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GLOBAL ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
QUASILINEAR SCHRODINGER EQUATIONS

LIN ZHANG, XIANFA SONG

ABSTRACT. We are concerned with the existence and blowup of solutions for
a class of quasilinear Schrodinger equations. In particular, we examine the
combined effect of local type nonlinearity and Hartree type ones, and depend-
ing upon different parameter regimes, we find the dominant roles exhibited
by these nonlinear effects. We also consider the asymptotic behavior for the
global solution and lower bound for the blowup rate of the blowup solution by
using pseudo-conformal conservation laws.

1. INTRODUCTION
In this article, we consider the quasilinear schrodinger equation:
iug = Au+ 20ufu** 2 A(Ju)®*®) — Vi(z)u 4+ AlulP~ u 4+ (W |u*)u, t>0

1.1
u(0,2) = ug(z), xzeRY, N>3. (1)

We assume the following set of conditions:

(C1) a,p € Z*, V(x) and W(z) are real functions, V(z) > 0, V(z) € B>°(RY),
W(z) is even, 0K W (z) € LY(RYN) for any K € Z*, and W (z) = Wy(z) +
Wa(x), Wi(z) € L9 (RN), ¢1 > 1, Wa(z) € L=®(RY) and

ug € A== {v € HY(RM)| /RN IV (|v]?%)|? < oo},

where B°°(RY) denotes the space of all functions in C°°(R¥) such that all
partial derivatives are bounded in R¥.

Equations of the form have appeared in mathematical physics, in models of
superfluid in plasma physics and quantum mechanics; see for example [T}, 2, [3] 6}, [10]
12], (T4}, [15], 18}, 19}, 20}, 22]. From the physics point of view, obeys the following
mass and energy conservation laws, which will be proved in the appendix:

(i) Mass:

m(u) = (/RN |u(.7t)|2dx>1/2 - (/RN |u0(x)|2dx)1/2 =muo);  (1.2)
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(ii) Energy:

E(u) = /R[\Vu\2+|V(IUI2“)I2—G(\UIQ)]dx

N

(1.3)

N = DN =

/R [ Vuol* + [V (Juo|**)|* = G(luol*)lda = E(uo),

N

where
SO )l
p+1 2

There are many interesting topics about , such as local well-posedness,
global well-posedness, and asymptotic behavior for the solution. About the local
well-posedness of the solution of , we have [B] [7, 8, [13], 17] and the references
therein. We will analyze the interaction between the local type power nonlinear
term and the nonlocal type Hartree nonlinearity. also we examine the individ-
ual and combined roles played by these nonlinearities for the global existence and

blowup in finite time. First we give a definition.

Definition 1.1. Let u(z,t) be a solution of (1.1). We call u(z,t) global solution if
its maximum interval of existence for ¢ is [0, +00); while we call u(z,t) the blowup
solution if there exists a time 0 < 7' < +o0 such that

G(lul*) = =V (@)lul® +

lim [[Vu(z, t)* + |V (Jul**)|*)]dz = +oc. (1.4)
t—=T~ JrN
There are many results on the existence of global solutions and in blowup phe-
nomena of semilinear Schrodinger equation; we can refer to [4) Q] and the refer-
ences therein. However, there are only a few works about this topic on quasilinear
Schodinger equation. In [I1], the authors studied the problem

ipr + Ap +2(Alpl)p + ¢l 2 =0, z€RY, t>0

o(x,0) = do(z), xRN
and found that the solution of (1.5 will blow up in finite time if 4 + % <g<2-2°
under certain assumptions. More general equations like (1.1)) were given in [5l [§].
Recently, Song and Wang [21] established results on the global existence and blowup

phenomena of quasilinear Schrodinger equation. Our first result gives sufficient
conditions for the blowup in finite time.

Theorem 1.2. Let u be the solution of (1.1)). Assume (C1) and the following
conditions hold: A > 0,

(1.5)

4
4a—1+N§p§2a2*—1,
[(2a = 1)N 4+ 2]W + (- VIV) <0,
[(2a—1)N +2]V +z-VV >0,

E(ug) <0, ug € A, zug € L*(RY) and S [ tio(z - Vug)dz > 0. Then u will blow
up in finite time.
Our second result is about the sufficient conditions for the existence of a global

solution.

