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ORLICZ ESTIMATES FOR GENERAL PARABOLIC OBSTACLE
PROBLEMS WITH p(¢t,2)-GROWTH IN REIFENBERG DOMAINS

HONG TIAN, SHENZHOU ZHENG

ABSTRACT. This article shows a global gradient estimate in the framework of
Orlicz spaces for general parabolic obstacle problems with p(¢, z)-Laplacian in
a bounded rough domain. It is assumed that the variable exponent p(t, z) sat-
isfies a strong log-Holder continuity, that the associated nonlinearity is mea-
surable in the time variable and have small BMO semi-norms in the space
variables, and that the boundary of the domain has Reifenberg flatness.

1. INTRODUCTION

We devote this article to obtaining a nonlinear Calderén-Zygmund type esti-
mate in the framework of Orlicz spaces for general parabolic obstacle problems of
nonstandard growths with weaker regularity assumptions imposed on given datum.
First, let us review recent studies on the related topic. The Calderén-Zygmund
estimate for elliptic p-Laplacian in the scalar setting N = 1 had been first obtained
by Iwaniec [I7], while the vectorial setting N > 1 was treated by DiBenedetto
and Manfredi [I4]. An extension to general elliptic equations with VMO lead-
ing coefficients was achieved by Kinnunen and Zhou [22]. Recently, a nonlinear
Calderon-Zygmund estimate for parabolic obstacle problems involving possibly de-
generate operators of p-growth was obtained by Bogelein, Duzaar and Mingione
[6]. Byun and Cho [8] also established a local Calderén-Zygmund estimate for par-
abolic variational inequalities of general type degenerate and singular operators in
divergence form, and they proved that for any ¢ € (1,00) it holds

[l (DY, [FIP € L, (Qr) = |Dul’ € L, (2r).

loc loc

A local regularity version in Lorentz spaces for the gradients of weak solution to
parabolic obstacle problems has been also achieved by Baroni [3]. Later, Byun
and Cho in [9] showed a global regularity in Orlicz spaces for the gradients of
weak solution to parabolic variational inequalities of p-Laplacian type under weak
assumptions that the nonlinearities are merely measurable in the time-variable and
have small BMO semi-norms in the spatial variables, while the underlying domain is
a Reifenberg flatness. Tian and Zheng [27] also derived a global weighted Lorentz
estimate to nonlinear parabolic equations with partial regular nonlinearity in a
nonsmooth domain. On the other hand, we would like to mention that Zhang and
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Zheng [28] got Lorentz estimates for asymptotically regular elliptic equations in
quasiconvex domains, and Liang and Zheng [19] established the gradient estimate
in Orlicz spaces for elliptic obstacle problems with partially BMO nonlinearities.
Very recently, Liang, Zheng and Feng [20] showed a global Calderén-Zygmund type
estimate in Lorentz spaces for a variable power of the gradients of weak solution
pair (u, P) to generalized steady Stokes system in a bounded Reifenberg domain.

Nonlinear elliptic and parabolic problem under consideration with a variable
growth naturally originates from some mathematical modeling of fluid dynamics,
such as certain models for non-Newtonian fluids and electrorheological fluids. In-
deed, there are also various phenomena involved some energy functionals, for exam-
ple, elastic mechanics, porous media problems, and thermistor problems (cf. [26]).
Therefore, it is a rather interesting topic in the fields of analysis and PDEs to get
nonlinear Calderén-Zygmund theory for general elliptic and parabolic equations
with variable growths. In recent decades, a lot of attention has been paid to a sys-
tematic study on the Calderén-Zygmund theory for nonlinear elliptic and parabolic
problems with nonstandard growths. For instance, some regularities regarding gen-
eral elliptic equations of p(z)-growth have been treated by Acerbi and Mingione [I].
Naturally, there also have been many interesting theoretic developments involving
more general obstacle problems since this kind of problems of variable growths al-
ways appeared in various phenomena of physical applications. It was observed by
Bogelein and Duzaar in [5] that it holds a higher integrability for the gradients of
weak solutions to possibly degenerate parabolic systems with nonstandard growth.
Later Baroni and Bogelein in [4] showed nonlinear Calderén-Zygmund estimate
for evolutionary p(t, z)-Laplacian system in requiring the variable exponent p(t, x)
being a logarithmic Holder continuity and the coefficients a(t, z) satisfying VMO
condition in the spatial variables. Erhardt [I6] considered an interior L%-estimate
of |Du|p(t’“’) for general parabolic variational inequality in the weak form as

