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S-ASYMPTOTICALLY ω-PERIODIC MILD SOLUTIONS TO

FRACTIONAL DIFFERENTIAL EQUATIONS

DARIN BRINDLE, GASTON M. N’GUÉRÉKATA

Abstract. This article concerns the existence of mild solutions to the semi-

linear fractional differential equation

Dαt u(t) = Au(t) +Dα−1
t f(t, u(t)), t ≥ 0

with nonlocal conditions u(0) = u0 + g(u) where Dαt (·) (1 < α < 2) is the

Riemann-Liouville derivative, A : D(A) ⊂ X → X is a linear densely defined
operator of sectorial type on a complex Banach space X, f : R+ × X → X

is S-asymptotically ω-periodic with respect to the first variable. We use the

Krsnoselskii’s theorem to prove our main theorem. The results obtained are
new even in the context of asymptotically ω-periodic functions. An application

to fractional relaxation-oscillation equations is given.

1. Introduction

Consider the semilinear fractional differential equation with non-local conditions,

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), 1 < α < 2, t ≥ 0, (1.1)

u(0) = u0 + g(u) , (1.2)

where A : D(A) ⊂ X → X is a linear densely defined operator of sectorial type on
a complex Banach space X,u0 ∈ X and Dα

t (·) is the Riemann-Liouville derivative,
and g : C → C is a continuous mapping.

In 2012, Zhao, Chang and N’Guérékata [33] showed that there exists a mild solu-
tion u(t) that is asymptotically almost automorphic. We assume that the semilinear
function f is asymptotically almost automorphic. We show here that there exists
a mild solution u(t) that is S-asymptotically ω-periodic, if the semilinear function.
We assume that f is S-asymptotically ω-periodic function, a concept introduced in
2008, by Henriquez, Pierri and Tabos [19]. Both sets containing each of these type
functions also contains the set of asymptotically ω-periodic functions. Cuevas and
de Souza [9] proved the existence and uniqueness of an S-asymptotically ω-periodic
solution of an equivalent problem with local conditions assuming a Lipschitz condi-
tion. Our results consider non-local conditions and provide assumptions where the
Lipschitz condition is not necessary.
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Many real world phenomena can be described very successfully by models using
mathematical tools of fractional calculus, such as dielectric polarization, electrode-
electrolyte polarization, electromagnetic waves, modeling of earthquakes, fluid dy-
namics, traffic models, measurements of viscoelastic material properties and vis-
coplasticity; see [1, 9] and references therein.

A fractional oscillator equation is a generalization of the classical harmonic os-
cillator equation by replacing the second-order derivative by a fractional order de-
rivative; that is

Dα
t u(t) + c2u(t) = f(t), 1 < α < 2, t ≥ 0, c ∈ R.

Damping effects can be expanded to fractional relaxation-oscillation and diffusion-
wave phenomena, which include generalized equations (1.1) and (1.2); see [3, 8, 22]

The paper is organized as follows. In Section 2, we recall some properties of
S-asymptotically ω-periodic functions and derive a variation of constants formula.
In Section 3 we prove our main results and present an example in Section 4.

2. Preliminaries

In what follows, (X, ‖ · ‖) will denote a complex Banach space, BC(R+, X) will
be the space of all bounded and continuous functions f : R+ → X, C0(R+, X) the
space of all continuous functions f : R+ → X such that limt→∞ ‖f(t)‖ = 0. Both
spaces are Banach spaces equipped with the supremum norm.

2.1. S-asymptotically ω-periodic functions.

Definition 2.1 (Fréchet). Let g ∈ BC(R+, X) and ω > 0. We say that a continu-
ous and bounded function f : [0,∞)→ X is asymptotically ω-periodic if it admits
the decomposition

f = g + h,

where g ∈ Pω(X) and h ∈ C0(R+, X). The set of all such functions is denoted:

APω(X) := Pω(X)⊕ C0(R+, X).