Theorem 1.3. Assume that u(x,t) is the solution of (1.1)) and the conditions (C1)
hold. If a,p € ZT, then u is global solution in each of the following cases:
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(1) 1<p<da—1++4 and q1 > 1;

(2) p=da—1+ %, ¢ >1, and
24|
p+1

From Theorems and we can say that the power term |u|P~!u helps global
solutions if 1 < p < % + 4o — 1. On the other hand, we can see that the power
term |u|P~tu helps blowup if % +da—1<p<2a2* —1.

Naturally, an interesting question arises: If one of the power terms and the
Hartree term helps the existence of global solutions, and the other one helps blowup
in finite time, which one plays the dominant role in the combined effect? To give
an answer, we state our third main result.

Theorem 1.4. Assume that u(x,t) is the solution of (L.1) and the conditions (C1)

hold. Moreover, suppose that 4o — 1 + % < p < 2027, Q;fil <p+1,q1 >1 and

there exist a constant (2a —1)N +2 < K < w such that
KV(z)+x-VV >0,
0< KW+ - VW <CW  for some C1.

Then u will blow up in finite time if zug € L*(RY), S [pn to(z - Vug)dz > 0,
llwollzz small enough, and E(ug) < 0.

||u0||L2(RN)CS1/2 <L

Remark 1.5. The assumptions in Theorem imply that the power term helps
blowup in finite time and the Hartree type term does not help blowup. Theorem
shows that the term which helps blowup plays the dominant role.

The organization of this article is as follows. In Section 2, we prove the mass
and energy conservation laws and some equalities, and prove Theorem In
Section 3, we prove Theorem In Section 4, we prove Theorem Section 5
is devoted to asymptotic behavior and blowup rate of solutions. For completeness,
in the appendix, we prove the mass and energy conservation laws for this class of
quasilinear equations.

2. PRELIMINARIES AND THE PROOF OF THEOREM

Lemma 2.1. If u is a solution of (1.1) that exists on the time interval [0,t], then
u satisfies

%|u|2 =V - 2%(aVu), m(u) =m(ug); (2.1)
E(u) = E(uo); (2.2)

d 2 = .

@t o 2|2 |u|?dr = —43 /]RN a(z - Vu)dz; (2.3)

and
d

ﬁg/RN a(z - Vu)dz

:72/ \Vu|2d:z:f[(2a71)N+2]/ |V(|u\2a)|2dm+/ (z - VV)|u|?dzx
RN RN RN

+ NAp(iID /RN Jul?*dz — % /RN (& - VW) [uf*]jul*dz.
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The proof of this lemma is given in the appendix.

Proof of Theorem[1.4 Let

y(t) = S/RN a(z - Vu)dz.

From Lemma we have
d
—y(t
iy

:—2/ \vu|2dx—[(2a—1)N+2]/ |V(|u\2a)|2dx+/ (z - VV)|u|?dz
RN RN RN

NA(p-1)

1
p—‘rld _ = . 2 2d
[ A Dpiiar 1 [ (o 9w <ol

= (2a—1)N [ |Vul*dz —2[(2a — 1)N + 2] E(uo)
RN

+/ [(2a = 1)N + 2]V + (z - VV)]|u|*dz
RN

2A (N(pfl)
p+1 2
1

-3 [, (Ca=DN +2W + (@ VW) < u?) [P,

—[(2a—1)N +2]) /]RN |u[P T dx

Under the assumptions on V(z) and W (x), we have y'(t) > 0. Consequently,
y(t) > 0 because y(0) = S [pn Go(z - Vug)dz > 0, and

d
— | JaPluffde = —48/ u(x - Vu)de = —4y(t) <0,
dt Jgn RN

i.e.

