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SCHRÖDINGER-POISSON SYSTEMS WITH SINGULAR

POTENTIAL AND CRITICAL EXPONENT

SENLI LIU, HAIBO CHEN, ZHAOSHENG FENG

Abstract. In this article we study the Schrödinger-Poisson system

−∆u+ V (|x|)u+ λφu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,

where V is a singular potential with the parameter α and the nonlinearity
f satisfies critical growth. By applying a generalized version of Lions-type

theorem and the Nehari manifold theory, we establish the existence of the

nonnegative ground state solution when λ = 0. By the perturbation method,
we obtain a nontrivial solution to above system when λ 6= 0.

1. Introduction

We consider the Schrödinger-Poisson system

−∆u+ V (|x|)u+ λφu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.1)

where V is a singular potential with the parameter α and satisfies the following
conditions:

(A1) There exist B > A > 0 such that A/tα 6 V (t) 6 B/tα for almost all t > 0.
(A2) V ∈ L1(a, b) for some (a, b) with b > a > 0.

The simplest function satisfying the above assumptions is V (x) = 1/|x|α. This is
the so-called external Coulomb potential for Helium, see [27]. Coulomb potential
arises in many scientific areas such as quantum mechanics, nuclear physics, molecu-
lar physics and quantum cosmology. For more details on the Coulomb potential, we
refer to [2, 20] and on the physical phenomena of system (1.1), we refer to [10, 14].

System (1.1) was initially introduced as a model describing waves interacting
with its own electrostatic field in quantum mechanics [9], and is related to

i
∂ψ

∂t
= −∆ψ +W (|x|)ψ + λφψ − f(ψ), (t, x) ∈ R+ × R3,

−∆φ = ψ2, x ∈ R3,
(1.2)

where the functions u and φ represent the wave functions associated with the par-
ticle and the electric potential, respectively. W (|x|) denotes an external potential,
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and the nonlinearity f(u) represents the interaction among particles or an external
nonlinear perturbation. It is well-known that the standing waves ψ(t, x) = eiωtu(x)
is a solution of system (1.2), if and only if the real valued function u(x) solves
system (1.1) with V (|x|) = W (|x|) + λ.

In the past decades, system (1.1) has attracted considerable attention in the
community of mathematical physics. In particular, the existence and nonexistence
of ground state solutions, nodal solutions and multiplicity of solutions have been
extensively studied [3, 17, 19, 24, 25] and qualitative properties such as regularity,
symmetry, uniqueness and decay of nontrivial solutions to system (1.1) can been
seen in [16, 18, 29, 33] etc. For example, Ruiz [30] considered the existence and
multiplicity of positive solutions to system (1.1) with the suitable parameter λ and
f(u) = up for p ∈ (1, 5). The nonexistence results were also obtained for p 6 3
and p > 6. Azzollini-Pomponio [4] obtained a positive ground state solution of
system (1.1) with λ = 1 and f(u) = up for p ∈ (2, 5). Ambrosetti-Ruiz [1] extended
the results described in [30] and proved that system (1.1) admits infinitely many
solutions when p ∈ (2, 5) and λ > 0. Some multiplicity results for system (1.1) were
also established with the proper range of the parameter λ and p ∈ (1, 2) or p = 2,
respectively.

Recently, there have been a number of results of system (1.1) under various
assumptions on the potential V . When V is a sign-changing potential, Batista-
Furtado [8] obtained a nonnegative solution and a sign-changing solution for the
Schrödinger-Poisson systems by employing the Nehari manifold theory and vari-
ational methods. When V vanishes at infinity, Bonheure-Di Cosmo-Mercuri [11]
investigated the existence and concentration phenomena of solutions to a class of
Schrödinger-Poisson system, under the following conditions:

(A3) V ∈ C(R3,R) and infx∈R3 V (x) > V0 > 0.
(A4) There exists z > 0 such that the set

{
x ∈ R3

∣∣V (x) < z
}

is nonempty and
has finite measure.

(A5) Ω = intV −1(0) is nonempty and has smooth boundary with Ω̄ = V −1(0).

Bartsch-Wang [7] considered a nonlinear Schrödinger equation, where λV is
called the steep potential well. Jiang-Zhou [23] presented the existence of non-
trivial solutions to system (1.1) with f(u) = |u|p−1u for p ∈ (1, 5).

He-Zou [21] studied the semiclassical solutions of the Schrödinger-Poisson system

−ε2∆u+ V (x)u+ φu = f(u) + |u|4u, x ∈ R3,

−ε2∆φ = u2, x ∈ R3,

u ∈ H1(R3), u > 0, x ∈ R3,

(1.3)

where the potential V (x) satisfies:

(A6) There is constant V0 > 0 such that V0 := infx∈R3 V (x).
(A7) There is a bounded open set Ω ⊂ R3 such that V0 < min∂Ω V (x) and

M = {x ∈ Ω|V (x) = V0} 6= ∅.
Under the above conditions and some suitable hypotheses for f(u), the existence
and the concentration results of system (1.3) were presented by using the general-
ized Nehari manifold theory, penalization techniques and Ljusternik-Schnirelmann
theory.