Definition 2.2 ([19]). A function f ∈ BC(R+, X) is said to be S-asymptotically
ω-periodic if there exists ω > 0 such that

lim
t→∞

(f(t+ ω)− f(t)) = 0

In this case we say that ω is an asymptotic period of f . The set of all such functions
is denoted by SAPω(X).

Additionally, if we set the shift operator Πω : BC(R+, X) → BC(R+, X) with
Πωf(t) = f(t+ ω), then

SAPω(X) = (Πω − I)−1C0(R+, X).

Remark 2.3 ([19]). It is easy to check that APω(X) ⊂ SAPω(X). The inclusion
is strict. Indeed we have the following example.

Example 2.4 ([19]). Let f : R+ → c0 where c0 = {x = (xn)n∈N : limn→∞ xn = 0}
equipped with the norm ‖x‖ = supn∈N |x(n)|, and(

f(t) =
2tn

n2 + t2

)
n∈N

.

It is clear that f(t) is uniformly continuous and f ∈ SAPω(X). But f /∈ APω(X),
because even though each coordinate fn ∈ APω(X), fn(n) = 1 ⇒ ‖f(n)‖ = 1
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for all n ∈ N on this infinite dimensional space. Therefore, there does not exist
h(t) such that limt→∞ ‖h(t)‖ = 0. The function f above is a piecewise continuous
function that is bounded and non-convergent. Other examples of S-asymptotically
ω-periodic functions can be found in [5, 31].

It is proved in [19] that SAPω(X) the space of all S-asymptotically ω-periodic
functions on X is a Banach space if equipped with the supremum norm.

Definition 2.5 ([19, 31]). A continuous function f : [0,∞) × X → X is said to
be uniformly S-asymptotically ω-periodic on bounded sets if for every bounded set
K ⊂ X, the set {f(t, x) : t ≥ o, x ∈ K} is bounded and limt→∞ ‖f(t + ω, x) −
f(t, x)‖ = 0 uniformly in x ∈ K.

Definition 2.6 ([19, 31]). A continuous function f : [0,∞)×X → X is said to be
asymptotically uniformly continuous on bounded sets if for every ε > 0 and every
bounded set K ⊂ X, there exist Lε,K > 0, δε,K > 0 such that for every t > Lε,K
‖f(t, x)− f(t, y)‖ < ε and for every x, y ∈ K such that ‖x− y‖ < δε,K .

Lemma 2.7 ([5, 19]). If f : [0,∞) × X → X is a function which is uniformly
S-asymptotically ω-periodic and asymptotically uniformly continuous on bounded
sets and u(t) ∈ SAPω(X), then the Nemytski operator N (·) := f(·, u(·)) is also in
SAPω(X).

Proof. Let K = R(u) be the closure of the range of the function u. Since R(u)
is a bounded set, it follows that

∑
(·) is a bounded function. It is also obviously

continuous. Let ε > 0. From 2.5, there exists T > 0 such that for all t > T ,

‖f(t+ ω, u(t+ ω))− f(t, u(t+ ω))‖ < ε

2
.

From Definition 2.6, there exists δε,K > 0, Lε,K > 0 such that for all t > Lε,K > 0,

‖f(t, u(t+ ω))− f(t, u(t))‖ < ε

2
,

if ‖u(t+ω)−u(t)‖ < δε,K . Let t > max{T, Lε,K}. Then combining all of the above,
gives

‖f(t+ ω, u(t+ ω))− f(t, u(t))‖
≤ ‖f(t+ ω, u(t+ ω))− f(t, u(t+ ω))‖+ ‖f(t, u(t+ ω))− f(t, u(t))‖

<
ε

2
+
ε

2
.

