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MAXIMUM AND ANTIMAXIMUM PRINCIPLES FOR THE
p-LAPLACIAN WITH WEIGHTED STEKLOV BOUNDARY
CONDITIONS

MABEL CUESTA, LIAMIDI LEADI, PASCALINE NSHIMIRIMANA

ABSTRACT. We study the maximum and antimaximum principles for the p-
Laplacian operator under Steklov boundary conditions with an indefinite weight

—Apu+|uP2u=0 inQ,
7]
|Vu|p728—u = Am(x)|uP"2u+ h(z) on O,
v

where  is a smooth bounded domain of RV, N > 1. After reviewing some
elementary properties of the principal eigenvalues of the p-Laplacian under
Steklov boundary conditions with an indefinite weight, we investigate the max-
imum and antimaximum principles for this problem. Also we give a character-
ization for the interval of the validity of the uniform antimaximum principle.

1. INTRODUCTION

Let © be a bounded domain of RY of class O for some 0 < o < 1, N > 1. We
consider the quasilinear problem

—Apu+ |uffPu=0 inQ,

1.1
% = Am(z)[uP~?u + h(x) on ON. (1)

Here A,u := div(|Vu[P72Vu) is the well known p-Laplacian operator, 1 < p < o0;
m and h are given functions in C"(9€) for some 0 < r < 1. The weight m can
change sign, and h > 0, h Z 0. We denote by v = v(z) the outer normal at z,
defined for all € 9Q and by o the restriction to 92 of the (N — 1)-Hausdorff
measure, which coincides with the usual Lebesgue surface measure as 0fQ is regular
enough. All the integral along 0 will be understood with respect to the measure
o.

Problems of the form appears in several branches of pure and applied math-
ematics, such as the theory of quasiregular and quasiconformal mappings in Rie-
mannian manifolds with boundary, non-Newtonian fluids, reaction diffusion prob-
lems, flow through porous media, nonlinear elasticity, glaciology, etc.

The maximum and antimaximum principles for problem with m = 1, have
been studied in [3]. The authors proved that every solution of is positive if
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A € (0,A1) (maximum principle) and that there exists 6 = 6(h) > 0 such that, if
A € (A1, A1 + ), then every weak solution is negative (antimaximum principle).
Here \; denotes the smallest eigenvalue of the eigenvalue problem associated with
with m = 1. The authors in [3] also characterize the interval of validity of
the uniform antimaximum principle. A uniform antimaximum principle has also
been proved in [4} 10, II] for the p-Laplacian operator with Neumann boundary
conditions.

Our main aim in this work is to extend the results proved in [3] to the problem
when the weight m is indefinite. Let us define the number

Stm) = inf {ull: [ mlul? =1 and w e Q)

where

Q = {u e W"P(Q); 3B(z0, 5) =0 a.e.}.

s.t u|B(m075)mﬁ
The norm || |1, stand here for the natural norm of W (). We prove in Theorem
that the real number A;(m) provides an interval of validity of the uniform
antimaximum principle for to the right of A;(m), where A;(m) is the first
positive eigenvalue of the eigenvalue problem associated with . We point out
here that A(m) < A(m), where A;(m) is the real number found in [3] for the
validity of the uniform antimaximum principle in the case m = 1, given by

A1(m) := inf {||u\|f,p;/ |u|” =1 and u vanishes in a ball of ﬁ}
a0

We will also prove that A;(m) = Aj(m) if 1 < p < N and Aj(m) > A\ (m) if
p > N. Furthermore, we prove in Theorem that the value 5\1(m) is the greater
number o > Ai(m) such that the uniform antimazimun principle holds for any
A € (A(m),0).

This article is organized as follows. In Section[2], we recall some basic definitions
and we review some properties of the principal eigenvalues of the p-Laplacian under
Steklov boundary conditions with an indefinite weight. We prove in Section |3|some
results concern in maximum principle, existence of solutions and nonexistence of
positive solutions for . We conclude this paper in Section 4| with some results
on the antimaximum principle and on the uniformity for this principle. Our mean
results of this section are Theorem 4] and Theorem L5 We finish with some
example in dimension 1.

2. PRELIMINARIES

Throughout this work, m and h are given functions in C"(99), for some 0 < r <
1; m* = max{+m(z),0} and h > 0, h Z 0 a.e.
We denote by WP(Q) the classical Sobolev space endowed with its natural norm

i ([avur+1am)

The Lebesgue norm of LP(2) will be denoted by | - ||, and the one of LP(0)
by || - lp.a0, for any p € [1,+00]. If S C R is measurable set, |S| denotes the
Lebesgue measure of S and for S C 92 we will also denote by |S]| its o-mesure.
The weak convergence will be denoted by — and the strong one by —. Here we

[l
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will denote by p* := Np/(N —p)* the classical critical Sobolev’s exponent, and by
p«:= (N —1)p/(N — p)* the critical Sobolev’s exponent for the trace inclusion.