In this article, we are interested in the case when V satisfies (A1)-(A2), which is
different from the above mentioned cases. Let us briefly recall some related results
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on the Schrödinger equation. Su-Wang-Willem [31] considered the Schrödinger
equation

−∆u+ V (|x|)u = Q(|x|)f(u), u > 0, x ∈ RN ,
|u(x)| → 0, as |x| → ∞,

(1.4)

where N > 2, and V and f satisfy the following assumptions:

(A8) V ∈ C((0,∞),R), V (t) > 0, and there exist a and a0 such that

lim inf
t→0

V (t)

ta0
> 0, lim inf

t→∞

V (t)

ta
> 0.

(A9) Q ∈ C((0,∞),R), Q(t) > 0, and there exist b and b0 such that

lim sup
t→0

Q(t)

tb0
<∞, lim sup

t→∞

Q(t)

tb
<∞.

(A10) f ∈ C(R,R), f(0) = 0, there exists C > 0 such that

f(u) 6 C(|t|p1−1 + |t|p2−1), t ∈ R,

where p1 and p2 satisfy one of the following conditions

2∗α < p1 6 p2 < 2∗, α ∈ (0, 2),

2∗ < p1 6 p2 <∞, α ∈ (2, 2N − 2),

2∗ < p1 6 p2 <∞, α ∈ [2N − 2,∞).

(A11) There exists µ > 2 such that µF (t) 6 tf(t) for t ∈ R, where F (t) :=∫ t
0
f(s)ds.

(A12) F (t) > 0, for t ∈ R.
(A13) f is odd.

Based on the improved Strauss radial lemmas, Su-Wang-Willem [31] established
some radial inequalities. As an application of these radial inequalities, they obtained
some continuous and compact embeddings as follows.

Proposition 1.1 ([31]). Assume that N > 3 and conditions (A1), (A2) hold. Then
the following continuous embeddings hold:

W 1,2
rad(RN , V ) ↪→ Ls(RN ), s ∈ [2∗α, 2

∗], α ∈ (0, 2),

W 1,2
rad(RN , V ) ↪→ Ls(RN ), s ∈ [2∗, 2∗α], α ∈ (2, 2N − 2),

W 1,2
rad(RN , V ) ↪→ Ls(RN ), s ∈ [2∗,∞), α ∈ [2N − 2,∞).

Furthermore, the embeddings are compact if s 6= 2∗α or s 6= 2∗, where 2∗α = 2 +
4α

2N−2−α .

By Proposition 1.1 and the variational methods, the existence and multiplicity
of positive radial solutions to equation (1.3) were also established.

Li-Su-Zhao [26] studied the Schrödinger-Poisson system:

−∆u+ V (|x|)u+ φu = λQ(|x|)f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.5)

and obtained the existence and multiplicity of nontrivial radial solutions to system
(1.5) under the following conditions:



4 S. LIU, H. CHEN, Z. FENG EJDE-2020/130

(A14) V ∈ C(R3,R+) and there exists ā ∈ R such that

lim inf
t→∞

V (t)

tā
> 0.

(A15) Q ∈ C(R3,R+) and there exists b̄ ∈ R such that

lim sup
t→∞

Q(t)

tb̄
<∞.

Moreover, the nonlinearity f satisfies:

(A16) f ∈ C((−δ, δ),R) for some δ > 0 and there exists q1 ∈ (4, 6) such that

lim
|t|→0

F (t)

|t|q1
= +∞,

where F (t) =
∫ t

0
f(ξ)dξ.

(A17) There exists q2 ∈ (4, 6) with q2 < q1 such that

lim
|t|→0

f(t)t

|t|q2
= 0.

(A18) There exist β ∈ (4, 6) and δ > 0 such that

0 < βF (t) 6 tf(t), 0 < |t| 6 δ.

For more related results about elliptic equations satisfying conditions (A1) and
(A2), we refer to [5, 6, 13] and the references therein.

Here it is natural for us to ask:

Does system (1.1) with f satisfying critical growth admit nontrivial
solutions?

To the best of our knowledge, there is no answer to the above question in the
existing literature. Our purpose of this paper is to make an effort in providing an
affirmative answer to this question. To this end, we consider the Shrödinger-Poisson
system

−∆u+ V (|x|)u+ λφu = |u|2
∗
α−2u+ β|u|q−2u+ |u|4u, x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.6)

where q ∈ (2∗α, 6), 2∗α = 2 + 4α
4−α , and the nonlinearity f contains the embedding

top and bottom indices.
By the Lax-Milgram theorem, for u ∈W 1,2

rad(R3, V ), there exists a unique solution
φu ∈ D1,2(R3) satisfying −∆φu = u2, which can be represented by

φu =
1

4π

∫
R3

|u(y)|2

|x− y|
dy.

Substituting φu into system (1.6), we can reduce this system to a single equation:

−∆u+ V (|x|)u+ λφuu = |u|2
∗
α−2u+ β|u|q−2u+ |u|4u, x ∈ R3. (1.7)

Let us state our result on the nonnegative ground state solution of system (1.6).

Theorem 1.2. Assume that α ∈ (0, 2), q ∈ (2∗α, 6), λ = 0 and conditions (A1),

(A2) hold. Then there exists β̃ > 0 such that for β ∈ (β̃,+∞) system (1.6) possesses
a nonnegative ground state solution.
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Note that the effect of |u|q−2u can be regarded as a perturbation, which is used
to lower the energy and to ensure that the (PS) sequences obtained at the mountain
pass level of system (1.6) is non-vanishing.