The proof is complete. �

2.2. A variation of constants formula. Let us recall sectorial operators:

Definition 2.8 ([7, 32]). A closed and linear operator A is said to be sectorial if
there exist 0 < θ < π

2 , M > 0 and τ ∈ R such that its resolvent exists outside the
sector τ + Sθ := {τ + λ : λ ∈ C, | arg(−λ)| < τ} and

‖(λ−A)−1‖ ≤ M

|λ− τ |
, λ /∈ τ + Sθ,

where A generates a family of strongly continuous operators Eα : R+ → B(X)
defined as

Eα(t) :=
1

2πi

∫
φ

etλ(λα −A)−1λα−1dλ

are on a suitable path φ outside the sector τ + Sθ.
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Theorem 2.9 ([2, 7, 33]). The equation

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), 1 < α < 2, t ≥ 0,

u(0) = u0 + g(u),

where A is sectorial with 0 < θ < π(1− α
2 ) < π/2, has a mild solution generated by

A:

u(t) = Eα(t)[u0 + g(u)] +

∫ t

0

Eα(t− s)f(s, u(s)) ds, 0 ≤ t ≤ T,

Proof. By applying the definition of the Riemann-Liouville derivative,

Dα
t (r(t)) =

dm

dtm

∫ t

0

(t− s)m−α−1

Γ(m− α)
r(s) ds, m− 1 < α < m ,

to equation (1.1) after using the Riemann-Liouville derivative D1−α
t (·) on both sides

of equation (1.1) with β = 1− α and since m = 2 (m = 0 for β),

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), 1 < α < 2, t ≥ 0,

u(0) = u0 + g(u)

implies

u′(t) =

∫ t

0

(t− s)−β−1

Γ(−β)
Au(s) ds+ f(t, u(t)), −1 < β < 0, t ≥ 0,

u(0) = u0 + g(u) ,

which implies

u′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s)ds+ f(t, u(t)), 1 < α < 2, t ≥ 0 (2.1)

u(0) = u0 + g(u) . (2.2)

Then integrating by t, we have

u(t) = u0 + g(u) +

∫ t

0

(t− s)α−1

Γ(α)
Au(s)ds+

∫ t

0

f(s, u(s))ds (2.3)

for 1 < α < 2 and t ≥ 0.
Now we use Laplace transforms r̂(λ) =

∫∞
0
eiλtr(t)dt to find the sectorial resol-

vent and its mild solution. The Laplace transform of equation 2.3 is

û(λ) =
u0 + g(u)

λ
+

1

λα
Aû(λ) +

1

λ
f̂(λ, û(λ)).

Then û = [(λα −A)−1λα−1](u0 + g(u) + f̂). Let Êα(λ) = [(λα −A)−1λα−1]. Then
there exists the mild solution

u(t) = Eα(t)[u0 + g(u)] +

∫ t

0

Eα(t− s)f(s, u(s))ds, 0 ≤ t ≤ T,

where the family of sectorial operators

Eα(t) :=
1

2πi

∫
φ

etλ(λα −A)−1λα−1dλ

are on a suitable path φ outside the sector τ + Sθ. �

The previous proof connects theorems and lemmas from references [7, 33], and
shows that (2.1), (2.2) is equivalent to (1.1), (1.2).
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Lemma 2.10 ([2, 7, 33]). Let A : D(A) ⊂ X → X be a sectorial operator in a
complex Banauch space x satisfying τ + Sθ := {τ + λ : λ ∈ C, | arg(−λ)| < τ} and

‖(λ−A)−1‖ ≤ M

|λ− τ |
, λ /∈ τ + Sθ

for some M > 0, τ < 0 and 0 < θ < π(1− α
2 ) < π/2. Then there exists C > 0 such

that

‖Eα(t)‖B(X) ≤
CM

1 + |τ |tα
, t ≥ 0 .

Theorem 2.11 (Krasnosel’skii fixed point theorem). Let M be a closed convex and
non-empty subset of a Banach space X and A,B two operators such that

(i) Ax+By ∈M whenever x, y ∈M ;
(ii) A is compact and continuous

(iii) B is a contraction mapping.

