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EXISTENCE AND UNIQUENESS FOR A GINZBURG-LANDAU
SYSTEM FOR SUPERCONDUCTIVITY

JISHAN FAN, YONG ZHOU

ABSTRACT. We prove the existence of a unique solution for a time-dependent
Ginzburg-Landau model in superconductivity under the Coulomb gauge. Also
we prove the uniform-in-e well-posedness of the solution, where € is the coeffi-
cient of the double-well potential energy.

1. INTRODUCTION

This article concerns the Ginzburg-Landau model in superconductivity,

; 2
N0 + inkg + (Y 4+ A) v+ e ([l = 1Y =0, (L.1)
atA+v¢+cuﬂ2A+Re{(%wﬂm)@} -0 (1.2)
in Qr :=(0,T) x Q, with boundary and initial conditions
V-v=0, A-v=0, carlAxv=0 on (0,T) x99, (1.3)
(1, A)(@,0) = (o, Ao)(z) in Q. (1.4)

Here Q C R? is a bounded domain with smooth boundary 95, v is the outward
normal to 0f2, and T is any given positive constant. The unknowns v, A, and ¢ are
C-valued, R%valued, and R-valued functions, respectively, and they stand for the
order parameter, the magnetic potential, and the electric potential, respectively. 7
and k are Ginzburg-Landau positive constants. 1) denotes the complex conjugate
of 1, Rewy := (¢ +1)/2, [1|? := 99 is the density of superconducting carriers, and
i:=+/—1. €is a positive constant. We will assume a = 1.

It is well known that the Ginzburg-Landau equations are gauge invariant, namely
if (¢, A, ¢) is a solution of —, then for any real-valued smooth function
X, (e A+ VYV, é — d;x) is also a solution of —. So, in order to obtain
the well-posedness of the problem, we need to impose suitable gauge condition.
From the physical point of view, one usually has four types of the gauge conditions:
Coulomb gauge: divA = 0in Q and [, ¢dz = 0.

Lorentz gauge: ¢ = —div A4 in Q.
Lorenz gauge: 0;¢ = —div A in Q.
Temporal gauge(Weyl gauge): ¢ =0 in Q.
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For the initial data ¢y € H*(Q), [vo| < 1, Ag € H(Q), Chen, Elliott and Tang
[3], Chen, Hoffmann and Liang [4], Du [5] and Tang [I1] proved the existence and
uniqueness of a global strong solution to —7 in the case of the Coulomb,
Lorentz, and temporal gauges. For the initial data vy € H'(Q), Ay € HY(Q),
Tang and Wang [12] obtained the existence and uniqueness of global strong solu-
tions, while Fan and Jiang [8] showed the existence of global weak solutions when
o, Ag € L?. Fan and Ozawa [9] (2-D) and Fan, Gao and Guo [7, [6] (3-D) prove
the uniqueness of a weak solution for g, Ay € L% with d = 2,3, which is criti-
cal. This comes from a scaling argument for (1.1) and . Move precisely, if
(W(t,x), A(t,z), ¢(t,x)) is a solution of and (1.2 associated with the initial
data (o(z), Ao(x)) without linear lower order term v, then

(Mp(A%t, Az), ANA(NE, M), A2p(A%E, Axr)) =2 (9, A, 62) (1.5)

is also a solution for any A > 0.
A Banach space B of distributions on R x R? is a critical space if its norm verifies
for any A and any u € B,
lulle = [[Au(X*-, X) 8.
If we choose B as L"(0,00; LP(R?)), then (r,p) should satisfy
2 d
S+ =
r.p
In this article, we will choose the Coulomb gauge. First, we will prove the
following theorem.

Theorem 1.1. Let d = 3 and 0 < € < 1. Let 19 € H',|1po| < 1 and Ay € H'.
Then the solution (1, A, @) satisfies

W1 <1 [dllzeorm + 19ll20.0:m2) + 106 ]| L20.7:02) < C,
|All Lo 0,711y + 1 All 20,7 12) + 10c Al L2077 12) < C, (1.6)
lollz20.151) < C
for any 0 < T < oo. Here and later C will denote a positive constant independent
of €.

Theorem 1.2. Let d =3 and 0 < e < 1 and 3y, Ay € L3(Q). Then the problem
(LI)-(T.4) has a unique solution (v, A, §) satisfying

||¢||L°°(0,T;L3) + Hw”LS(O,T;LS) + ||¢HL2(O,T;H1) + H|¢|3/2||L2(0,T;H1) <C,

10el L2 0,751-1) < O,

Al + Als020) + Ml + APl <€,
10:AllL20.13-1) < Cy V@l s/30,m,1575) < C
for any T > 0.
Remark 1.3. When a = —1, we are unable to prove a similar result at present.

Our results also hold true with the choice of Lorentz gauge.
In our proofs, we will use the following lemmas.

Lemma 1.4 ([IL[10]). Let Q be a smooth and bounded open set in R3. Then there
exists C' > 0 such that

1-1 1
1 2o o) < CUEI ol 11 e (1.8)
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for any 1 <p < oo and f:Q — R3 be in WHP(Q).