We are interested in the weak solutions of (1.1]), i.e., functions u € WP(Q) such
that

/(|Vu|p*2Vqu + ulP~2uv) = )\/ m|uPuv +/ hv,
Q o9 1)
holds for all v € W1P(Q).

Remark 2.1. The standard regularity results for quasilinear elliptic pde ensure
that if m, h € C™(99) for some 0 < 7 < 1 then every weak solution of lies in
C12(Q). Furthermore, observing that the W1 (2)—norm of a solution u of
can be bounded in terms of ||u|oc.00, |7 lc0,00, [|Fllcc.00 and |A| , it follows that if

l[ulloo,00; [[Mll0c,005 [hllcc.00, Al < M
for a constant M > 0, then there exists a constant x > 0, depending on M, p, €2,
such that
l[ullgra@m < &
see [2 [6] for the details.

Let us summarize some properties of the principal eigenvalues of the eigenvalue
problem associated with problem (|1.1)),

~Apu+ [ufP2u=0 inQ,
(2.1)
\VU\FZ? = Am(z)ulP"2u  on 0Q.
1%

A real number ) is said to be an eigenvalue of (2.1) if and only if there exists
u € WHP(Q) \ {0}, called eigenfunction associated with A, satisfying

/(|Vu|p*2VuVU + [ulP"2uv) = )\/ m|ulP~2uv, (2.2)
Q o9
for all v € W1P(Q). It is proved in [5] (see also [7] and [12] for a more general
problem) that (2.1) admits two principal eigenvalues which are characterized by
Ar(m) = min{||ull] ;u € WhP(Q), I(u) = 1} > 0; (2.3)
A—1(m) = —min{[Jul] ,;u € WhP(Q),I(u) = -1} < 0. (2.4)
where I : W1P(Q) — R is the C'-functional

I(u) := /aQ mjulP. (2.5)

A1(m) and A_1(m) are simple, isolated. Moreover since in the case N > 2 there
exists actually two sequences of eigenvalues going one to 4+oo and the other to
—o0, we can define the second eigenvalue from the right Ay(m) (resp. the negative
eigenvalue from the left A_a(m)) of (2.1)) as follows:

Az2(m) := min{\ € R; A eigenvalue and A > A1(m)};

A—2(m) := max{\ € R; A eigenvalue and A < A_;(m)}.

)
)

~N O

(2.
(2.
See section 5, where we discuss the case N = 1, and let us agree to write Aa(m) =
+00o (resp. A_a(m) = —oo if no eigenvalues greater than \;(m) (resp. A_i(m) )
exist. Every eigenfunction u associated with a positive (resp. negative) eigenvalue
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A # Ai(m) (resp. A # A_1(m)) changes sign. Furthermore, if N is a nodal domain
of u then

|NmaQ|>m>o (2.8)
for some constant k1 > 0 1ndependent of u, see [B]. The following result is a simple
consequence of the characterizations ) and .

Lemma 2.2. Assume that h >0, h $é 0. If X € (A_1(m), A\1(m)) then there exists
a constant k > 0 such that

[ullf, = M(w) > sllullf, VueW(Q).

Proof. Assume, by contradiction, that there exists a sequence (u,)nen- C WHP(Q)
with [Jun||1,, = 1 such that

1
lunlfp = A (un) < —. (2.9)

Since ||upll1,p = 1, then (up)nen- is bounded in Wl’p(Q) and there exists a function
u such that u, — u in WP(Q) and strongly in LP(92). Then we obtain
1—XM(u) = hm (1 —M(un)) <0

and then AI(u) > 1. In particular I(u) # 0.
It follows from ({2.9) and the weak lower semicontinuity of the norm that

lull?, < limin u, 7, < M (u) (2.10)
Consequently, if I(u) > 0, it follows from (2.3) and (2.10) that
ul¥
A > L >
— I(u) — 1(m)?
which is a contradiction. If I(u) < 0, it follows from (2.4)) and (2.10) that
ul¥
A< —=E < A(m),
I(u)
which is also a contradiction. (]

3. MAXIMUM PRINCIPLE AND EXISTENCE OF POSITIVE SOLUTIONS

In this section we prove some results on maximum principle for problem (|1.1]),
existence and uniqueness of solutions, and nonexistence of positive solutions.