(66,6 — whap + / a(t, 2)| Dul"™) "2 Du - D( — u) du dt

T

1
+ §||¢(aa) _ua”%ﬁ(ﬂ) (1.1)

2/ [fPED=2F. D(¢p — ) da dt,
Qr

and he showed that |Du|p(m) belongs to a local integrability with the same index
as an assigned obstacle | Dy[P(:2) | |4, |1 as well as [f]P(4%) | which implies that

[ e 75, [DGPE), (8P € L () = [DulP™?) € LY, (Qr)

loc

for any ¢ € (1,00). On the other hand, Li [24] handled a higher integrability
for the derivatives of very weak solutions to parabolic systems of p(¢, z)-Laplacian
type with the inhomogeneity being different growths, respectively. Furthermore,
Bui and Duong [7] derived global weighted estimate in Lorentz spaces for nonlinear
parabolic equations of p(t,z)-growth in a Reifenberg flat domain with the non-
linearities a(t,z;£) being small BMO in the spatial variables, while the variable
growth p(t, z) satisfying a strong log-Holder continuity. Byun and Ok [10] reached
a global L*®*)_integrability with s(t, ) > p(t, z) for the gradients of weak solution
to general parabolic equations of p(t, z)-growth in Reifenberg flat domains by im-
posing the same weak regular assumptions as shown in [7] on a(¢, z;§), p(t, z) and
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the boundary of the underlying domains. Li, Zhang and Zheng [I8] established a
local Orlicz estimate for nondivergence linear elliptic equations with partially BMO
coefficients, and Chlebicka in [I2] provided the Lorentz and Morrey estimates for
the gradients of solution to general nonlinear elliptic equations with the datum of
Orlicz growths. Byun and Park [11] considered global weighted Orlicz estimate to
nonlinear parabolic equation with measurable nonlinearity in a bounded nonsmooth
domain while the right-hand side is of finite signed Radon measure.

This article is inspired by these above-mentioned recent progresses. The aim of
this article is to show a global Calderén-Zygmund type estimate in Orlicz spaces for
nonlinear parabolic obstacle problems of nonstandard growth with weaker regularity
assumptions on the given datum, which means an implication that

|71, | D[P | fPE) € L(Qr) = |DulP®) € L?(Qy) (1.2)

for Young’s function ¢ € As N Vy defined below. As we know, the Orlicz space
is a generalization of Lebesgue spaces. Jia, Li and Wang [2]I] recently obtained
a global Orlicz estimate to linear elliptic equations of divergence form with small
BMO coefficients in Reifenberg flat domains. Byun and Cho [9] obtained Orlicz
estimates to parabolic obstacles problems of p-Laplacian type for 24 < p < oo,

d+2
they proved that
[el”', DY, [FP € L(Qr) = |Dul € L?(Qr)

for ¢ € Ay N Vo while the nonlinearity is small BMO in spatial variables and the
domain is Reifenberg flatness.

A key ingredient under consideration is the power p(t, z) being a variable function
with respect to the independent variables (¢, ). In this way, the Hardy-Littlewood
maximal operators technique does not work well for parabolic equations of p(t, x)-
growth since the usual scaling arguments used for p = 2 do not work smoothly.
The main difficulty for parabolic setting comes from the nonhomogeneous scaling
behavior for variational inequalities so that any solution multiplied by a constant is
in general no longer a solution of original problem. We here employ the technique
of the so-called intrinsic parabolic cylinder first introduced by DiBenedetto and
Friedman [I3], which applies the time-space scaling dependent on a local behavior of
the solution itself to re-balance the nonhomogeneous scaling for parabolic problem
of p-Laplacian. Another point is that we adapt the so-called large-M-inequality
principle from Acerbi and Mingione’s work [2] to our situation with non-trivial
modifications and significant improvements. In order to get a suitable power decay
for the following upper level we set

{(t,2) € Qr : |DulP"*) > x}

with the scaling parameter « > 0 sufficiently large, we make use of the so-called
stop-time argument and the modified Vitali type covering with a countable covering
by the intrinsic parabolic cylinder {QF (7, y:)}52, satisfying

][ | Du|P®®) d dt ~ k,
Qr, (Tiyyi)

which will be discussed in Section 3.