[ JaPluPde < [ JoPluoPde i md < +oc.
RN RN
Setting

J(t) = / (a2 [uf?dr,
RN

we obtain J'(t) = —4y(t) < —4y(0) < 0. Consequently,

0<J(t)=J(0) + /t J'(t)dr < J(0) — 4y (0)t,
0

which implies that the maximum existence interval of time for u is finite, and u will
blow up before %.
Especially, since a € Z7¥, i.e. a > 1, using the Schwarz’s inequality to y(t), we

obtain

y(t) < </sz |x|2|u2|dx)1/2(/RN |Vu|2dx>1/2 < mo(/RN |Vu|2d:c)1/2.

Therefore,

y2(t)
m3

y'(t) > (2a — 1)N/RN |Vu|*dz > (2a — 1)N
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Integrating, we obtain

y(0)m3 mg
t) > 0<t
v 2 S e -t St e —1N
That is,
[Vulgs > ——0m

m3 —y(0)(2aN — N)t’

;nd T = ng’w is the singular point and the solution will blowup beforS

3. PROOF OF THEOREM [L.3|

Recall interpolation inequality

ey <l oyl s
where
1 6 1-90
r s t
In particular for » = 1, we have
t—1 t(1 —
gst=1) |, tl-s)
t—s t—s

By the energy conservation law, using Holder’s, Young’s, Sobolev’s inequalities,
we have

/RN[IWI2 +V([ul)* + V() ul)dz

2|A 1
=280 + [ 2Lt 4 SO0V ) fuPlds

2|A] 1 1 4
< 2E(uo) + PR . [ulP" dx + §||W2||L°°HU0||L2(RN)

2g1 —1

1 Aoy a1
_ q 2q1—1
+ 2||W1||L1</RN |57 )
2|A| 1/ 1/7]
< p+1ys1 p+1\t1
_c+p—+1(/RN(|u| ) dz) (/RN(|u| )itde)
2g; —1

1 dq1 =y dap 2;1/1(1—11
oIl ( (ulmi=)=da) =7 (] (um)Rde)
2 RN RN

2|4 2/11 ~1/7] 200 |2 2‘27{
Il o [ v P

(3.1)

<C+

2% (2¢1—1)

1 fa—2 2 =
+ 5||I/[/1||qu”uO”L"z%u Csrzfn {/ |V(|U|2a)|2dﬂj} 2491
RN

Here

2 2a2* 2¢1 — 1 (2¢1 — 1)a2*
S1= —/—» t1 = ) S2 = ) t2:77
1 tj —1 1 _ 1-— Sj

- 9 - 9
Tj tj—Sj T, tj—Sj

j=1,2.

)
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While Cj is the best constant in the Sobolev embedding inequality

. 2*/2
/ lul? da < CS(/ |Vu|2dx>
RN RN

Now we discuss inequality (3.1]) in two cases when a,p € Z7.
Case 1: 1 <p<4a—1—|—% and g1 > 1. Since a > 1, we have W <1,
2" <1 and £29=1 ~ 1 Then (3.1) can be written as

27 275q1

/ [Vul? + |V ([ul*)]* + V(@) ul*dz < C(uo, p, g1, W1, Wa, A). (3:2)
RN

Case 2:p:4a—1+%andq1>1. In this case 2—*,:1,w<1. Note

» 27 275q1

that a,p € ZT, it needs N = 4, i.e., p = 4, then

[Vl VPP 4 V@)l
RN

2|A| ¥ -F 20\ |2
< L N N «
<O+ 2wl BCEF [ 9(ulPde
_ 2|4 1/2 200\ (2
= C+ 2 luollaCl? [ 9 e,
If 21|
22 fuolmed? <1,
we obtain
196+ 9P+ V@alde < Cluosar, Wi, Wa, 4). - (33)
R

The proof of Theorem [.3]is complete.

4. PROOF OF THEOREM [I.4]

Besides proving Theorem[I.4] we give an answer to which one plays the dominant
role: the power term helps the existence of global solutions, or the Hartree term
that helps blowup in finite time.

Proof of Theorem[I.4} Note that A >0, 4o — 1+ 4+ < p < 2a2%, ¢ > 1, and there
exist positive constants (2a —1)N +2 < K < w and Cy > 0 such that
0< KWz -VW < C1W.