To prove Theorem 1.2, we face the following two major difficulties: (1) In view
of α ∈ (0, 2) and Proposition 1.1, we know that the following embedding

W 1,2
rad(R3, V ) ↪→ Ls(R3), s ∈ (2∗α, 6),

is compact. In [26, 31], the compactness is guaranteed by assuming the nonlinearity
f satisfies conditions (A10) or (A16). However, the methods used in [26, 31] are
not applicable for our case due to the presence of the embedding top and bottom
indices and the lack of compactness of the following embeddings

W 1,2
rad(R3, V ) ↪→ L2∗

α(R3) and W 1,2
rad(R3, V ) ↪→ L6(R3).

(2) For α ∈ (0, 2), we know 2∗α 6= 6, which means that system (1.6) contains two
different kinds of critical embedding indices. Obviously, this case is more difficult
than the single critical case.

Following [15, 22], we can extend the existence result of Theorem 1.2 from λ = 0
to λ 6= 0. Our second result can be summarized as follows.

Theorem 1.3. Assume that α ∈ (0, 4/11), β ∈ (β̃,+∞), q ∈ (2∗α, 6) and conditions

(A1), (A2) hold, where β̃ is taken as in Theorem 1.2. Then there exists λ0 > 0 small
enough such that for any λ ∈ (0, λ0) system (1.6) possesses a nontrivial solution.

Compared with the proof of Theorem 1.2, there is an extra difficulty in proving
Theorem 1.3. For α ∈ (0, 4

11 ), we have 2∗α < 4. Then if λ 6= 0, it is not easy for us
to guarantee the boundedness of the (PS) sequences.

To prove Theorem 1.3, following [15, 22], we define the energy functional corre-
sponding to equation (1.7) by

Jλ(u) =
1

2

∫
R3

(
|∇u|2 + V (|x|)|u|2

)
dx+

λ

4

∫
R3

φu|u|2dx− 1

2∗α

∫
R3

|u|2
∗
αdx

− β

q

∫
R3

|u|qdx− 1

6

∫
R3

|u|6dx.

For λ > 0 small enough, we view the functional Jλ as a perturbation of the func-
tional J0:

Jλ(u) = J0(u) + Pλ(u),

where

J0(u) =
1

2

∫
R3

(
|∇u|2 + V (|x|)|u|2

)
dx− 1

2∗α

∫
R3

|u|2
∗
αdx

− β

q

∫
R3

|u|qdx− 1

6

∫
R3

|u|6dx,

Pλ(u) =
λ

4

∫
R3

φu|u|2dx.

Let Ω be the set of ground state critical points of J0. The perturbation method
mainly includes the following two aspects:

(i) The mountain pass type critical point of J0 is a ground state solution.

(ii) The set Ω is compact in W 1,2
rad(R3, V ).
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If the two conditions above hold, then for λ > 0 small enough there exists a (PS)
sequence of Jλ near the set Ω.

The remainder of this paper is organized as follows. In Section 2, two techni-
cal lemmas are presented. In Sections 3 and 4, we prove Theorems 1.2 and 1.3,
respectively.

2. Preliminary results

Throughout this paper, we use symbols C, Ci (i = 1, 2, . . . ) to denote different
positive constants which may change from line to line.

Let C∞0 (R3) be the collection of smooth functions with the compact support.
Let D1,2(R3) be the completion of C∞0 (R3) with the semi-norm

‖u‖D1,2(R3) =
(∫

R3

|∇u|2dx
)1/2

.

We denote by D1,2
rad(R3) the space of radial functions in D1,2(R3) and define

W 1,2(R3, V ) :=
{
u ∈ D1,2(R3) : ‖u‖2L2(R3,V ) =

∫
R3

V (|x|)|u|2dx <∞
}

=D1,2(R3) ∩ L2(R3, V )

with the norm

‖u‖2W 1,2(R3,V ) =

∫
R3

(
|∇u|2dx+ V (|x|)|u|2

)
dx.

LetW 1,2
rad(R3, V ) := D1,2

rad(R3)∩L2(R3, V ) denote the radial subspace ofW 1,2(R3, V ).

Lemma 2.1 ([28], Hardy-Littlewood-Sobolev inequality). Let s, t > 1 and θ ∈
(0, 3) with 1

s + 1
t = 1 + θ

3 . Then there exists C(θ, s, t) > 0 such that for any

u ∈ Ls(R3) and v ∈ Lt(R3) it holds∣∣ ∫
R3

∫
R3

u(x)v(y)

|x− y|3−θ
dxdy

∣∣ 6 Cθ,s,t‖u‖Ls(R3)‖v‖Lt(R3).

If s = t = 6
3+θ , then

C(θ, s, t) = π
3−θ
2

Γ( θ2 )

Γ( 3+θ
2 )

[Γ( 3
2 )

Γ(3)

]−θ/3
.

The following two inequalities play an important role in the estimation of the
mountain pass energy.

Sα
(∫

R3

|u|2
∗
αdx

)2/2∗
α

6 ‖u‖2W 1,2(R3,V ), u ∈W 1,2
rad(R3, V ), (2.1)

S
(∫

R3

|u|6dx
)1/3

6
∫
R3

|∇u|2dx, u ∈W 1,2
rad(R3, V ), (2.2)

where S and Sα are the embedding constants with

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

(
∫
R3 |u|6dx)1/3

.

The following lemma states some properties of φu.