Then there exists z ∈M such that z = Az +Bz.

3. Main results

Lemma 3.1. Suppose h(t) ∈ SAPω(X). Then the function F : [0,∞)→ X defined
by

F (t) :=

∫ t

0

Eα(t− ξ)h(ξ)dξ,

is also in SAPω(X), where the family of operators generated by the sectorial oper-
ator A,

Eα(t) :=
1

2πi

∫
φ

etλ(λα −A)−1λα−1dλ, 1 < α < 2,

are on a suitable path φ outside the sector τ + Sθ, (as in Definition 2.5).

Proof. Let us write

F (t+ ω)− F (t) =

∫ t+ω

0

Eα(t+ ω − ξ)h(ξ)dξ −
∫ t

0

Eα(t− ξ)h(ξ)dξ

=

∫ t

−ω
Eα(t− ξ)h(ξ + ω)dξ −

∫ t

0

Eα(t− ξ)h(ξ)dξ

=

∫ t

−ω
Eα(t− ξ)[h(ξ + ω)− h(ξ)]dξ +

∫ 0

−ω
Eα(t− ξ)h(ξ)dξ.

Let ε > 0 be given. Since h(t) ∈ SAPω(X), there exists T > 0 such that for every
ξ > T , we have ‖h(ξ + ω)− h(ξ)‖ < ε. This implies

‖F (t+ ω)− F (t)‖

≤
∫ T

−ω
‖Eα(t− ξ)[h(ξ + ω)− h(ξ)]‖dξ +

∫ t

T

‖Eα(t− ξ)[h(ξ + ω)− h(ξ)]‖dξ

+

∫ 0

−ω
‖Eα(t− ξ)h(ξ)‖dξ

≤ 2‖h‖∞
∫ T

−ω
‖Eα(t− ξ)‖dξ + ε

∫ t

T

‖Eα(t− ξ)‖dξ + ‖h‖∞
∫ 0

−ω
‖Eα(t− ξ)‖dξ
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≤ 2‖h‖∞
∫ t+ω

t−T
‖Eα(ξ)‖dξ + ε

∫ t−T

0

‖Eα(ξ)‖dξ + ‖h‖∞
∫ t+ω

t

‖Eα(ξ)‖dξ

≤ 3‖h‖∞
∫ t+ω

t−T
‖Eα(ξ)‖dξ + ε

∫ ∞
0

‖Eα(ξ)‖dξ

≤ 3‖h‖∞
∫ t+ω

t−T

CM

1 + |τ |ξα
dξ + ε

∫ ∞
0

CM

1 + |τ |ξα
dξ

≤ 3‖h‖∞(T + ω)
CM

1 + |τ |(t− T )α
+ ε CM |τ |

−1
α

π/α

sin(π/α)
,

where the constants C > 0, M > 0, and τ < 0 are given by Lemma 2.10. Thus
‖F (t+ ω)− F (t)‖ → 0 as t→∞. The proof is now complete. �

We use the following assumptions:

(A1) The operator A is of sectorial of type τ < 0, which generates a strongly
continuous family of linear operators Eα(t)t≥0 ⊂ B(X).

(A2) f : [0,∞) × X → X is a function which is uniformly S-asymptotically
ω-periodic and asymptotically uniformly continuous on bounded sets.

(A3) There exists Lf > 0 such that ‖f(t, x) − f(t, y)‖ < Lf‖x − y‖, for all
t ≥ 0, x, y ∈ X.

(A3’) There exists cf > 0 such that ‖f(t, x)‖ < cf (1 + ‖x‖) for all t ≥ 0,
(A4) There exists Lg > 0 such that for all u, v ∈ C := BC([0,∞), X) → C,

‖g(u)− g(v)‖ < Lg‖u− v‖∞. We assume CMLg < 1.