The rest of this article is organized as follows. In the next section we present the
weaker regular assumptions on the datum, and state our main result. Section 3 is to
give necessary preliminary lemmas, in which shows various comparison estimates to
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the reference problems. Finally, we devote Section 4 to the proof of main Theorem
2.0l

2. MINIMAL ASSUMPTIONS ON THE DATUM AND MAIN RESULT

Let Q be a bounded domain in R? for d > 2 with its rough boundary 0%
specified later. For a fixed a € Rand 0 < T < o0, let Qr = (a,a+T) x Q
denote the parabolic cylinder in R x R%, and the typical parabolic boundary 0 =
((a, a+T)x GQ) U ({t =a} x ﬁ) be the typical parabolic boundary of Qp. We
suppose that the main nonlinearity

a(t,z:6) = (al(t,2:6), 6*(t,5:), ... a’(t,3€) ) : O x RY — R

is a Carathéodory vectorial-valued function with the following basic structural con-
ditions: for a.a. (t,z) € Qr and all £&,1 € R?, there exist constants 0 < A <1 < A
and 0 < u <1 such that

p(t,z)—2

A(M2 + |§\2) © InP < Dea(t,z;€)n -,

N (2.1)
2 2\ 2 2 Heg=
a(ta; )] + (12 +167) " IDealt.z: )| < A (1® +[¢P?)
Let the given obstacle function 1 : Qp — R satisfy
v e Caa+ THIAQ) WD (@), e Li(aat+ W@,

P <0ae. on (a,a+T) x9N, Ya,-)<0a.e onQ;
and let an initial value u, be such that
g = u(a,-) € L*(Q) and wu, >(a,-) a.e. on Q.
We introduce an admissible set defined by
AQr) = {¢ € COa,a+T); LX) N WEP(Qr) : ¢ > ¢ ae. on Qp).  (2.3)

Note that a minimizing the energy functional with certain constraint in A(Q7)
immediately leads to the following form: for u = u(t,z) € A(Qr) it holds in the
weak form of the parabolic variational inequality

(D1, 0 —u)a, -I-/

1
A a(t,z,Du) - D(¢ — u) dx dt + §||¢(a, )= ua||2L2(Q)

(2.4)
> / [fPED=2F. D(¢p — u) da dt
Qr

for all test functions ¢ € A'(Qr) = {¢ € AQr) : ¢, € (WPED)(Qr))'}, where
f e LP(2) (Qr) is a given inhomogeneous term.

For convenience, throughout this paper we assume that R < 1 is an arbitrary
given positive number, while § € (0,1/8) is to be determined later. Let us now
endow the variable exponent p(t,z) : Qpr — R with the regularity of the so-
called strong log-Holder continuity. We write d,(21, z2) the parabolic distance by
dp(21, 22) == max {|z —y|, /|7 — t|} for any z1 = (t,x), 22 = (7,y) € R4TL. We say
that p(t, z) is locally strong log-Holder continuous, denoted by p(t,z) € SLH (1),
if for some constant p > 0 such that for all z; = (¢,2),22 = (7,y) € Qr with
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0 < dp(z1,22) < p, one has that there exists a nondecreasing continuous function
w(+) : [0,00) — [0, 1] satistying w(0) = 0 such that

p(z1) = p(22)] < w(dp(z1,22)) (2.5)
with .
lim sup w(p) log (7) =0.
p—0 P
It is easy to check that if p(¢, ) is a strong logarithmic Holder continuity, then for
any given d € (0,1/8) there exists a small R > 0 such that

sup w(p)log (l) <. (2.6)
0<p<R P

Regarding the parabolic problems with variable exponent growth in the context,
the exponent p(t,z) : Qr — R is supposed to be a strong log-Hélder continuity
with the constraint ; moreover, there exist constants v; and 7- such that
the range distribution by

% <= iélep(t, x) < yg = s(ngpp(t,:E) < 0. (2.7
Indeed, to ensure the solvability for nonlinear parabolic problems of p-Laplacian
type, the lower bound ~; > dQ—fQ is unavoidable even in the constant exponent
setting p(z) = p, for more details see [I0, Section 2]. With the assumptions
and in hand, the existence of such weak solution is ensured by the
result from Erhardt [16], which leads to that there exists a unique weak solution
u € A(Qr) to the parabolic variational inequality with the estimate

sup /|u(t,x)|2das—|—/ | DulP®®) da dt
tela,a+T] JQ Qr

<o [ (1t + 1o 4 g0 1 1) o),

Qr

(2.8)

where C is a positive constant depending only on d, vy, 72, A, A and Hua||L2(Q), see
also [T6, Theorem 7.1].

We now recall that the space LP(:®)(Qr) is defined to be the set of these mea-
surable functions g(t,x) : Qr — R¥ for k € N, which satisfies |g|?*) € L'(Q7),
ie.