Remark 3.1. Let u € W!?(Q) be a nonnegative weak solution of (I.1)) with h > 0.
Using Harnack’s inequality (see [13, Theorems 5,6 and 9 pages 264-270]) and Hopf
maximum principle (see [15]), its follows that u > 0 a.e. in €.

Next, let us recall Picone’s identity, see [I]. Let v > 0 and u > 0 be two
differentiable functions a.e. in €2 and denote

-1
|Vol[P~2Vo - Vu;

p—1
’LLp
p—l)'

p
L{u,v) = [Vl + (p— 1) = Vol -

R(u,v) = |VulP — |Vv|P~2Vu - V(U

Then Picone’s identity states that
(i) L(u,v) = R(u,v);
(i) L(u,v) > 0;
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(i) L(u,v) =01in Q if and only if u = kv for some constant k.
As a consequence of these identities we have the following result.

Lemma 3.2. Let u € C1(Q) be a weak solution for (L.1]) such that u > 0 in €.
Then
|¢|

() + /a S <ol (3.1)

for all bounded ¢ € WP(Q2). Moreover the equality holds if and only if ¢ is scalar
multiplier of u.

Proof. By Picone’s identity we obtain

0< [ 10w = [ Rl

~ [ 1vor - /\v 29 V(‘¢' )
:/Q|V¢|P+/ul’ | IfI1 A/mm“p 1I‘Lf|p1 Aﬂhlﬂi (3.2)
= [war s [l [ mior— [ nll

ol
= oI, = (o)~ [ nlh

and (3.1) holds. Moreover, from assertion (iii) of Picone’s identity we have the
equality in (3.2) if and only |¢| = cu, for some constant ¢. In particular ¢ is of
constant sign in . O

The following result states the maximum principle for problem ([1.1)) for the usual
range of A.

Theorem 3.3. Assume h > 0, h # 0. Then the mazimum principle for (1.1
holds if A € (A_1(m),A\1(m)), i.e. if u is a weak solution for with A €
(A_1(m), A1 (m)), then u > 0 in Q.

Proof. Assume by contradiction that v~ # 0 and take v = u~ as test function in

(1.1). We have

o</ (Vu P+ @)y =2 [ m - [ hue
Q o0 o0 (33)

<A m(u™)P.
0

If [, m(u™)? >0, we deduce from the variational characterization of Aj(m) that

(A1(m) — ) /zm m(u”)? <0

which implies that A;(m) < X, we have a contradiction. Similarly, if [, m(u™)? <
0, we deduce from the variational characterization of A_;(m) that

O (m) — A) / mu=)? <0

o0
which implies that A_;(m) > A, and we have a contradiction. Hence, in all cases,
we obtain that u > 0 and the conclusion follows from Remark ]
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Let us now prove the following uniqueness result. We stress here that the exis-
tence result is well known for any h € L1(09Q) if ¢ > (p«) . We give here the proof
for the sake of completeness.

Proposition 3.4. Let h > 0, h # 0 on 9. Then (1.1) has a unique solution if
A E ()\,1<m>,)\1<m>)

Proof. Let us prove that the energy functional K associated with (L.1])
1 A
Ku:fupfffuf/hu.
(u) pll 17, » (u) -

is coercive and weakly lower semicontinuous. Since A € (A_1(m), A1(m)), it follows
from Lemma 2.2] that

1 A
K(u) =~ ullf, = 1) - /8 hu

1
> ﬁEIIUII?,p — [hllscllullr,00

K
2 Ml = allullip = 00 as fluflip = o0

where k1 = c||h|| With ¢ > 0 the constant from the embedding of W1P(Q2) in
L'(0€)). We conclude that K is coercive. Now assume that wu, is a sequence
in WHP(Q) such that u,, — u for some u in WP(Q). Then, from the compact
embedding of W1P(Q) into L?2(9Q), for all g2 € [1, p.) we can assume that u, — u
in LP(0Q) and in L'(99). Then from the lower semicontinuity of the norm we
obtain

K(u) < lirr_1>inf K(uy,)

and the result follows. Since K is coercive and weakly lower semicontinuous, then
the inf{K (u),u € WHP(Q)} is achieved, providing us with a weak solution of
(i.e. a critical point of K).