We know that w — (2 —1)N — 2 > 0 and that for any € > 0,
/ (KW 4+ VW) ful?) e
RN
< [ Vs luP)ufs
RN

2gq —1

4qy q
< CullWallger ([ 1al=55dz) "+ CulWal o o £a
RN

4q97-2  2q1—1 2" (291 -1)

SClnI/VlHquHUOHL;T1Csr’ql {/ ‘V(|U|20¢)|2d$} 277q1
]RN

+ C1|[Wa| o< |uo || 72 vy
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<Gl Wallzer || [9(u)fde -+ C(Cr,Cuvsaan, M) o[£
R

+ C1[|[Wa oo luol 72 gov)-

Taking
2[K — 2a— 1)N — 2]
€= ,
Cy||Wh ]| L
we have
d
—y(t
7Y

_ (K —2) /RN Vul2dz — 2K B(uo) + [K — (20 — 1)N — 2] /RN IV (u)2de

+A[N(p_1)_2K]/ |u‘p+1dx_1
p+1 RN

2
+/ (KV + - VV)|ul*dx
RN

/ [(KW VW) |u|2] lu|2da
RN

> (K —2) /RN |Vu?dx — 2K E(ug) + [K — (2a — 1)N — 2] /RN IV (|u**)|?dz

AN(p—-1) -
p+1

+ / (KV + 2 - VV)|u|%dz — C(Ch, Cs, €, a, g1, N)|[ug 112 N-)
RN

2K 1
] [ttt = LWz ol e
. 2

€
~ 50 Willn [ 1V (uf)Pda
RN

> (K — 2)/ |Vuldz — 2K E(ug) + AN = 1) = 2K] / Pt da
RN p+ 1 ]RN

€
+ {K - (20[ — 1)N -2 501||W1||Lq1} / ‘V(|u|2a)|2dm
RN
1
_ §CI||W2||L°0||UOHZ£2(RN) —|—/ (KV + - VV)|U\2d;U
RN
- C(Clvcs,E,Oé,qhN)HuoHﬁ/[;(th,N,a)

= (K -2) /RN |Vu|?de — 2K E(ug) + AlN(p — 1) — 2K] /]RN lulP T da

p+1
1
= 3O IWalli ol e, + [ (KV 42 9V)lufdo
RN

— C(Cy, Cay 6, 0, g1, N) [Jug | 220N

If E(up) <0 and ||lug||r2 are small enough, then

d

%y(t) > (K — 2)/ |Vul?dz > (2a —1)N | |Vul*dz > 0.

RN RN

As in the proof of Theorem [I:2] we can show that the solution will blow up in finite
time. (]
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5. ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In this section, we establish a pseudo-conformal conservation law and consider
the asymptotic behavior for the solution.

5.1. Pseudo-conformal conservation law.
Theorem 5.1. 1. Assume that u is the global solution of (L.1|), the conditions in
(C1) hold, and xug € L*(RN). Then
P@%:/ Kx—mﬂmm%x+u{/ Numhn%x+u{/ V(x)|ul*dx
RN RN RN
8t2A

Cp+1

t
:/ |acu0|2da?+4/ TO(7)dT.
RN 0

2. Assume that u is a blowup solution of (L.1)) with blowup time T, the conditions
in (C1) hold, and zug € L*(RYN). Then

/ lu|PTda — 2t2/ (W * |u)?)|u|?dx
RN RN

Buy:AQKx+%@—nvmﬁm+4@—wféuvmﬁwﬁm

52
+4(T — t)2/ V(x)|ul*dz — BAT - ) / |ulP T da
RN p+ 1 RN

—2(T —t)? /RN (W * |u)?)|u|?dx

(5.1)
::/ Kx+%Tvmd%x+4T{/ IV (|uo)®®) |2 da
RN RN
SAT?
477 1% 2dz — / p+lg
+ar [ V@l 2 [ s
t
—2T2/ (W*|u0|2)\u0\2dx—4/ (T = 1)0(7)dr.
RN 0
Here
e(t)z/ (1—204)N|V(|u|20‘)|2dx+/ 2V + (z - VV)]jul2de
RN RN
A[N(p—1)—14
+4Lﬂl—l—i/ [P+ da: (5.2)
p+1 RN
—/ ([W-i— m] * |u|2)|u|2dx.
]RN 2