LPE2)(Qr) = {g9(t,z) : Qr — R¥ is measurable in Qr : / [Pt da dt < +o0},
Qp

which is a Banach space equipped with the Luxemburg norm

191l ot 01y := inf {/\ >0: /Q |§|”“*“”) dz dt < 1}. (2.9)
T

The Sobolev spaces WP%:%) (Qr) is defined by
WPt (Qr) == {g € L") (Qr) : Dg € L") (Qr)}
endowed with the norm
lgllwreo @r) = 19llLre @) + 1Dl Loeo) (@r)- (2.10)

It would be worthwhile to mention that for g € WF""(Qr) it indicates that
g(t,z) = 0 in the sense of trace on the boundary of Q. For 1 < p(t,z) < oo, we
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also denote the dual space of Wg(t’x)(QT) by (WP®2)(Qq)), which means that for
g € (WPED)(Qr)) there exist functions ¢; € L %) (Qr) with p/(t,z) = pg(i.’)le
for i =0,1,...,d such that the dual parting

d
(g, w)a, = /QT (gow + i_zlgiDiw) dz dt

for all w € Wé’(t’x) (Qr). In particular, if p(t,z) = v, it yields that
W (Qr) = L (a,a + T; WH(Q)).

Consequently, the dual space of W, (Q2r) is given by
/ 7 ’
(W3 (@) = (L7 (@ + T W™ () = Lk 0,0+ ToW =15 (),

where 711 + vi’ =1.
1
Now we impose some regularity assumptions on the nonlinearities a(t, x; £) and
on the boundary 992 of domain. For this, let p,0 > 0, B,(y) = {z € R¢ : [z—y| < p},
and the local parabolic cylinders

Quo.p)(Ty) = (T = 0,7+ 0) x By(y)

with any (7,y) € R x R For the abbreviations, B, = B,(0) , Q,,) = Q(s,5)(0,0)

and Q, = Q(,2,,), we measure the oscillation of a(t,z;€)/(u? + |£|2)p(t’g’;)71 in the
a-variables over the ball B,(y) by

Ola; B, (y)](t,z) := su

£€R4

(t, 2 6) _( (t,-¢) )
(2 + 1) "5 Mg Bl

where

( s 75) t . 5)
’ dx
((:u + |§|2)p(t )Bp(y) |B ‘ / L (v) /.L + ‘£| )p(t ,o)—1

represents an integral average of a(t, x;€)/(u? + [£]?) PP in the z-variables over
B,(y) for any fixed £ € R? and t € R.

Assumption 2.1. Let § € (0,1/8) to be specified later. We say that (a,r) is a
(6, R)-vanishing in the spatial variables, if for every point (7,y) € Qr there exists a
constant 0 < R < 1 such that for any p € (0, R) the following relation holds: (i) If

dist(y, 09Q) = nelggz dist(y, z) > v/2p,

then there exists a coordinate system depending on (7, y) and p, whose variables are
still denoted by (¢, ) such that in this new coordinate system (7,y) is the origin,
and for every 6 € (0, p?) one has

][ ’@[a§Bp(y)](t7$)|2dwdt§52;
Qo,p) (T5y)

(ii) while
dist(y,0Q) = mia?z dist(y, z) = dist(y,7) < V2p
re
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for some g € 0N, there exists a new coordinate system depending on (7,y) and p,
whose variables are denoted by (¢, x), such that in this new coordinate system (7, 7)
is the origin, and for any 6 € (0, (3;))2) it holds

By, (5) N {1 > 33p} € Bay(5) NQ C By(5) N {1 > ~35p) (2.11)

and
][ |6[a; B, (9)](t, 2)|” d dt < 6.
Q0,30)(7,7)

p(t,xz)—1 |
2

Remark 2.2. Roughly speaking, the nonlinearity a(t,z;¢)/(u? + |€]?) is
assumed to be a small BMO semi-norm in the z-variables, but there is no regular
requirement in the t-variable, uniformly in ¢ € R%; while the domain € is assumed
to be the (4, R)-Reifenberg flatness as a necessary geometric condition if
holds, which leads to the following measure density conditions:

|Br(x0)| ( 2 )d
i < 2.12
0<T§pR2 zoeapﬂ QN B.(xo)] ~ \1—=196 ( )

and

inf  inf
0<rERy 2002 | By (20)]

[92°0 Br(wo)| (1 —5){ (2.13)

2

which actually guarantees a local reverse Holder inequality automatically holds on
the boundary.