To prove the uniqueness of the solution, assume that u,v € WHP(Q) are two
solutions of for a fixed A € (A_1(m), A1(m)). From Theorem [3.3| we have that
u and v are positive and from Lemma that

oP
M (v) + /aﬂhup—l < ollf, =M (v) +/89 hv. (3.4)

Up
/ h T g/ hv,
o uPT a9
p—1
hv(l v ) > 0. (3.5)
a0 up~t

Interchanging v and v we also have

Hence

uP~1
/ hu(l - —_1) > 0. (3.6)
o9 P
By adding (3.5)) and (3.6]), we have

/mh[v(l—zp_l)—ku(l—zp_l)} > 0. (3.7)
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Observe that
) PPl ) uP™hy  ouPt— P Pt — P
U( B uP—1> +u( B vp—l) - pl + vP—1
(w = )P — )

= < .
(uv)P—1 <0

Thus from (3.7) we obtain
1 p—1

[nl( =) (- )] =0

so0 u = v on the set of positive measure {a € 0Q; h(x) # 0}. Hence, from (3.4)), we

obtain
P

M (v) + /(9 e = ol (3.9)

w1
Then it follows from the Lemma B.2] that v = cu for some constant ¢ > 0. Since
u=wv on {r € 0Q; h(zr) # 0} then ¢ =1 and we obtain the desired result. O

Next we prove that there are no positive solutions when the parameter A lies
outside the interval (A_1(m), A1(m)).

Theorem 3.5. Let h >0, h Z 0 on 0f).

(1) Problem (1.1)) has no solution u >0, uZ 0 if X & [A_1(m), A1 (m)].
(2) Problem (1.1)) has no solution if X = A1(m) or A = A_1(m).

Proof. 1. Assume by contradiction that there exists a nontrivial nonnegative so-
lution u. We deduce from Remark that 4 > 0 in Q and by Lemma one
gets

P

I <
M@+ [ 1S <o
for all bounded ¢ € C'(Q) and in particular

M (¢) < 1817 - (3.10)

Then, by taking any ¢ € C*(Q) such that [,, m[¢[P > 0, it follows from and
the variational characterization of A1 (m) that A < A;(m). Similarly, by taking any
¢ € C1(Q) satisfying I(¢) < 0 we have that A > A\_;(m), a contradiction.

2. We only give the proof for the case A = A1(m). Assume by contradiction that
there exists a solution u of with A = A1(m). We claim that « > 0. Indeed, if
not, we take v = u~ # 0 as test function in with A = A;(m) to obtain

7 (3.9)

Iy =M(m)I?) = | ke (3.11)

< A(m)I(u)
and from the variational characterization of A;(m) we have
0 <u|If, = A(m)I(u"). (3.12)
We conclude that the infimum in is achieved at u~ so v~ > 0 in €. Besides

from (3.11]) we obtain f{m hu~ = 0, a contradiction since h > 0, h £ 0. We have
just proved that v > 0 and hence, by Remark u > 0in Q. By applying Lemma

[3:2) one gets
1P

up~1

<ol ,

M (m)I(¢) + /m h
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for all ¢ € C1(Q).
— P
Finally, by choosing ¢ = ¢1 > 0 in Q, we obtain [,, h—1r < 0, a contradiction.
U

4. ANTIMAXIMUM PRINCIPLE

In Theorem we will prove, for the case p > N, the existence of an interval of
uniformity of this principle for problem .

The following result shows that the antimaximum principle holds, for a fixed
h € CT(09), at the right of A\j(m) (resp. left of A_;(m)) for A sufficiently close to
A1(m) (resp. A_1(m)) and for any p > 1.

Theorem 4.1. Let h > 0, h # 0. Then there exists § = §(h) > 0 such that if
A€ (A1(m), A1(m) + 9) then any solution u of satisfies u < 0 in Q.

Similarly, there exists &' = §'(h) > 0 such that if X € (A_1(m) — &', A_1(m)),
any solution u of satisfies u < 0 in Q.

Proof. We only give the proof for the case A € (A1(m), A1(m) + ). We assume by
contradiction that there exists a sequence (A, ux) € Rx WHP(Q) with Ay > A (m),
Ak — A1(m), ug a solution of (P, ) and such that

ug(zx) >0  for some x;, € Q.

Two alternatives can arise:

(a) ||ug|loo,00 < K2, with ko some positive constant. It follows that wy is also
bounded in L*(Q) and in C1*(Q2), see Remark Then, using the compact
embedding of C1%(Q) into C'(Q2) we obtain, up to a subsequence, that uy — u for
some function u in C1(Q). Passing to the limit in (P, ,) we obtain that u is a
weak solution of for A = A1(m), a contradiction with Theorem [3.5( (2).