Remark 3.2. It is clear that (A3) implies (A3’). Indeed by (A3), we obtain

‖f(x)‖ ≤ ‖f(x)− f(0)‖+ ‖f(0)‖ ≤ Lf‖x‖+ ‖f(0)‖ ≤ cf (‖x‖+ 1)

where cf = max{Lf , ‖f(0)‖}.
Now we state and prove our first result.

Theorem 3.3. Under assumptions (A1)–(A4), (1.1)-(1.2) possesses a unique so-

lution in SAPω(X) provided CM
(
Lg + Lf |τ |

−1
α

π/α
sin(π/α)

)
< 1.

Proof. Consider the operator Ω : SAPω(X)→ SAPω(X) defined by

Ωu(t) := Eα(t)[u0 + g(u)] +

∫ t

0

Eα(t− ξ)f(ξ, u(ξ))dξ.

In view of Lemmas 2.7 and 3.1, Ω is well-defined.
Now if u, v ∈ SAPω(X), we obtain

‖(Ωu)(t)− (Ωv)(t)‖

≤ ‖Eα(t)‖‖g(u)− g(v)‖+

∫ t

0

‖Eα(t− ξ)‖‖f(ξ, u(ξ))− f(ξ, v(ξ))‖dξ

≤
( CM

1 + |τ |tα
Lg + Lf

∫ t

0

CM

1 + |τ |ξα
dξ
)
‖u− v‖∞

≤ CM
(
Lg + Lf |τ |

−1
α

π/α

sin(π/α)

)
‖u− v‖∞ .

Therefore ‖Ωu− Ωv‖∞ ≤ γf,g,α‖u− v‖∞, where

γf,g,α = CM
(
Lg + Lf |τ |

−1
α

π/α

sin(π/α)

)
< 1 .
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We conclude the existence of a unique solution using the Banach’s fixed point
theorem. �

Remark 3.4. When equation (1.2) is the local condition g(u) = 0, we recover the
results by Cuevas and de Souza [9].

Theorem 3.5. Assume (A1), (A2), (A3’), (A4). Then problem (1.1)-(1.2) has at
least one mild solution u(t) ∈ SAPω(X) if we assume that Eα(t) is compact for
any t > 0.

Proof. Note that (A4) implies the existence a constant cg > 0 such that ‖g(u)‖ ≤
cg(1 + ‖u‖) for any u ∈ BC([0,∞), X), as in Remark 3.2.

We consider the same operator Ω as in the previous theorem and use several
steps to achieve our conclusion.

Step 1. Let Bρ := {u ∈ SAPτ (X) : ‖u‖∞ ≤ ρ}, where

ρ > max
{ CM

(
α sin(π/α)cg + cf |τ |−1/απ

)
α sin(π/α)− CM

(
α sin(π/α) + α sin(π/α)cg + cf |τ |−1/απ

) , 0
}

Define the operators P,Q : SAPτ (X)→ SAPτ (X) by

(Pv)(t) : Eα(t)[v0 + g(v)],

(Qu)(t) :=

∫ t

0

Eα(t− ξ)f(ξ, u(ξ))dξ .

Using (A3’) we obtain

‖(Pv)(t) + (Qu)(t)‖

≤ ‖Eα(t)‖‖u0 + g(v)]‖+

∫ t

0

‖Eα(t− ξ)f(ξ, u(ξ))‖dξ

≤ CM
( 1

1 + |τ |tα
(‖v0‖+ ‖g(v)‖) +

∫ t

0

1

1 + |τ |(t− ξ)α
‖f(ξ, u(ξ))‖dξ

)
≤ CM

(
‖v0‖+ ‖g(v)‖+ cf (1 + ‖u‖)

∫ t

0

1

1 + |τ |ξα
dξ
)

≤ CM
(
‖v0‖+ cg(1 + ‖v‖) + cf (1 + ‖u‖)|τ |

−1
α

π/α

sin(π/α)

)
≤ CM

[
ρ+

(
cg +

cf |τ |−1/απ

α sin(π/α)

)
(1 + ρ)

]
≤ ρ.