It is our aim to obtain global Calderén-Zygmund type estimate in Orlicz spaces
for nonlinear parabolic obstacle problems. For this, let ® consist of all functions
¢ : R — [0, 00) which are nonnegative, even, nondecreasing on [0, c0) and ¢(0%) = 0,

lim, 00 ¢(v) = co. We say that ¢ is Young function, if ¢ € ® is convex and
lim,,_,q+ @ = lim, ﬁ = 0. To make the function ¢ grow moderately near 0

and oo, the Young function ¢ is said to be global Az-condition, denoted by ¢ € Ao,
if there exists a positive constant K such that for every v > 0 with

#(2v) < Ko(v). (2.14)

On the other hand, the Young function ¢ is said to be global Vs-condition, denoted
by ¢ € Vg, if there exists a constant @ > 1 such that for every v > 0 one has

p(av)
o) < 5.
Remark 2.3. Actually, ¢ € A, implies that for any 8; > 1 there exists a; = loga K
such that ¢(B1v) < KB ¢(v), which describes the growth for ¢(v) near v = co.
Meanwhile, the condition ¢ € V5 means that for any 0 < 82 < 1, there exists
ag = logz2 + 1 such that ¢(5a2v) < 2a552¢(v), and it describes the growth for ¢(v)
near v = 0. The simplest example for ¢(v) satisfying the Ay N V4 condition is the
power function ¢(v) = v? with p > 1. Moreover, we also remark that for p > 1,
o(v) = |v|P(1 + |log|v]]) € Aa N V.

Definition 2.4. Let D be an open subset in R and ¢ be a Young function. The
Orlicz class K?(D) is called to be the set of all measurable functions g : D — R
satisfying

(2.15)

/ & (|g]) dzdt < .
D
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Orlicz space L?(D) is just a linear hull of K?(D). It consists of all measurable
functions f such that 7f € K?(D) for some # > 0. Moreover, the norm | - ||1.s(p)
is denoted by

g/l ey = inf {A >0: / ¢(%) da dt < 1}.

D
If D is bounded, then

L (D) c L?(D) ¢ L**(D) c L*(D)

with the constants oy and as as Remark for more details see [25]. We are now
in a position to state the main result of this paper.

Theorem 2.5. Let the Young function ¢ € Ao NVa, and p(t,z) € SLH(Qr) with
its range in [y1,v2] shown as (2.7). Assume that u € A(Qr) is a weak solution of
the variational inequality (2.4]) with the given datum

i, Dy, PG € L2 (Qr).

Then, there exists a small positive constant 6 = 6(d, A\, A, v1,7v2,00) such that if
(a,Qr) satisfies (9, R)-vanishing as Assumption then we have |DulP(:®) €
L®(Qr) with the estimate

/ ¢(|Du|p(t,z))dxdt§C[gb((]lg \I/(t,x)dxdt)m)Jr &(U(t,z)) da dt|,

QT QT
where

C = C(da Y1572, Av Aa aq, 012,57 R7 T7 |Q‘7 ||ull||L2(Q))7
U(t, ) = || + | Dp|PE®) 4 | fP) 41,
and m > 1 with

m= sup m(7,y), (2.16)
(T,y)€QT
p(7,y) ;
Bt if p(r,y) = 2,
m(r,9) = _?2pira) o 2d (2.17)
{p(ﬂy)p(d+y2)2d if itz < p(1,y) < 2.

3. COMPARISON ESTIMATES TO THE REFERENCE PROBLEMS

We start this section with introducing some related notations and basic facts
which will be useful in the paper. Throughout the paper, we always use C; and c;
fori =1,2,..., to denote positive constants that only depend on d, A\, A,~v1,72, ...,
but whose values may differ from line to line. For any fixed point z = (7,y) € R4*!
with 7 € R and y € R%, we denote the spatial open ball B,(y) C R? with center y
and the radius p > 0. For any « > 1 we write the intrinsic parabolic cylinder by

K n 2—p(z) 2 2—p(z) 2
Qs(2) = Qp(ry) = (T =K 7 ATk T ) By(y). (3.1)
We also set
Q,=0NQ,, K;(z)=Q;z) N,
2—p(z) 2—p(z)
0Q5(=2) = (v —w'TF Pr + 5T ) 0B, (),

DK () = (Q;(z) N ((a,a+T) x 89)) U (aQ;(z) N QT)
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for a € R and T > 0. For the sake of convenience, while z = (,y) = (0,0) we
simply write Q5 = Q(0), K; = K/ (0) and 0K} = 0K (0). In the following we
write

2—p(z) 2—-p(z)

By (y) = By(y) N{z1 >0}, Q7 (2) = (T—n WGl p T 4 K P 2)B+( ),

2-p(2) 2-p(2)
T;(z) = (7- — K ) p277- + K o) p2) (Bp(y) N{z, = 0})

Also, we briefly denote B} = B} (0), Q5" = Q57 (0) and Ty = T;(0).