(b) ||uk|lco,00 — 00. Setting wy, := Tarl =5 then |wi||so,00 = 1 and it follows
(using Remark [2.1| with hy = W) that wy, lies in C1*(Q). Moreover there
00,89

exists a constant C' > 0 such that |[wk||c1,a@) < C. Thus, there exists a function
w such that, for a subsequence, w, — w in C1(Q). In particular w # 0 since
lw|lso,00 = 1. Hence, passing to the limit, we obtain that w is an eigenfunction
associated with the eigenvalue \;(m) of . Consequently w > 0 or w < 0 in €.
If w > 0, then for k large enough we have u; > 0 and this contradicts Theorem
3.5(1). If w < 0, then for k large enough we have u; < 0 which contradicts the
existence of xj. O

Notice that, a priori, the value ¢ of Theorem [.1|depends of the function h. If this
is not so, we say that the antimaximum principle is uniform on (A1(m), A1 (m) +9).
In the following, we study the validity of the uniform antimaximum principle and
we will give a variational characterization of the greatest value d for which the
uniform antimaximum principle holds in (Aq(m), A\1(m) + ) if p > N.

Following [3, @, [10] we introduce the values A;(m) and A_1(m):

Ar(m) = inf {JJull? ; I(u) =1and u € Q} (4.1)
A_i(m) = —inf {J|ullf ; I(u) = -1 and u € Q}, (4.2)
where

Q= {u c lep(Q);HB(xo,r) =0 a.e.} with xg € 00

8.t u|B(zU,r)mﬁ
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Clearly A1(m) < Ai(m) (resp. A_1(m) > A_i(m)). In the following two lemmae
we discuss whenever A;(m) is different or equal to A;(m).

Lemma 4.2. Assume 1 < p < N and let A (m),A_1(m) be defined in [@.1) et
@2). Then A1 (m) = Ai(m) and A_1(m) = A_1(m).

Proof. We distinguish two cases:
Case (i) p < N. We define, as in [3] or [4], the sequence of functions y;, defined
for all z € RY by

1 if [z] > 7,
ye(z) == 2klz| — 1 if 5 < \x| <1,
0 if |3:\ < 1 5%

It is not difficult to prove that yx — 1 as kK — oo in VVl(l)’f(RN) using

/N|%|p:/ <| <1|gfck'|p§0kpN%0 as k — oo. (4'3)
% K2

for some constant C.

On the other hand, let us assume without loss of generality that 0 € 9Q2 and
let @1 be the positive eigenfunction associated with Aj(m) satisfying I(p1) = 1.
Then the sequence zj, := ¢1(2)yx(z) vanishes in the set B (0, ) N 9 and clearly
zr € LP(Q). Moreover, since ¢; lies in C1*(Q) and [e1llcra@m < €, for some
constant C' > 0, we infer that

5 3
and therefore (%’Z € L”(Q) and zj € Wl’p( ). On the other hand, we have

2k — o1P = |oryr — o1P < ¢ € L'(Q);

|zt — 1P = |o1yr — 1P —> 0 a.e;

1 Dy |P ’&m P

— < L (Q):
0z; Yk Ox;! ~— | 0x; € L(%);
6@1 8(,01 p )
8xiyk_ oz, —0 ask — oo

and by Lebesgue’s Dominated Convergence Theorem it follows that zp — (1 in
WLP(Q) as k — oo. Hence

I(zx) > I(p1) =1 ask — oo

and in particular, for &k large enough one has I(z;) > 0. Then, from the definition

[@1) of A1(m), we have

% [l 2I7
A1(m) < L = A1(m).
()
Case (ii) p = N. In this case we define instead
Ok 1 1\1/0k 1
yr(@) = q [z — ¢ if (3) <l|z| <%

0 if 2] < (L)%,
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where 8, satisfies ()% =1—1; (6, = 1 — lnl(nk(g)l) — 0as k — o00). It is easy to

show that y, — 1 as k — oo a.e. in WIOC( ) since
OO =

/ yayk ’p /
Oz L)1/ok <Ja|< 4 ||

< Coy pOr=DppN=14,
(1) <r<t

x; |P

C(Sz 1 Skp 1 p
==, vl ()]
which converges to 0 as k — oco. The sequence z; := 1y, vanishes in the set

B(0,(£)'/%) N 0% and clearly 2 lies in LP(Q). Moreover, using the arguments of
(i), we have 2, — 1 (z) as k — oo a.e. in W1P(Q). Hence, from the definition (4.1))
of A1(m), one deduces that

? (B
Ar(m) < - = Ai(m);
()
as k — oo, and we obtain the conclusion. O
Proposition 4.3. Letp > N.
(a) It holds
Ar(m) = inf{||ull? ; T(u) =1 and u € Q"}, (4.4)
Aoa(m) = —inf{ull?, I(u) = ~1 andu € Q%) (45)

where
Q" := {u € W'P(Q); 3z € 9Q s.t. u(xp) = 0}.

