,z) = z) — po(t, ) + D (5u(t, z)(cost + cos(3t))
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where ug € L2[0,7]. Let X = (L2[0,7];] - ||2), define the linear operator A defined
on X by Au =u" — pu, (u > 0) with domain

D(A) :={ue X :u" € X,u(0) =u(r) =0}.
Also, let g(u) be a function that satisfies (A4). It is well-known that Au = u” is
an infinitesimal generator of a analytic semigroup on L2[0, 7]; then A is a sectorial
of type 7 = —u. The equations above can be formulated into (1.1)-(1.2)) where

u(t) = u(t,-). Let us consider the nonlinearity, for all u € X,t > 0,s € [0, 7] and
8 € R with u € SAP,,. Therefore two cases follow.

Case 1.
1t uls)) = f(t,v(s)]| = [[B(u(s) — v(s))(cost + cos(3t))
+ B(=1)"[In(1 +t) — (2n + 1)](sin(u(s)) — sin(v(s)))|
< 18] 2llu(s) = v(s)lloo + [ sin(u(s)) — sin(v(s)) o)
Therefore,
£, u(s)) = f(tv(s)] <3 18] [Ju(s) — v(s)llo,
£t uls)) — f(t,v(s))l| < 3 18] [[sin(u(s)) — sin(v(s))oc -

In either inequality, we assume
sin(r/a) 1 —CML,

81 < s =

when by Theorem 3.3] problem ([1.1)-(1.2) has a unique S-asymptotically 27-periodic
solution.

Case 2. Since

I[f (8 u(s)Il = [[B(u(s))(cost + cos(3t)) + B(=1)"[In(1 +¢) — (2n + 1)](sin(u(s))]|
< 18] (2llu(s)lloo + [ sin(u(s))]lo)
<3IBI(A + [luls)llec) = ey =35,

by Theorem (3.5, problem ((1.1)-(1.2) has at least one S-asymptotically 27-periodic
solution.
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5. ADDENDUM POSTED ON APRIL 18, 2020

In response to a reader’s comments, we want to make the following corrections:
(1) Change the title of subsection 2.2 to “Application of the Laplace transform and
subsequent sectorial solutions”

(2) Page 3 line -3: change “defined as” to “defined for {\*: Re A > u} C p(A) as
(3) Page 3 line -1: change “are on a suitable” to “which are on a suitablc

(4) Page 4: line -2: delete “The previous proof ... equivalent to (|1.1] , .”

(5) Add the condition g(u) = —ug to the assumptions of Theorem [2.9] and replace
its proof by the following.

Proof of Theorem[2.9. By applying the Riemann-Liouville derivative, D;~*(-), to
both sides of (L.1) with 8 =1 — «a, and since m = 2 (m = 0 for §), from

Diu(t) = Au(t) + DR~ f(tu(t), 1<a<2,t>0,

u(0) = up + g(u) =0

we obtain

bt —s)=B-1
u'(t) 2/ ——————Au(s)ds + f(t,u(t)), —-1<pB<0,t>0,
o T(=8)

u(0) =up + g(u) =0.

Recall that the Riemann-Loiuville derivative is

sy = 4 [T e m
DLe) = G [ g ds me1<p<m.

Therefore,

¢ e
u'(t) = /0 (;(aszl)QAu(s)ds + f(tu(t), l<a<2,t>0, (5.1)
u(0) = ug + g(u) =0. (5.2)
Now we use Laplace transforms to find the sectorial resolvent and its mild solution.
Since fo (= S) Au( )ds is a convolution, the Laplace transform of (5.1)—(5.2) is

Aa())

M) — (o + () = 220 4 f(n (1)
which implies @ = [(A* — A)~ I (ug + g(u) + f).
Let E,(\) = [(A\* — ) 1X@=1], Then we obtain the mild solution

u(t) = Ea(t)[uo + glu)] + / Eu(t — 5)f(s,u(s))ds, ¢ >0,

where the family of sectorial operators
1

B (t) = 5 ¢e”(Aa—A)—1Aa—1dA

are defined on a suitable path ¢ outside the sector 7+ Sp. a
End of addendum
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