We use the following localizing technique, which is first used by Bogelein and
Duzaar in [5]. As we know, an interior estimate for parabolic obstacle problems
with nonstandard growth had been obtained by Erhardt in [16]. Owing to the
measure density , this readily allows an obvious extension to the Reifenberg

flat domain. More precisely, we state the following boundary estimate by setting
K7 (z) = Q5 (2) N Q for a fixed 2 = (1,y) € (a,a+T) x 9.

Lemma 3.1. Suppose that p(t,xz) € SLH(Qr) with its range in [y1,72] shown as

, and

M:= | |DulP®® dzdt + / U(t, z) dx dt (3.2)
QT QT
with
U(t,z) = |y + |Dy|PE) 4 |frto) 41, (3:3)

For any fized § € (0,1/8), M > 1 and o := min{l ’yld+2 — g} € (0,1], let

p1 = I~ with
1/2

2 \NIMM
= — > .
r 4((1_5) 2&dd+1> > 4, (3.4)

where wq denotes the measure of the unit ball of RY. If Q is a (9, R)-Reifenberg flat
domain; moreover, for any fized k > 1, z = (1,y) € (a,a+T) x OQ and for any
0 < p < p1 we have

1
K < M<][ | DulP®® dg dt + 7][ U(t,z) do dt), (3.5)
Ky (2) 0) Ky

then there exists ¢, := exp (72 ((5 + @)) > 1 such that

p2—p1 Sw(Tp®), wFT <T2p~WHD wpm <o (3.6)
where
p1=p(z1) = inf p(t,z), p2=p(z2)= sup p(t,z). (3.7)
Kp(z) K5 (2)

Proof. For a fixed point z = (T, y) (a a+T)x 09, it suffices to prove our estimate
2-p(2)

2-p(x)
in the setting (7—x &) P23 TR e p) (a,a+T). Otherwise if @5 (z) touches

—p(z) p(2)
the bottom or the top of Qr, i.e. (T — K Non P T+ kR Eon p ) ¢ (a,a+1T), then

we may consider an extended variational inequality . in(a—T,a+2T) x Qin
terms of an argument from [I0, Remark 2.6], which results in that
2—p(z)

2-p(2) o
(T—H PG S T+ K PG p) (a—T,a+2T).

Consequently, it yields the same process as follows.
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Now, by the measure density (2.12) we know that
L1 )
(K5 (=) Q)] K5 (2)]
1 A
depd+2,€%;(>z) |B,(y) N QY

()
_2wdpd+2,€2;fz(f) 1-6/ "

Hence, from (3.5)) it follows that
M 1
k< 7</ | Du|P®) da: dt + = / U(t,x)dx dt)
K5 (2) |\ J ks () 0 Jrcx(z)

T

2wdlgd+2/§; p(z)

1
| DulP®) da: dt + 5 /

U(t,x)dx dt),
Qp

T

which implies that

2 M 2 \d 1
o < — (= p(t,@) -
K _depd+2(1—5) (/QT|DU| d:EdtJré/QT\If(t,x)d:cdt) .
MM ( 2 )d .
= 2wgpdt2\1 -6/ "

where we have used (3.2) in the last inequality. Recalling the definitions of p; and

p2, by (2.5) it yields

2—p(z)
p2 —p1 < |p2 — p1| S w(dp(z1,22)) < W(QP-F V 2k »G) P)-

So, if 2 < p(z2) < v2 < oo, then

p2 — p1 < w(4p); (3.9)
if j—fz <71 <p(2) <2 then by (3.8) and (3.4) we obtain
ps —p1 <w(Tp 57 %), (3.10)

Combining (3.9) and (3.10)), we obtain the first estimate of (3.6). Further, putting
(3.8) and (3.4) together, we also obtain the second estimate of (3.6). Finally,
recalling p(t,z) € SLH(Qr) and 0 < p < p; = '« we have

P2—P1 S exp((s), p—(Pz—Pl) S exp (275)7
(%

which implies

KP2TP1L < (I‘ p_#)(m—m)’m < exp ('72 (5 + M)) = Cq- (3.11)

«

This concludes the proof. ([

Let us recall the modified Vitali type covering lemma with a covering of intrinsic
parabolic cylinders, see [10, Lemma 3.5].
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Lemma 3.2. For k > 1, we set that F = {Q}; (2i) }ies is a family of intrinsic par-
abolic cylinders with z; = (1;,v;) € R¥* and p; > 0, which satisfy that Uieg @y, (2i)
is bounded in R and

+ - :
kP TP <, forallie J,
where ¢, > 1 is the same as Lemma[31. Let

pi = sup p(t,x) and p; inf p(t, ),
Q5 () =)

then there exists a countable sub-collection G C F of disjoint parabolic cylinders
such that

UQs, (zner@p, (2i) CUqs (z0eaXx@p, (%),

3z 1/2
where x > {5, (8031 + 1) / }, and xQ; denotes the x-time enlarged cylinder Q;.