(b) The infima in and are achieved.

(¢) A(m) < Ay (m) and A_i(m) < A_1(m).

(d) If 4 is a minimiser in (resp. (4.5)), then @ vanishes exactly at one
point on 02 and G does not change sign on 0N2.

(e) A (m) < Ao(m) where Ay(m) is the eigenvalue defined in ([2:6). Respectively,
A_1(m) > A_g(m), where A_o(m) is the eigenvalue defined in @7).

Proof. We only give the proofs that concern Xl(m).
(a) Let ¢ € C*(Q) satisfies I(¢) > 0 and assume that ¢(zg) = 0 for some
xo € 0f). For any fixed € > 0 let us define

¢€ = max{|¢|>€} — €
Clearly, ¢. — |¢| in WP(Q) as € — 0. By continuity, there exists 7 > 0 such that
|p(z)| < € for all z € B(zg,7) NQ, and therefore ¢ (x) = 0 for all x € B(xg,r) ﬁg.
(b) The proof is standard and uses the compact embedding of W?(Q) in C(£2)
to assure that a weak limit of any minimizing sequence must vanish somewhere on

1793

(¢) Assume that A;(m) = A;(m). From (b), A1(m) is achieved at some ug and
consequently ug is an eigenfunction of associated with A;(m). But this is
impossible since g is vanishes somewhere in 9. Hence A (m) < Ay (m).

(d) Let us now prove that the minimiser vanishes exactly at one point on 0.
Set @ the minimiser of A;(m) and assume that (z) = 0 for some zo € 9. We
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can assume that @ > 0 by changing 4 by || if needed. Then the definition (4.4) is
equivalent to the following
hum) = i [l (1.6)
where
o = {u € WHP(Q); I(u) = 1 and u(zo) = 0}.
Assume by contradiction that there exists x; # zo € 9 with @(z1) = 0 and set
B = {uc WHP(Q);I(u) =1 and u(z;) = 0}
so we also have
Sam) = inf [ull,
Let us now denote by
Plu) = ullf i 1(u) = 1I(u) =1,  a2(u) = u(z1).
By Lagrange’s Multipliers Theorem there exists (81, 52) € R? such that
V' (w)(v) = By (w)(v) + Batpy(w)(v)
= By (w)(v) + Bav(zy) Yo € WHP(Q).

Taking v = w in ([£.7) we obtain that 8, = A;(m). Similarly there exists 7, € R
such that

(4.7)

V' (w)(v) = 5\1(m)1[1'1 (w)(v) + you(zg) Vv € WHP(Q). (4.8)
and therefore
Bov(x1) = you(wg), Vv € WHP(Q) (4.9)
Taking v = 1 in one sets 5o = 7, and since holds for all v € W1P(Q),
we deduce that 8o = 5 = 0. Consequently it comes from that 5\1(m) is a
principal eigenvalue of and w is a nonnegative eigenfunction associated with
5\1(m). By Remark w > 0in Q, a contradiction.
We have just prove that w, and therefore 4, vanishes only once on 0f2.

Now, let us show that @ does not change sign on 9. Assume that 4™ #£ 0,4~ Z 0
and say @(x1) = 0 for some x1 € 9Q. Then taking v = 4% in (4.9)), one gets that

0 < [la*|f, = M(m)I(a"),

so the function # is a minimizer in . Hence 4" vanishes only at x; which
implies 4 > 0 on 0f).

(e) Let @9 be an eigenfunction associated with Ao(m). By we know that
2 vanishes somewhere on 0€). Thus 9 is an admissible function in the definition

@A) of A;(m) and then

um) < W22l )
~ I(p2)
If Xl(m) = Aa(m) then s would be a minimiser in (4.4) and therefore it must have
a constant sign on 9Jf, according to (c), a contradiction. O

With the previous results in hand, we can give an interval where the uniform
antimaximum principle holds.
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Theorem 4.4. Let p > N and let h > 0, h Z 0. If u is a solution of (1.1
with X € (Al(m),;\l(m)] then u < 0 in Q. Similarly any solution u of with

A€ [;\_1(m), /\_1(m)> is negative in Q.