Lemma 1.5 ([2]). Let Q be a regular bounded domain in R?, let f : Q — R3 be a
smooth enough vector field, and let 1 < p < oco. Then

- / Af - fIfP2 da
Q

(1.9)
_ p—2 2 Alp - 2) 5123y — p=2(,,. .
= [1raesp e 2222 [ vt [ 1o vsas.
Lemma 1.6 ([§]). V¢ € L3(0,T; L5/3) satisfies
—A(b:divRe{(%Vz/)—i—wA)E} in Q x (0,T), (1.10)
Vo-v=0 on (0,T) x 0. (1.11)

2. PROOF oF THEOREM [L.1]

We only need to show the a priori estimates ((1.6). It is easy to show that (see
[3, 4L [ [110)
[¥] <1 inQx (0,7). (2.1)
Testing (1.1)) by v and taking the real parts, we see that
q .
ﬂf/|w|2dx+/;3w} + A" dz + e/ |4 dz = e/ 1|2 da,
2 dt k
which gives
T .
/ / %w + A dzdt < C. (2.2)
0
Testing (1.2) by 8, A + curl® A, using [2.1), [2.2) and (1.11]), we find that
d
T / |curl A> dz + /(|8tA\2 + | curl® A?) dz

< / 290+ $A| 0,4+ curl® A] o

] :
< 5/(\atA|2+ |curl2A|2)dw+C/|%V¢+¢A|2dx,

which leads to

| Al oe 0,711y + | Al 20,712y + 10: Al 20,7522y < C, (2.3)

whence
¢l z20,7:m1) < C. (2.4)

Multiplying (1.1) by —Aw), integrating by parts and taking the real part, using
(2.1), (2.3) and (2.4), we obtain

nd 2 1 2

! dt/|v¢| dx+k2/|A1p| dz
< |Re/mk¢¢.Ade| +2|Re%/iAV1/)-Ade|

+ Re/A%A@dx + eRe/(WJ\Q —1)¢- Ay de

11 ,
<55 [ 18vPdeC [ 96190 do
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+ Ol A< IVl Z2 + Cll A= IV All 2 [V 2 + O V|7,
which yields
191 Loe 0,701y + 1¥]| 220,13 12) < C- (2.5)
Whence
100|220, 7;22) < C- (2.6)
This completes the proof.

3. PROOF OF THEOREM

To prove the existence, we only need to prove (L.7). First, we still have (2.2).
Multiplying (1.1)) by |¢]), integrating by parts, and then taking the real part, we
obtain

) |
g [t (1590 vaPiulde e [pae=c [ o a

which gives

T .
sup /\¢\3dx+/0 /|%V¢+¢A|2|w|dxdt§0. (3.1)

0<t<T

Using the diamagnetic inequality

1 i
|Z VIl < | 290+ pal, (32)
and the Gagliardo-Nirenberg inequality
3_1 3_3
lwllze < Cllwlizz *[IVwliza ™ + Cllwl| (3.3)
for w := [¢[3/% and p := L2, we find that
%1l Ls0,:25) < C. (3.4)

Testing (|1.2)) by A and using (3.1), we observe that

%%/\A|2dx+/|cuﬂA|2dx

S/\%V¢+¢A[|¢||A|dx
< [ 1796+ val w2011 4] do
< |59 + Al W2 ol 2 ol AlLs

X .
< 5lleurl A3 +C|| |2 Ve + v A [l ][,

which leads to
[All o 0,7;22) + 1Al L2(0,7501) < C. (3.5)
Here we have used the estimate ||A]| s < CJ| curl Al|z2. Since

T T
/ / AP dz d < [[4]2, / 14|20 dt < C,
0 0

it follows from (2.2]) that
19U\ 20,111y < C. (3.6)
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Testing (L.2) by |A|A and letting u := | A]*/*, using (L.3), (L.8), (L.9). (T.10), (L.1T),
(3.1) and the vector identities

(v-V)A-A=(A-V)A-v+ (cwrl A xv) - A, (3.7

(A-V)A-v=—(A-V)v- A, (3.8)

we arrive at

d

E/u2c1:z:+co/|vu|2d:c+co/|A|\VA|2@LT

< c/|%v¢+¢A| |w|u4/3d:c+C/|V¢|u4/3d:v+C’/ u?dS
o

7
< O[5 V% + A2 Lol 012 ol o
+ CIV@llporallu®?ll s + Cllull 2oy lull oy
)
< O[5 Ve + GA[ 2] ol 11 2o [l s + Clull ooy lull i o)
i 1/3
< O |2V + A W2 o llull Nl s+ C el 2 o 0

C ) 2
< SVulFe + O |2V +wA| [02| ul £ + Clul -,
which implies
1Al o 0.7:3) + AP\ 20,7501y < C. (3.9)
Here we have used the estimate
196l 572 < Ol (V9 + AV B s/
< O |99 + A 912 ol 19121 s (3.10)
< O |z Ve + v A 9] ..

Using (3.3) for w = |A]*/? and p = 10/3 and (3.9)), we have
[ Allzs0,7525) < C. (3.11)
On the other hand, using (L.1), (1.2)), (2.2)), (3.1) and (3.9)), we easily deduce
that
06l 20,731-1) + 104 All L2(0,71-1) < C. (3.12)
This completes the proof of (1.7]).
To prove the uniqueness, we use the method considered in [7,[6]. Here we remark

the only new estimate: if (¢;, A;, ¢;) (¢ = 1,2) are two weak solutions to the problem
(1.1)-(1.4), then the following monotone property holds:

Re [ (1%~ 0ol va) (0 — ) de > 0.

The rest of the proof follows as in [7, [6]. This completes the proof.
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