To obtain the interior and boundary comparison estimates with the reference
problems on the intrinsic parabolic cylinders, respectively, we suppose that u €
A(Qr) is a weak solution of under the regularity assumptions that p(t, z) €
SLH(Qr) with its range ([2.7), and (a, R x Q) is (6, R)-vanishing with the specified
0 €(0,1/8) and R € (0,1). It is clearly checked that the condition easily leads
to the following monotonicity

p(t,z)—2

(attz:6) —a(t,z,m) € =) = Cr (P +1€P +n) * 1€ —nf
if d2—52 <p(t,z) < 2, (3.12)
(att.z:6) —a(t.a.m) (€ —n

for all £, n € R? and a.a. (t,z) € Qp, where C; and Cy are positive constants
depending only on d, 1,72, A and A, see [16, Section 2] or [7, Formula (10)]. Setting

W(Qr) == {g € WrE2)(Qg) 1 g, € (WPED (Qr)) )

) > Colé — Pt if p(t,z) > 2

We recall the following comparison principle, which is useful to construct a com-
parison that it almost everywhere satisfies an obstacle constrain ¢ < k, see [106,
Lemma 3.15].

Lemma 3.3. Let Qr be an open subset of R4, Assume that p(t,x) € SLH (1)
satisfying (2.7), and ¥,k € W(Qr) satisfy the following relations with a(t, z; &)
such that (3.12)) holds,

Yy — div(a(t, z, D)) < ky — div(a(t,z, Dk)) in Qrp,

<k ondQr. (3.13)

Then ¥ <k a.e. on Qrp.

We set a fixed point z = (1,y) € Qr, £ > 1 and a sufficiently small » > 0
specified later. Without loss of generality, we assume that y = 0, i.e., z = (7,0).
We only consider the boundary case of By, C Qg, := Bg- NQ C {w1 > —12r§} and

(7’ ko (67)2, T+H%(6T)2) C (a,a+T) with p, = p(z) since the interior case
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is simpler for Qf,.(z) = K§.(2) C Qr. By an argument of normalization we can
assume that for suitable r > 0 such that

1
][ | Du|P®®) do dt + 7][ U(t,z)dedt < cuk (3.14)
K, (2) 0) K, (2)

for some ¢, > 1, where ¥(t, z) is as (3.3). Let k € W(K{.(%)) be any weak solution
of the following local initial-boundary problem

k. — div(a(t, z, Dk)) = ¢ — div(a(t,z, D)) in K§.(2),
k=u on 0K§.(2).
Then, by Lemma we immediately conclude the following, cf. [16, Lemma 8.2].

Lemma 3.4. Under the normalization assumption of (3.14)), for any e1 € (0,1)
there exists a small constant 6 = 6(d, A\, A, v1,¥2,€1) > 0 such that

(3.15)

][ |Du — DE[P®®) dodt < e1k and ][ |DE[P®®) dodt < e (3.16)
K5 (2) Ki ()
for some ¢y = c1(d, N\, A, y1,792,00) > 1.
Let w € W(KJ.(2)) be the weak solution of
wy —div(a(t,z, Dw)) =0 in K} .(2),
‘ (a( ) i (2) (3.17)
w==Fk ondK}j.(z).

Lemma 3.5. Under the normalization assumption of (3.14)), for any es € (0,1)
there exists a small 6 = §(d, A\, A, v1,72,€2) > 0 such that

][ |DE — Dw|[P®® dzdt < eak and ][ |Dw|P®®) dz dt < cok (3.18)
Ki(2) Kj,(2)
for some co = co(d, N\, A, y1,72,00) > 1, see [10, Lemma 4.1].