Lemma 2.2. Assume that α ∈ (0, 4
11 ) and conditions (A1), (A2) hold. For any

u ∈W 1,2
rad(R3, V ), the following statements hold:
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(i) φu : W 1,2
rad(R3, V ) → D1,2(R3) is continuous and maps bounded sets into

bounded sets.
(ii)

∫
R3 φu|u|2dx 6 C‖u‖4W 1,2(R3,V ).

(iii) If un ⇀ u in W 1,2
rad(R3, V ), then, up to a subsequence, φun ⇀ φu in

D1,2(R3).

(iv) If un ⇀ u in W 1,2
rad(R3, V ) and un → u a.e. in R3, then, as n → +∞, we

have ∫
R3

φun−u|un − u|2dx =

∫
R3

φun |un|2dx−
∫
R3

φu|u|2dx.

The proof of the above is similar to that of [30, Lemma 2.1], so we omit it here.

3. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 by applying a generalized version of
Lions-type theorem and the Nehari manifold theory. When λ = 0, system (1.6) is
reduced to

−∆u+ V (|x|)u = |u|2
∗
α−2u+ β|u|q−2u+ |u|4u, x ∈ R3. (3.1)

The energy functional associated with equation (3.1) can be defined as

J0(u) =
1

2
‖u‖2W 1,2(R3,V ) −

1

2∗α

∫
R3

|u|2
∗
αdx− β

q

∫
R3

|u|qdx− 1

6

∫
R3

|u|6dx.

It is standard to show that J0 is well-defined on W 1,2
rad(R3, V ) and belongs to

C1(W 1,2
rad(R3, V ),R). Moreover, for any u, ϕ ∈W 1,2

rad(R3, V ), we have

〈J ′0(u), ϕ〉 =

∫
R3

(
∇u∇ϕ+ V (|x|)uϕ

)
dx−

∫
R3

|u|2
∗
α−2uϕdx

− β
∫
R3

|u|q−2uϕdx−
∫
R3

|u|4uϕdx.

Lemma 3.1. Assume that all conditions described in Theorem 1.2 hold. Then the
following statements hold.

(i) The functional J0 possesses the mountain pass geometry.

(ii) For any u ∈W 1,2
rad(R3, V )\{0}, there exists a unique tu > 0 such that tuu ∈

N and J0(tuu) = maxt>0 J0(tu), where

N =
{
u ∈W 1,2

rad(R3, V )\{0} : 〈J ′0(u), u〉 = 0
}
.

(iii) c0 = c̄0 = ¯̄c0 > 0, where

c0 = inf
γ∈Γ

max
t∈[0,1]

J0

(
γ(t)

)
, c̄0 = inf

u∈N
J0(u),

¯̄c0 = inf
u∈W 1,2

rad(R3,V )\{0}
max
t>0

J0(tu),

Γ =
{
γ ∈ C([0, 1],W 1,2

rad(R3, V )) : γ(0) = 0, J0(γ(1)) < 0
}
.

We will present the proof of this lemma in the appendix.
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3.1. Estimation of c0. The main feature of the functional J0 is that it satisfies
the local compactness condition. We now give an estimation of c0.

Lemma 3.2. Assume that all conditions described in Theorem 1.2 hold. Then we
have

0 < c0 < c∗0 := min
{1

3
S3/2,

(1

2
− 1

2∗α

)
S

2∗α
2∗α−2

α

}
.

Proof. We choose

‖v‖2W 1,2(R3,V ) = 1,

∫
R3

|v|qdx > 0, lim
t→+∞

J0(tv) = −∞.

Then

sup
t>0

J0(tv) = J0(tv,βv)

for some tv,β > 0. Hence, tv,β > 0 satisfies

t2v,β‖v‖2W 1,2(R3,V ) = t
2∗
α

v,β

∫
R3

|v|2
∗
αdx+ βtqv,β

∫
R3

|v|qdx+ t6v,β

∫
R3

|v|6dx (3.2)

and

t2v,β‖v‖2W 1,2(R3,V ) > t
6
v,β

∫
R3

|v|6dx.

This implies that {tv,β} is bounded.
We claim that tv,β → 0 as β → +∞. Argue by contradiction, suppose that there

exist t0 > 0 and a sequence {βn} with βn → +∞ as n→ +∞, such that tv,βn → t0
as n→ +∞. Then, we have

βnt
q
v,βn

∫
R3

|v|qdx→ +∞, as n→ +∞.

Substituting this into (3.2) yields

t2v,β‖v‖2W 1,2(R3,V ) = +∞,

which leads to a contradiction. That is, tv,β → 0 as β → +∞, and

lim
β→+∞

sup
t>0

J0(tv) = lim
β→+∞

J0(tv,βv) = 0.

So there exists 0 < β̃ < +∞ such that for any β > β̃,

sup
t>0

J0(tv) < min
{1

3
S3/2,

(1

2
− 1

2∗α

)
S

2∗α
2∗α−2

α

}
.

If we take e = Tv with T > 0 large enough such that J0(e) < 0, then

c0 6 max
t∈[0,1]

J0(γ(t)),

where γ(t) = tTv. Thus, c0 6 supt>0 J0(tv) < c∗0. �
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3.2. Non-vanishing of the (PS)c0 sequence.

Lemma 3.3. Assume that all conditions described in Theorem 1.2 hold. Let {un}
be a bounded (PS)c0 sequence of J0 with 0 < c0 < c∗. Then

lim
n→+∞

∫
R3

|un|2
∗
αdx > 0 and lim

n→+∞

∫
R3

|un|6dx > 0.