Proof. 1. Assume that u is the global solution of (1.1, ugp € A and zug € L*(RY).
Since

1

B = 5 [ IVl + [90uP)P + Vil - 22

1
Sl = SO s ufufld

2
= E(UO),
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we have

P(t):/ |xu|2dx+4t%/ a(m~Vu)d:E+4t2/ |Vu|*dx
RN RN N
2A
+4t2/ |v<\u|2a)|2dx—4t2/ [ 2 ju
N

p+1 (5.3)

(W uf?)|uf? = V(@)lul?] do

N)M—l

:/ |xu|2dx—|—4t%/ a(z - Vu)dz + 8t* E(ug).
RN RN

Recalling that
d

— || jul2dx = —4%/ a(z - Vu)dz,
dt RN RN

we obtain

P'(t) = i/ |lzul?dx + 43/ u(z - Vu)dx
dt RN RN

+ 4ti / a(z - Vu)dr + 16tE(uo)
dt =~ Jg~

= 4ti / w(x - Vu)dz + 16t E(ug)
di > Jan

:u{4/|wﬁM—mw—N+m/|WMmWW
RN RN
NA(p-1) 1 1 211 12
e /RN P+ da 2/RN[(x VW) [uf?]jul2de

24

2 2 202 44
/ z-VV)yl d:p}+8t/ [|vu| V(P = 25
1

— 5l VW) s uf?uf? + V(@)[uf?|do

=it [ [0 =20V (upe) + [N(p;i)l_ A

|u|PT dx

_[(W+x~VW

) % |u\2]|u|2} dx + 4t /RN 2V + (z - VV)]|u|*dz.
Integrating from 0 to ¢, we obtain
P(t) = P(0) + 4/0lt T0(T)dT = /]RN |zug|*da + 4/0t T0(T)dT.
That is,
/RN (2 — 20tV )ul2da + 46> /RN IV (Juf2) [2dz + 462 /N V (2)|ul2ds

R
8t2A
- / |u|p+1d33—2t2/ (W [uf?)|u[2dz
p+1 Jpgn RN

¢
:/ |a:u0|2dx+4/ TO(T)dT,
RN 0

where (7) is defined by (5.2).
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2. Assume that u is a blowup solution of (.1}, ug € A and zuy € L2(RY).
Using E(u) = E(uop), we have

B(t) = /RN wul2dz — A(T — t)%/RN (e - Vu)de

+4(T—t)2/ |Vu\2d:v+4(T—t)2/ IV (Juf?®)[2dz
RN RN
24 1
AT =t [ [t SOV < Pl = V@)l da

:/ \xu\de—él(T—t)S/ (e - Vu)de + 8(T — £)2E(uo)
RN RN
and

d
B'(t) = —/ |zu)?dx —|—4C5/ (x - Vu)dz
dt RN RN

T t)%% /R - Vu)dr — 16(T ~ 1) E(uo)

=—4(T - t)%% o a(z - Vu)dr — 16(T — t) E(uo)
= —4(T - t)0(¢).

Integrating from 0 to ¢, we obtain

t
B(t) = B(0) — 4/ (T —7)0(r)dr
0
= / |zuo|*dx — 4Ti%/ o (- Vug)dz + 8T E(up)
RN dt RN
t
- 4/ (T — 7)0(7)dr,
0
where 6(7) is defined by (5.2). O