We conclude that For all u, v ∈ Bρ, Pv +Qv ∈ Bρ.
Step 2. The operator P is contractive. Indeed, for u, v ∈ SAPτ (X) we have

‖(Pu)(t) + (Pv)(t)‖ ≤ ‖Eα(t)‖‖g(u)− g(v)‖ ≤ CM 1

1 + |τ |tα
Lg‖u− v‖∞ .

Therefore

‖Pu− Pv‖∞ ≤ CMLg‖u− v‖∞ .

We conclude by using the assumption CMLg < 1.

Step 3. The operator Q is continuous on Bρ. Let (un) ⊂ Bρ such that un → u
in Bρ. Then in view of Definition 2.6, f(ξ, un(ξ)) → f(ξ, u(ξ)) as n → ∞ for all
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ξ ∈ [0,∞). Now we have

‖(Qun)(t)− (Qu)(t)‖ = ‖
∫ t

0

Eα(t− ξ)[f(ξ, un(ξ))− f(ξ, u(ξ))]dξ‖

≤ CM
∫ t

0

1

1 + |τ |(t− ξ)α
[‖f(ξ, un(ξ))‖+ ‖f(ξ, u(ξ))‖]dξ

≤ CMcf

∫ t

0

1

1 + |τ |ξα
[2 + ‖un(ξ)‖+ ‖u(ξ)‖]dξ

≤ 2CMcf (1 + ρ)|τ |−1/α π

α sin(π/α)

≤ 2CMcf (1 + ρ)|τ |−1/απ

α sin(π/α)
<∞ .

Therefore, Qun → Qu as n → ∞ by the Lebesgues’s Dominated Convergence
Theorem.

Step 4. The set (Qun) where (un) ⊂ Bρ is uniformly bounded. Indeed for all n,
we have

‖(Qun)(t)‖ = ‖
∫ t

0

Eα(t− ξ)f(ξ, un(ξ)dξ‖

≤ CM
∫ t

0

1

1 + |τ |(t− ξ)α
‖f(ξ, un(ξ))‖dξ

≤ CMcf

∫ t

0

1

1 + |τ |ξα
[1 + ‖un(ξ)‖]dξ

≤ CMcf (1 + ρ)|τ |−1/α π

α sin(π/α)

≤ CMcf (1 + ρ)|τ |−1/απ

α sin(π/α)
.

This shows that (Qun) is uniformly bounded.

Step 5. (Qun) with (un) ⊂ Bρ is equicontinuous. Indeed taking t1, t2 such that
0 ≤ t1 < t2, we have

‖(Qun)(t1)− (Qun)(t2)‖

= ‖
∫ t1

0

Eα(t1 − ξ)f(ξ, un(ξ))dξ −
∫ t2

0

Eα(t2 − ξ)f(ξ, un(ξ))dξ‖

= ‖
∫ t1

0

[Eα(t2 − ξ)− Eα(t1 − ξ)]f(ξ, un(ξ))dξ −
∫ t2

t1

Eα(t2 − ξ)f(ξ, un(ξ))dξ‖

≤ ‖
∫ t1

0

[Eα(t2 − ξ)− Eα(t1 − ξ)]f(ξ, un(ξ))dξ‖+ ‖
∫ t2

t1

Eα(t2 − ξ)f(ξ, un(ξ))dξ‖

≤ CMcf

(∫ t1

0

(
1

1 + |τ |(t2 − ξ)α
− 1

1 + |τ |(t1 − ξ)α
)[1 + ‖un(ξ)‖]dξ

+

∫ t2

t1

1

1 + |τ |(t2 − ξ)α
[1 + ‖un(ξ)‖]dξ

)
≤ CMcf (1 + ρ)