Proof. Let {un} be a (PS)c0 sequence of J0. We first show limn→+∞
∫
R3 |un|2

∗
αdx >

0. Otherwise, we suppose that

lim
n→+∞

∫
R3

|un|2
∗
αdx = 0. (3.3)

It follows from (3.3) and Hölder’s inequality that

lim
n→+∞

∫
R3

|un|qdx 6 C lim
n→+∞

(∫
R3

|un|2
∗
αdx

) 6−q
6−2∗α

(∫
R3

|un|6dx
) q−2∗α

6−2∗α = 0. (3.4)

By using (3.3)-(3.4) and in view of definition of the (PS)c0 sequence, we can deduce

c0 + on(1) =
1

2
‖un‖2W 1,2(R3,V ) −

1

6

∫
R3

|un|6dx, (3.5)

on(1) = ‖un‖2W 1,2(R3,V ) −
∫
R3

|un|6dx. (3.6)

Using (3.5)-(3.6) we have

c0 + on(1) =
1

3
‖un‖2W 1,2(R3,V ) >

1

3

∫
R3

|∇un|2dx. (3.7)

It follows from (2.2) and (3.6) that∫
R3

|∇un|2dx > S
(∫

R3

|un|6dx
)1/3

> S
(∫

R3

|∇un|2dx
)1/3

,

which implies ∫
R3

|∇un|2dx > S3/2. (3.8)

Combining (3.7) and (3.8) leads to

c0 >
1

3
S3/2,

which yields a contradiction with c0 < c∗0. Therefore, limn→+∞
∫
R3 |un|2

∗
αdx > 0.

To prove limn→+∞
∫
R3 |un|6dx > 0, we suppose that

lim
n→+∞

∫
R3

|un|6dx = 0. (3.9)

According to (3.4), (3.9) and the definition of the (PS)c0 sequence, it holds

c0 + on(1) =
1

2
‖un‖2W 1,2(R3,V ) −

1

2∗α

∫
R3

|un|2
∗
αdx, (3.10)

on(1) = ‖un‖2W 1,2(R3,V ) −
∫
R3

|un|2
∗
αdx. (3.11)

Using (3.10) and (3.11), we have

c0 + on(1) =
(1

2
− 1

2∗α

)
‖un‖2W 1,2(R3,V ). (3.12)
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Taking into account (2.1) and (3.11), we obtain

‖un‖2W 1,2(R3,V ) > Sα
(∫

R3

|un|2
∗
αdx

)2/2∗
α

= Sα‖un‖
4

2∗α
W 1,2(R3,V ),

which gives

‖un‖2W 1,2(R3,V ) > S
2∗α

2∗α−2

α . (3.13)

It follows from (3.12) and (3.13) that

c0 >
(1

2
− 1

2∗α

)
S

2∗α
2∗α−2

α ,

which yields another contradiction with c0 < c∗0. Consequently, we have

lim
n→+∞

∫
R3

|un|6dx > 0.

�

3.3. Existence of ground state solution.

Theorem 3.4 ([32]). Assume that α ∈ (0, 2) and conditions (A1), (A2) hold. Let

{un} ⊂W 1,2
rad(R3, V ) be any bounded sequence satisfying

lim
n→+∞

∫
R3

|un|2
∗
αdx > 0 and lim

n→+∞

∫
R3

|un|6dx > 0.

Then the sequence {un} converges weakly and a.e. to u 6≡ 0 in L2
loc(R3).

Proof of Theorem 1.2. Let {un} be a (PS)c0 sequence of J0. Then we have

c0 + on(1) =
1

2
‖un‖2W 1,2(R3,V ) −

1

2∗α

∫
R3

|un|2
∗
αdx− 1

q

∫
R3

|un|qdx−
1

6

∫
R3

|un|6dx

and

on(1) = ‖un‖2W 1,2(R3,V ) −
∫
R3

|un|2
∗
αdx−

∫
R3

|un|qdx−
∫
R3

|un|6dx.

Combining the two equalities above we have

c0 + on(1) =
(1

2
− 1

2∗α

)
‖un‖2W 1,2(R3,V ) +

( 1

2∗α
− 1

q

)∫
R3

|un|qdx

+
( 1

2∗α
− 1

6

)∫
R3

|un|6dx,

which implies that {un} is bounded in W 1,2
rad(R3, V ). According to Lemma 3.3 and

Theorem 3.4, we can see that {un} converges weakly and a.e. to u0 6≡ 0 inL2
loc(R3).

From un ⇀ u0 in W 1,2
rad(R3, V ) and limn→+∞〈J ′0(un), ϕ〉 = on(1), we deduce

〈J ′0(u0), ϕ〉 = on(1).