Proof. Let u be a solution of (L.I)) with A € (Aq(m), Xl(m)], then u= # 0 in Q by
Theorem Let us take v = u~ as test function in (|1.1) to get

0< u|[f, = AI(u™) — / hu— < AI(u-). (4.10)
a0
In particular I(u~) > 0. Let us first show that « < 0 on dQ. Indeed, if A < Ay (m),
we have from (4.10))
% <A< A(m) = inf [o]? Vo € 9.
I(’U,f) - ved P’

Sou™ & & and we conclude that ™ does not vanish anywhere on 01, that is, u < 0
on 9. If A = A;(m) and we assume by contradiction that v~ vanish somewhere on

99, hence, from the one hand u~ is a minimizer for A; (m) according to Proposition
[4:3|(a) and from the other hand, using ([{.10) we have

0= |F, — S (m)I(u™) = —/ i
o0

We deduce from this relation that v~ vanishes on the set of positive measure {z €
OK; h(x) > 0} which is a contradiction with Proposition|4.3{(c) (minimizers of Ay (m)
vanish only once).

Next we prove that u < 0 in €. Since u < 0 on dQ one has that ut € Wy*(Q).
Take then v := u™ in the weak form of to obtain

[

To=M@u")+ /89 hut = 0. (4.11)

Consequently vt = 0 in Q and so u < 0 in . Using the well know Harnack’s
inequality [13, Theorem 5] we deduce that v < 0 in Q and then u < 0 in €. O

Finally we prove that the value A (m) (resp. A_i(m).) is optimal in the sense
that the antimaximum principle holds to the right of A;(m) and that the uniform
antimaximum principle fails to the right of A;(m) + ¢ for any § > 0.

Theorem 4.5.
(1) For any h > 0, h # 0 there exists 6 = 6(h) > 0 such that if X €
(;\1(m), xl(m) + 5), every solution u of satisfies u < 0 in €.
(2) Given & > 0, there exists h € C"(9R) satisfying h > 0, h #Z 0 such that for
all A > 5\1(m) + & problem does not admit a negative solution.
In particular for all § > 0, the uniform antimazimum principle does not
hold in (A1(m), A (m) +6).
Similar results can be stated to the left of A_y(m).

Proof. (1) We assume here that p > N as in the case 1 < p < N, A(m) = A (m)
and the result is proved in Theorem [£.I] The proof follows the same pattern of the
one in the proof of Theorem [4.I] and we just indicate the changes needed in the
contradiction argument. In alternative (a), passing to the limit in (Py, ) one gets
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that u is a weak solution of for A = A (m). Tt follows from Theorem 4.4 that
u < 0 in Q and consequently u < 0 in Q for k large enough (since the convergence
is in C1(Q)), a contradiction with the existence of zj. In alternative (b), passing
to the limit we obtain that w is an eigenfunction associated with Xl(m) Since

|lw|lso,00 = 1 then w # 0 and therefore A1(m) is an eigenvalue of ([.1) and w an
cigenfunction associated with A;(m), a contradiction with Proposit (e).

(2) Let 6 > 0 be fixed and assume by contradiction that for any h > 0, h Z 0,
there exists A(h) > Ay(m) + & such that (Px(n),n) admits a solution u, € C*(Q)
such that u, < 0 in Q. Let ¢ € W1P(Q) satisfies I(¢) > 0 and assume that there
exists o € I and there exists r > 0 such that ¢(z) = 0 a.e. in B(xg,r) N L.
Choose h > 0, h # 0 satisfying

suppgq h C B(zg,r) N OS. (4.12)
By applying Lemma to v = —uy, > 0 (which is a solution of problem (|1.1)) with
A = A(h) and —h instead of h, we obtain
(M(m) +0)I(#) < A(W)I(¢) < [|]F,

which implies

< ollf.
Ar(m) 46 < I(@”,

and taking the infimum over all ¢ € WP(Q) satisfying I(¢) > 0 and vanishing on
B(xg,7) NQ, for some x5 € IQ, we obtain

5\1(771) +4< j\l(m)a

which is a contradiction. O

5. SPECTRA IN DIMENSION 1

5.1. Case p = 2. A simple computation shows that in the case N = 1, p = 2, there
are only two eigenvalues for the Steklov problem. Take for instance 2 = (0,1) and

m(z) = {—1 %fa: =0;
1 ifx=1.
Hence the only eigenvalues of the eigenvalue problem
—u”"4+u=0 1in (0,1);

—(0) = Am(0)u(0),

u' (1) = dm(1)u(1),

are A_1(m) = —1 and \;(m) = 1. Let
a= inf{||qu,2;u € Hyand u(l) =1}, p= inf{|\u||i2;u € Ho and u(0) = 1},

where

Hi = {uc H((0,1)); I(u) = 1 and u(0) = 0},
Ho = {uc H*((0,1));I(u) = 1 and u(1) = 0}.