(∫ t1

0

1

1 + |τ |(t2 − ξ)α
dξ −

∫ t1

0

1

1 + |τ |(t1 − ξ)α
dξ
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+

∫ t2

t1

1

1 + |τ |(t2 − ξ)α
dξ
)

≤ CMcf (1 + ρ)
(∫ t2

0

1

1 + |τ |(ξ)α
dξ −

∫ t1

0

1

1 + |τ |(ξ)α
dξ
)

≤ CMcf (1 + ρ)

∫ t1

t2

1

1 + |τ |(ξ)α
dξ

<
2CMcf (1 + ρ)

α
|τ |−1/α π

α sin(π/α)
<∞ .

Since

lim
t1→t2

[
CMcf (1 + ρ)

α

∫ t1

t2

1

1 + |τ |(ξ)α
dξ] = 0,

we conclude the equicontinuity of (Qun).

Step 6. Q is compact. First, we show that the set {(Qu)(t) : u(t) ∈ Bρ} is
relatively compact in X for each t > 0. To this end, fix t > 0 and ε0 such that
0 < ε0 < t. We have{

(Qε0u)(t) :=

∫ t−ε0

0

Eα(t− ε0 − ξ)f(ξ, u(ξ))dξ
}

is uniformly bounded for u ∈ Bρ. This with the assumption that Eα(ε0) is compact
yield the set {Eα(ε0)(Qε0u)(t) : u ∈ Bρ} is relatively compact.

Since from Definition 2.5, Eα(0) = I and Eα(t)x is continuous for every x ∈ X,
we obtain

R(ε0)(Qε0u)(t) = Eα(ε0)

∫ t−ε0

0

Eα(t− ε0 − ξ)f(ξ, u(ξ))dξ},

which shows that

lim
ε0→0

Eα(ε0)(Qε0u)(t) = (Qu)(t) .

We conclude that {(Qu)(t) : u(t) ∈ Bρ} is relatively compact in X. Finally, Q is
compact as claimed. From all of the above, we conclude that problem (1.1)-(1.2)
has at least one mild solution u(t) ∈ SAPω(X), using the Krasnosel’ski’s fixed point
theorem. �

These results are new even in the context of asymptotically ω-periodic functions.

4. An Example

As an application, we investigate the following fractional relaxation-oscillation
equations, that are similar to those introduced in [2, 9, 33].

Example 4.1.

Dα
t u(t, x) =

∂2

∂x2
u(t, x)− µv(t, x) +Dα−1

t

(
βu(t, x)(cos t+ cos(3t))

+ β(−1)n[ln(1 + t)− (2n+ 1)] sin(u(t, x))
)
,

for e2n − 1 ≤ t ≤ e2n+2 − 1, n ∈ N ,
u(t, 0) = u(t, π) = 0, 1 < α < 2, t ≥ 0, x ∈ [0, π],

u(0, η) = u0(η) + g(u), η ∈ [0, π],
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where u0 ∈ L2[0, π]. Let X = (L2[0, π]; ‖ · ‖2), define the linear operator A defined
on X by Au = u′′ − µu, (µ > 0) with domain

D(A) := {u ∈ X : u′′ ∈ X,u(0) = u(π) = 0} .

Also, let g(u) be a function that satisfies (A4). It is well-known that ∆u = u′′ is
an infinitesimal generator of a analytic semigroup on L2[0, π]; then A is a sectorial
of type τ = −µ. The equations above can be formulated into (1.1)-(1.2) where
u(t) = u(t, ·). Let us consider the nonlinearity, for all u ∈ X, t ≥ 0, s ∈ [0, π] and
β ∈ R with u ∈ SAP2π. Therefore two cases follow.

Case 1.