Since u0 6≡ 0, we obtain u0 ∈ N . By Lemma 2.2 and the Brézis-Lieb lemma [12],
we have

c̄0 6J0(u0)

=J0(u0)− 1

2∗α
〈J ′0(u0), u0〉

=
(1

2
− 1

2∗α

)
‖u0‖2W 1,2(R3,V ) +

( 1

2∗α
− 1

q

)∫
R3

|u0|qdx+
( 1

2∗α
− 1

6

)∫
R3

|u0|6dx
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6 lim
n→+∞

[(1

2
− 1

2∗α

)
‖un‖2W 1,2(R3,V ) +

( 1

2∗α
− 1

q

)∫
R3

|un|qdx

+
( 1

2∗α
− 1

6

)∫
R3

|un|6dx
]

= lim
n→+∞

[
J0(un)− 1

2∗α
〈J ′0(un), un〉

]
= lim
n→+∞

J0(un)

=c̄0,

which implies J0(u0) = c̄0. Then, it is easy to see that

lim
n→+∞

[(1

2
− 1

2∗α

)
‖un − u0‖2W 1,2(R3,V ) +

( 1

2∗α
− 1

q

)∫
R3

|un − u0|qdx

+
( 1

2∗α
− 1

6

)∫
R3

|un − u0|6dx
]

= 0,

which implies
lim

n→+∞
‖un − u0‖2W 1,2(R3,V ) = 0.

Thus, we have un → u0 in W 1,2
rad(R3, V ). Moreover, we can choose u0 > 0. That

is, u0 ∈ W 1,2
rad(R3, V ) is a nonnegative ground state solution of system (1.6) with

λ = 0. �

4. Proof of Theorem 1.3

In this section, we apply the perturbation method to prove the existence of
nontrivial solutions to system (1.6) with λ 6= 0. The associated energy functional
with system (1.6) can be defined as

Jλ(u) =
1

2
‖u‖2W 1,2(R3,V ) +

λ

4

∫
R3

φu|u|2dx− 1

2∗α

∫
R3

|u|2
∗
αdx

− β

q

∫
R3

|u|qdx− 1

6

∫
R3

|u|6dx.

From Lemma 2.1, it is easy to show that Jλ ∈ C1(W 1,2
rad(R3, V ),R) and

〈J ′λ(u), ϕ〉 =

∫
R3

(
∇u∇ϕ+ V (|x|)uϕ

)
dx+ λ

∫
R3

φuuϕdx−
∫
R3

|u|2
∗
α−2uϕdx

− β
∫
R3

|u|q−2uϕdx−
∫
R3

|u|4uϕdx

for u, ϕ ∈W 1,2
rad(R3, V ).

Lemma 4.1. Assume that all conditions described in Theorem 1.3 hold. The func-
tional J0 satisfies the following properties.

(i) There exist ρ, δ > 0 such that if ‖u‖W 1,2(R3,V ) = ρ, then J0(u) > δ and

there exists v0 ∈W 1,2
rad(R3, V ) such that ‖v0‖W 1,2(R3,V ) > ρ and J0(v0) < 0.

(ii) There exists a critical point u0 of J0 such that

J0(u0) = c0 := min
γ∈Γ0

max
t∈[0,1]

J0(γ(t)),

where

Γ0 =
{
γ ∈ C([0, 1],W 1,2

rad(R3, V )) : γ(0) = 0, γ(1) = v0

}
.
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(iii) For any u ∈W 1,2
rad(R3, V )\{0}, we have c0 = inf{J0(u) : J ′0(u) = 0}.

(iv) There exists a path γ0(t) ∈ Γ0 passing through u0 at t = t0 and satisfies

J0(u0) > J0

(
γ0(t)

)
, t 6= t0.

(v) The set

Ω :=
{
u ∈W 1,2

rad(R3, V ) : J0(u) = c0, J
′
0(u) = 0

}
is compact in W 1,2

rad(R3, V ).

Proof. Since the proofs of (i)–(iii) are closely similar to those in Lemma 3.1, we
only present the proof of (iv) and (v). Let u0 be a critical point of J0 and v0 = Tu0

with T > 0 large enough such that J0(v0) < 0. Then γ0(t) ∈ C([0, 1],W 1,2
rad(R3, V ))

can be defined by
γ0(t) = tv0 = tTu0.

By taking t0 = 1/T , we can see that (iv) is true Analogous to the proof of Theorem
1.2, the weak convergence of the critical point sequence can be upgraded into the
strong convergence. That is, (v) is also true. �

Following [15, 22], we define a modified mountain pass energy level of Jλ as

cλ := min
γ∈ΓM

max
t∈[0,1]

Jλ(γ(t)),

where

ΓM =
{
γ ∈ Γ0 : sup

t∈[0,1]

‖γ(t)‖W 1,2(R3,V ) 6M
}
,

M = 2 max
{

sup
u∈Ω
‖u‖W 1,2(R3,V ), sup

t∈[0,1]

‖γ(t)‖W 1,2(R3,V )

}
.

Clearly, taking a suitable choice of M , we have γ0 ∈ ΓM . Then

c0 = min
γ∈ΓM

max
t∈[0,1]

J0(γ(t)).

Taking into account that ΓM ( Γ0, the standard mountain pass theorem cannot
be applied. So we have to show that cλ is a critical value.

Lemma 4.2. Let λ > 0. Then limλ→0 cλ = c0.

Proof. On the one hand, for λ > 0, it is easy to see cλ > c0. On the other hand, in
view of Lemmas 2.2 and 4.1, we can deduce

lim
λ→0

cλ = lim
λ→0

Jλ
(
γ0(t)

)
6J0

(
γ0(t)

)
+ lim
λ→0

λ

4

∫
R3

φu0
|u0|2dx

=J0(u0) + o(1)

=c0 + o(1).