5.2. Applications of the pseudo-conformal conservation law. As the appli-
cation of Theorem we have

Theorem 5.2. Assume that u is the solution of (L.1), N = 4 and the conditions
in (C1) hold. Moreover, suppose that p = 4a — 1 + % = 4o, V(z) > 0 and
0 <2V 4 (z-VV) < kV for some k1 < 2, W <0, 2W + (z - VW) > 0 and

ugllz2 < 1 such that 24 ||lug LzC;/Q < 1. Then
I

P+

2A 1
Sl SO ) e <

v2a2d+/v 2
[ R+ [ vk - 25

lim |Vu|*dx = 2E(ug).
RN

t2—k}1 ’

t——+o0
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Proof. Let u be the global solution of (I.1)), ug € A and zug € L?(RY), W(z) < 0.
and 2W + (x - VW) > 0. Then Theorem implies

2A 1
442 200\ |2 / 2 p+1 _ * 211,12
L VPP [ V@l = St S0 s

t — j—
g/ |xu0|2dx+4/ T/ [(1—2a)N|V(|u|2a)|2+M|u|p+l
RN o Jrvy p+1
x- VW

— (W + ) Pl + 2V + (2 - VV)ljul?] dadr.

(5.4)
Since p=4a —1+ % = 4a, we have

[ e < JuolnCl? [ (9 (ufPd
RN RN
Using this inequality in (5.4]) we obtain

214
2 _ ,C1/2 20\ [2
(1= 25 ol CY) [ 19w Pda
1
4 [ V@I + 5] )]
RN 2
2|A
g/ (o 2 + 16(20 — 1)(2 |Hu |2 CL2 — / / V([ul)|? dz dr
RN p+1

+4/tT/RN 12V + & YV )up?] dodr

S/ |zug) dm+4k1/ / x)|u|? dx dr.

Denoting
= 4/ / x)|ul? dz dr,
RN
we have N o
A1) < AL +
Using the Gronwall’s inequality, we obtain
1tk
A (t) < tR[A (1) + Co(— — )] < C'th
k1 kq

i.e.,

. 24 C
[P Rdst [ Vil = 2t = 507 s Pude < o

RN p+1
Therefore,
lim [V (uf**)[* + V(@) |uf® ~ 2 ——[ufP* (W + [ul?)|ul*]dz = 0.
t=+oo Jpn p+1
Noticing that F(u) = E(ug), we obtain
lim |Vu|*de = 2E(up).

t—+oo RN
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6. APPENDIX
proof of Lemma[2.1] (i) Multiplying (2.1) by 2a, and taking the imaginary part,
we obtain J

%MQ = V[28(a - Vu)].

Integrating over RV x [0,t], we have

/|u\2dz:/ luo|?dz,
RN RN

which implies that m(u) = m(ug).
(i) Multiplying (2.2) by 2, taking the real part and integrating it over RV we
obtain

d

G IVl 19 + Vi
2A 1

g = OV s e dz] =0,

which implies that E(u) = E(ug).
(iii) Multiplying < |u|? by |z|?, integrating over RY by parts, we obtain
d
— |z|?|u|?dx = / |22V - [23(aVu)]dr = —4%/ a(z - Vu)dz.
dt RN RN RN
(iv) Let u(t,z) = a(t,z) + ib(t,x). We have

%S/RN (z - Vu)dz

N
=N [ (ab—ba)dx —/ > (Vb V(@ - bey) + Va- V(wg - ag,)dz
RN RN =1

N
1 a— (03
3 [ S ulluP)e, - 20luPe A (uP o

N =1

1 a 2 2 -1 9 )
+ Q/sz; [ = zr([u*)2, V(@) + Az (Jul?)op [ulP ™ + 2 (ul?)e, (W * [u]?)]dz

:—N/ |Vu|2dx—|—N/ 2a|u|2|u|2a_2A(\u|2“)dx—N/ V(z)|u)?dx
RN RN RN
AN [ AP P W fuPaPlde + (Y =2) [Vl + 9Pz
RN RN

24
- N/RN [ZmIUIerl + (W [uf*)|uf® = V() |u|*)dz

+/ (z - VV)|ul*dr — 1/ [(x - VW) * |u)?]|u|?dz
RN 2 Jgn

:_2/ |vu\2dx—[(2a_1)1v+2]/ |V(|u|2a)\2dm+/ (& - VV)|ulda
RN RN RN

n N %m‘zﬂrldx _ %/RN[(JJ VW) s ul?)ul*da.
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