‖f(t, u(s))− f(t, v(s))‖ = ‖β(u(s)− v(s))(cos t+ cos(3t))

+ β(−1)n[ln(1 + t)− (2n+ 1)](sin(u(s))− sin(v(s)))‖
≤ |β| (2‖u(s)− v(s)‖∞ + ‖ sin(u(s))− sin(v(s))‖∞).

Therefore,

‖f(t, u(s))− f(t, v(s))‖ ≤ 3 |β| ‖u(s)− v(s)‖∞,
or

‖f(t, u(s))− f(t, v(s))‖ ≤ 3 |β| ‖ sin(u(s))− sin(v(s))‖∞ .

In either inequality, we assume

|β| < |µ| 1α sin(π/α)

π/α

1− CMLg
3CM

;

when by Theorem 3.3, problem (1.1)-(1.2) has a unique S-asymptotically 2π-periodic
solution.

Case 2. Since

‖f(t, u(s))‖ = ‖β(u(s))(cos t+ cos(3t)) + β(−1)n[ln(1 + t)− (2n+ 1)](sin(u(s))‖
≤ |β| (2‖u(s)‖∞ + ‖ sin(u(s))‖∞)

≤ 3|β|(1 + ‖u(s)‖∞) ⇒ ∃cf = 3|β|,

by Theorem 3.5, problem (1.1)-(1.2) has at least one S-asymptotically 2π-periodic
solution.
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[26] G. M. N’Guérékata; A Cauchy problem for some fractional abstract differential equation with

non local conditions, Nonlinear Analysis, 70 (2009), 1873–1876.
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5. Addendum posted on April 18, 2020

In response to a reader’s comments, we want to make the following corrections:
(1) Change the title of subsection 2.2 to “Application of the Laplace transform and
subsequent sectorial solutions”
(2) Page 3 line -3: change “defined as” to “defined for {λα : Reλ > µ} ⊂ ρ(A) as”
(3) Page 3 line -1: change “are on a suitable” to “which are on a suitable”
(4) Page 4: line -2: delete “The previous proof . . . equivalent to (1.1), (1.2)”
(5) Add the condition g(u) = −u0 to the assumptions of Theorem 2.9, and replace
its proof by the following.

Proof of Theorem 2.9. By applying the Riemann-Liouville derivative, D1−α
t (·), to

both sides of (1.1) with β = 1− α, and since m = 2 (m = 0 for β), from

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), 1 < α < 2, t ≥ 0,

u(0) = u0 + g(u) = 0

we obtain

u′(t) =

∫ t

0

(t− s)−β−1

Γ(−β)
Au(s) ds+ f(t, u(t)), −1 < β < 0, t ≥ 0,

u(0) = u0 + g(u) = 0 .

Recall that the Riemann-Loiuville derivative is

Dβ
t (r(t)) =

dm

dtm

∫ t

0

(t− s)m−β−1

Γ(m− β)
r(s) ds, m− 1 < β < m .

Therefore,

u′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s)ds+ f(t, u(t)), 1 < α < 2, t ≥ 0, (5.1)

u(0) = u0 + g(u) = 0 . (5.2)

Now we use Laplace transforms to find the sectorial resolvent and its mild solution.

Since
∫ t

0
(t−s)α−2

Γ(α−1) Au(s)ds is a convolution, the Laplace transform of (5.1)–(5.2) is

λû(λ)−
(
u0 + g(u)

)
=
Aû(λ)

λα−1
+ f̂(λ, û(λ))

which implies û = [(λα −A)−1λα−1](u0 + g(u) + f̂).

Let Êα(λ) = [(λα −A)−1λα−1]. Then we obtain the mild solution

u(t) = Eα(t)[u0 + g(u)] +

∫ t

0

Eα(t− s)f(s, u(s))ds, t ≥ 0,

where the family of sectorial operators

Eα(t) :=
1

2πi

∫
φ

etλ(λα −A)−1λα−1dλ

are defined on a suitable path φ outside the sector τ + Sθ. �

End of addendum
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