�

For a d > 0 we define

Bd(u) :=
{
v ∈W 1,2

rad(R3, V ) : ‖u− v‖W 1,2(R3,V ) 6 d
}
,

and for any X ⊂W 1,2
rad(R3, V ) we set

Xd := ∪u∈XBd(u).
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Lemma 4.3. Let d1 =
√

3c0 and d ∈ (0, d1). Then for any u ⊂ Ωd, we have u 6≡ 0.

Proof. For each v ⊂ Ωd, we obtain

c0 =
1

3
‖v‖2W 1,2(R3,V ) +

(1

6
− 1

2∗α

)∫
R3

|v|2
∗
αdx+ β

(1

6
− 1

q

)∫
R3

|v|qdx,

which gives

‖v‖W 1,2(R3,V ) > d1.

In view of u ∈ Ωd, we know that there exists some v ∈ Ωd such that

‖u− v‖W 1,2(R3,V ) 6 d < d1.

Thus, we obtain

‖u‖W 1,2(R3,V ) > ‖v‖W 1,2(R3,V ) − ‖u− v‖W 1,2(R3,V ) > d1 − d > 0.

�

Lemma 4.4. Suppose that d > 0 is a fixed number and {un} ⊂ Ωd. Then, up to a
subsequence, it holds un ⇀ ũ ∈ Ω2d.

Proof. By the definition of Ωd, there exists a sequence {vn} ⊂ Ω such that {un} ⊂
Bd(vn). According to Lemma 4.1 (v), we can assume that there exists v ∈ Ω such

that vn → v in W 1,2
rad(R3, V ). Thus, we obtain

‖un − v‖W 1,2(R3,V ) 6 ‖un − vn‖W 1,2(R3,V ) + ‖vn − v‖W 1,2(R3,V ) 6 2d,

which implies {un} ⊂ B2d(v) for n > 0 large enough. Moreover, {un} is bounded

and, up to a subsequence, there exists ũ such that un ⇀ ũ in W 1,2
rad(R3, V ). Since

B2d(v) is weakly closed in W 1,2
rad(R3, V ), we arrive at ũ ∈ B2d(v) ⊂ Ω2d. �

Lemma 4.5. Let d ∈ (0, d1). Assume that there exist a sequence {λn} → 0 and
{un} ⊂ Ωd satisfying

lim
n→+∞

Jλn(un) 6 c0 and lim
n→+∞

J ′λn(un) = 0.

Then there exists a ũ ∈ Ω such that, up to a subsequence, {un} converges strongly
to ũ.

Proof. Note that limn→+∞ J ′λn(un) = 0 and {un} is bounded. From Lemma 4.4,

up to a subsequence, there exists un ⇀ ũ ∈ Ω2d. For any ϕ ∈ W 1,2
rad(R3, V ), it

follows that

〈J ′0(ũ), ϕ〉 =

∫
R3

(
∇ũ∇ϕ+ V (|x|)ũϕ

)
dx−

∫
R3

|ũ|2
∗
α−2ũϕdx

− β
∫
R3

|ũ|q−2ũϕdx−
∫
R3

|ũ|4ũϕdx

= lim
n→+∞

[ ∫
R3

(
∇un∇ϕ+ V (|x|)unϕ

)
dx−

∫
R3

|un|2
∗
α−2unϕdx

− β
∫
R3

|un|q−2unϕdx−
∫
R3

|un|4unϕdx
]

= lim
n→+∞

[
〈J ′λn(un), ϕ〉 − λn

4

∫
R3

φununϕdx
]

= 0.
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So J ′0(ũ) = 0. From limn→+∞ J ′λn(un) = 0 and {λn} → 0 as n → +∞, it follows
that

lim
n→+∞

〈J ′0(un), ϕ〉 = lim
n→+∞

[
〈J ′λn(un), ϕ〉 − λn

4

∫
R3

φununϕdx
]

= 0.

On the other hand,

c0 > lim
n→+∞

Jλn(un)

= lim
n→+∞

[
J0(un) +

λn
4

∫
R3

φununϕdx
]

= lim
n→+∞

J0(un).

(4.1)

Therefore, {un} is a (PS)m sequence of J0, where m := limn→+∞ J0(un). Since
un ⇀ ũ, up to a subsequence, we can deduce

J0(ũ) =J0(ũ)− 1

2∗α
〈J ′0(ũ), ũ〉

=
(1

2
− 1

2∗α

)
‖ũ‖2W 1,2(R3,V ) + β

( 1

2∗α
− 1

q

)∫
R3

|ũ|qdx+
( 1

2∗α
− 1

6

)∫
R3

|ũ|6dx

6 lim inf
n→+∞

[(1

2
− 1

2∗α

)
‖un‖2W 1,2(R3,V ) + β

( 1

2∗α
− 1

q

)∫
R3

|un|qdx

+
( 1

2∗α
− 1

6

)∫
R3

|un|6dx
]

= lim inf
n→+∞

[
J0(un)− 1

2∗α
〈J ′0(un), un〉

]
= m.

In view of Lemma 4.1 (iii), we have m > J0(ũ) > c0. Moreover, combining the
above inequality and (4.1), we obtain J0(ũ) = c0 = m, which implies ũ ∈ Ω. �

Let

mλ := max
t∈[0,1]

Jλ
(
γ0(t)

)
.

Then cλ 6 mλ. It is easy to see that

lim
λ→0

mλ 6 c0.

From Lemma 4.2 it follows that

lim
λ→0

cλ = lim
λ→0

mλ = c0.