Then
A (m) = inf{Jul]} o;u € H'((0,1)),I(u) = 1,u(0) = 0 or u(1) = 0} = min{a, 8}
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By a simple computation we obtain

e—i—e‘1

— i =A= AL (m).

o =

EJDE-2020/21

Furthermore, if & > 0 is a function defined on the boundary of Q = (0,1) by

h(z) = {a %fsz;
b ifzx=1,
then it results that, if A > 1, the (unique) solution u of
—u”" 4+u=0 1in (0,1);
—u/(0) = Am(0)u(0) + a,
u'(1) = dm(1)u(1) + b.
is non-positive if and only if
2b e+e !

1<A< .
ale—e )  e—el

e+e_1

Then there is an uniform antimaximum principle for A € (1, p—

5.2. General case. Let us consider (1.1]) in dimension 1 for the weight m = 1, i.e.

(Ju'|P~2u/Y |JulP~%u  in Q = (0,1)
[ (0)[P~ 4/ (0) = —A[u(0)["~2u(0)
[/ (1)[P720 (1) = AJu(1)[P*u(1)
First we look for positive solution u of such that
1

u(0) = u(1), U/(i) =0.

From ([5.1) we obtain
"(t)|P t)|P
_lu (/)\ 4 )]
p

=C, Vte(0,1)

where p’ = p’%l and the constant C' is such that
[ (O [u(0)[” 1 AT
C=- + = (u(0))?[= —
24 p ((0)) [p P’ )
_ _Wa2P | /2P
- /
p p

Let us assume that u(1/2) = 1. Then C = % and

u(0) = (1- (v - 1)Aﬁ)7l/p.

(5.1)

Moreover, using the fact that u'(t) < 0 for all ¢ € (0, 1), from (5.2)) we obtain

o duw
(Julp — 1)"/7

u(O) dZ - 1 1 71/17
L G- 2

(p—1)""/Pat

Hence

(5.5)
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or equivalently

1 _

u(0) = Ap[5(p — 1)) (56)

where we denote by A, : R — R the function defined implicitly by

Y dz
A,(t) = t = —_— 5.7
p( ) Y — /1 (|Z|p_1)1/p ( )
From (5.4) and (5.6)) we obtain

-\ = L _ 1 e}t =

v [ (e )T e

On another hand, since «/(t) > 0 for all ¢ € (%, 1), we deduce from ([5.2)) that

u(s) = @1(s) = Ap[(p — 1) 7ls — ], Vs € (0,1)

Now we look for a solution u = @9 of (5.1) which changes sign on (0, 1) such that
u(1/2) =0 and «/(1/2) = 1. From (5.2]) we deduce that

_WOP @l 1 WOP | [u0)P
/ / /
p p p ) Z)’\% p (5.9)
= |u(0)|P[= —
O = =]
and consequently, since u/(t) > 0 for all ¢ € (0,1), we have
O \1/p
W) = (14 1 .
u'(t) = (1+ o1 )
Hence
1 /0 dz
2 JEERSY)
w(0) (14 =5)4P
T+ (5.10)
—uOG-1" g,
— e
0 (1+ |zfP) /7
Similarly we define ®,(t) = y implicitly by
y d (p=1)"/7y d
B0 =y = 1= [ o = - b
o (1 olr)!/e 0 (L+ )/e

p—1
Hence from (5.9) and (5.10) we deduce that
P -1 _ 1 B
(= DA = 1] 77 = —u(@)(p— 1) 77 = &, [S(p - 17V,

SO

== (e (ke -n) )T

p—1
1
pa(s) =uls) = (p— DIR[0~ D) (s = I, Vs €(0,1).
It remains to explain the value of A;(m). Since

A(m) = inf{]Julff ;u(0) = 0 and u(1) = 1} = |[a],
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it follows that @ is solution of the problem

(o' P=2a') = |af"~*a

5.11
4(0) =0,4(1) =1 ( )
Hence . , ,
0'|P Nk Aoy 1 2 (1)|P
p p p p p
From ([5.12) we obtain
1 (—Cp)~t/?
d dt
g [
0 (Zl)uf‘l — Cp/)/p 0 (t[p +1)1/P
which is equivalent to
o,[(p—1)77 = (~Cp)~'? (5.13)

Multiplying (b.11)) by 4, integrating by parts and using (5.12)) we have

Ai(m) = jallf,

= (@)
=(p-1)"P /P - Cp)(p—l)/p

Finally (5.13) leads to

D
-1

Byl(p— 1)) = [ =1+ (p— 1) (m))7 7] /7

and hence

-1

N

Some properties of ®,, and A, can be found in [8, [0 [14]
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