We define

Jmλλ =
{
u ∈W 1,2

rad(R3, V ) : Jλ(u) 6 mλ

}
.

Lemma 4.6. For every d2, d3 > 0 satisfying d3 < d2 < d1, there exist δ > 0 and
λ0 > 0 dependent on d2, d3 such that for any λ ∈ (0, λ0), we have

‖J ′λ(u)‖W−1,2(R3,V ) > δ, u ∈ Jmλλ ∩ (Ωd2\Ωd3).

Proof. We argue by contradiction. For every d2, d3 > 0 satisfying d3 < d2 < d1,
we suppose that there exist sequences {λn} with limn→+∞ λn = 0 and {un} ⊂
Jmλλ ∩ (Ωd2\Ωd3) satisfying

lim
n→+∞

Jλn(un) 6 c0 and lim
n→+∞

J ′λn(un) = 0.
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By Lemma 4.5, there exists ũ ∈ Ω such that un → ũ in W 1,2
rad(R3, V ), as n→ +∞.

Passing the limit as n→ +∞, we have dist(un, ũ) = 0. It leads to a contradiction
with {un} 6⊂ Ωd3 . �

Lemma 4.7. For d > 0, there exists δ > 0 such that if λ > 0 is small, then

t ∈ [0, 1] and Jλ
(
γ0(t)

)
> cλ − δ =⇒ γ0(t) ∈ Ωd.

The proof of the above lemma is similar to that of [22, Proposition 4], so we
omit it here.

Lemma 4.8 ([15]). For any d ∈ (0, d1), there exist a number λ0 > 0 and a sequence
{un} ⊂ Jmλλ ∩ Ωd such that for all λ ∈ (0, λ0), we have

J ′λ(un)→ 0, as n→ +∞.

Proof of Theorem 1.3. Taking d ∈ (0, d1), it follows from Lemma 4.8 that there
exists some small λ0 > 0 such that for any fixed λ ∈ (0, λ0), there exists a (PS)mλ
sequence {uλn} ⊂ Ω

d
2 . It is easy to see that {uλn} is bounded in W 1,2

rad(R3, V ).

According to Lemma 4.4, up to a subsequence, there exists ũλ ∈ Ωd such that
uλn ⇀ ũλ. Hence, we obtain J ′λ(ũλ) = 0. By the choice of a proper d, we can
see that ũλ 6≡ 0. Consequently, ũλ is a nontrivial solution of system (1.6), when
λ 6= 0. �

Appendix

Proof of Lemma 3.1. (i) It suffices to show that J0 satisfies the mountain pass
geometry. By the mountain pass theorem, we can obtain a (PS)c0 sequence of J0.

(ii) For t > 0, let

g(t) = J0(tu) =
t2

2
‖u‖2W 1,2(R3,V ) −

t2
∗
α

2∗α

∫
R3

|u|2
∗
αdx− tq

q

∫
R3

|u|qdx− t6

6

∫
R3

|u|6dx.

For t > 0 small enough, it follows from Proposition 1.1 that

g(t) >
t2

2
‖u‖2W 1,2(R3,V ) − C1t

2∗
α‖u‖2

∗
α

W 1,2(R3,V ) − C2t
q‖u‖qW 1,2(R3,V )

− C3t
6‖u‖6W 1,2(R3,V ).

Clearly, we have g(t) > 0 for t > 0 small enough. Furthermore, it is easy to see
that J0(tu)→ −∞, as t→ +∞. Thus, g(t) has a maximum at t = tu > 0, and we
further have g′(tu) = 0 and tuu ∈ N .

Next, we show that tu is unique. On the contrary, we suppose that there exist
0 < tu < t̃u such that t̃uu, tuu ∈ N . Then we have( 1

t̃
2∗
α−2
u

− 1

t
2∗
α−2
u

)
‖u‖2W 1,2(R3,V )

=
(
t̃
q−2∗

α
u − tq−2∗

α
u

) ∫
R3

|u|qdx+
(
t̃
6−2∗

α
u − t6−2∗

α
u

) ∫
R3

|u|6dx,

which is impossible because 0 < tu < t̃u and q ∈ (2∗α, 6).
(iii) Using (ii), we have c̄0 = ¯̄c0. Choose t̄ > 0 large enough such that

J0(t̄u) < 0.
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Define a path γ̃ : [0, 1] → W 1,2
rad(R3, V ) by γ̃(t) = t̄tu, so we have γ̃ ∈ Γ. Thus, we

have c 6 ¯̄c. On the other hand, let h(t) := 〈J ′0
(
γ(t)

)
, γ(t)〉, where γ ∈ Γ. Then we

obtain h(t) > 0 for t > 0 small enough. Set γ(1) = e. Then we derive

J0(e)− 1

2∗α
〈J ′0(e), e〉

=
(1

2
− 1

2∗α

)
‖e‖2W 1,2(R3,V ) +

( 1

2∗α
− 1

q

)∫
R3

|e|qdx+
( 1

2∗α
− 1

6

)∫
R3

|e|6dx > 0,

which leads to

〈J ′0(e), e〉 < 2∗αJ0(e) < 0.

This indicates that there exists ¯̄t ∈ (0, 1) such that 〈J ′0
(
γ(¯̄t)

)
, γ(¯̄t)〉 = 0, i.e. γ(¯̄t) ∈

N . Hence, we obtain c̄0 6 c0. �
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