Now let us recall a self-improving integrability of Dw to (3.18). For 0 < p =
6r < p1, p1 and py shown as in (3.7), we assume that

p2—p1 Sw(T(6r)7), k7T <T(6r)~ (D, w2 <, (3.19)

for some a € (0,1), I' > 4 and ¢, > 1 defined by Lemma By Lemma it
holds

][ |Dw|P®®) da dt < eok
Ki.(2)

with ¢o > 1. Then, thanks to [4, Corollary 5.2] we conclude that there exist ey > 0
and ps > 0 such that for 0 < 4r < ps it holds

][ | Dw|P&®)(1F20) g dt < erlteo, (3.20)
K5 (2)

where ¢ is a positive constant depending only on d, A, A, pt, v1, V2, 0, R, w(-).
As in [10, [7], let

-1
b2 —Pp1 < min{ﬁa la 50(7147)} (321)
and the vector-valued function b(t, z;¢) : K5.(2) x R? — R? is introduced by
pz=p(t,x)

b(t,z;€) = a(t, ;&) (u> + [¢7)  *
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By using (2.1]) and (3.21)), we obtain

Pz

(A/2) (M2 + |€|2) - N[> < Deb(t, a56)n -,
(3.22)

pz—1

/
bt ) + (2 +162) " [Deb(t,2:€)] < 38 (2 + ¢

for a.a. (t,r) € K5.(z) and all £, € R?, see [10, Eq. (4.18)] or [7, Lemma 3.6]. For
— 2—po 2—pz
the interior case, we define b(t,€) : (1 —r 7= (2r)2, 7+ 7= (2r)?) x R — R by

B(t,€) = fB  blt7ide
2r Y

Then, by 2.1]it yields

b -b
][ sup [b(t, &) (t;i’lf)‘ dzx dt :][ Ola; Ba, (y)|(t, z) dz dt < 6.
Qs () 6k (U2 E2) 2 Q5,.(2)
For the boundary case, we define b(t, ) : (T—Ii% (2r)2, 74k 7o (2r)?)xR? — R?
by

5 _ ) +
b(t, 5) — E(tvf) _JLB;T(y)b(t»x’ g) dzx (t’ x) € Bzr(y)v
b(t,¢) (t, ) € Q2 (y)\Bs, (v)-
Again by Assumption [2.1| we see that
b(t,£) —b(t
][ su [b(.£) ( ;i’ﬁ” dz dt :][ Ola; B, ()](t, z) dz dt < 40.
Qs ()R (u2+[E7) 72 55(2)
Moreover, for both cases we see that b(t, &) satisfies (3.22)) with b(t, x;¢) replaced
by b(t,§).
With b(¢,€) in hand, we further recall the following two comparisons with the
so-called limiting problems. Let h € WP (K5 (z)) be a weak solution of

ht —div(b(¢,Dh)) =0 in K% .(2),
h=w on0Kj.(%).
Lemma 3.6. Let
0O<r< min{%, %2, (4e) T~ (242 (P R)w }, (3.24)
where p1, p2 are the radi appearing in (3.7) and (3.20)), respectively. For any given
g3 € (0,1) there exists a small constant 6 = 6(d, \, A, y1,72,08,e3) > 0 such that
][ |Dw — Dh|P= dzdt < esx  and ][ |Dh|P* dz dt < c3k (3.25)
K§.(2) K3.(2)

for some c3 = c3(d, A\, A, y1,72,00) > 0, see [I0, Lemma 4.2].

Lemma 3.7. For each ¢4 € (0,1), there exists a small constant 6 > 0, § =
§(d, N\, A, y1,72,€4), such that for the weak solution v € WHP=(Q5T(2)) of
vy — div(b(t, Dv)) =0 in Q5'(2),
= div(BlE, D)) =0 in Q57 () 20
v=0 onT5(z),
it holds

][ |Dv|P= dx dt < csx  and ][ |Dh — Do|P= dz dt < eyk,
Q5t(2) K (z)
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where c3 is defined in Lemma . Here, we extend v from Q51 (2) to K§.(2) by
zero-extension denoted it by v, see [I0, Lemma 4.3].

We also recall the L*-estimate for the gradients of weak solution to the limiting
problem of general p-Laplacian type with the nonlinearity independent of the spatial
variable. Indeed, DiBenedetto showed an interior gradient bound for parabolic
systems, see [I5], Theorems 5.1 and 5.2], and Lieberman [23] extended it up to the
boundary case for parabolic equations.

Lemma 3.8. (i) (interior case) For a fized K > 1 and r > 0, we suppose that
v € WhP=(Q5 (2)) is any weak solution of

vy — div(b(¢t, Dv)) =0 in Q5.(2) C Qr
with
][ |DulP* dx dt < cuk
5r(2)

for some ¢, > 1. Then

| Dl < Ck, (3.27)

P2
L= (Qr(2))

where C = C(d, A\, A, y1,72,¢x) > 0.
(i3) (boundary case) Let k > 1 and r > 0, we suppose that v € WhP=(Q5T(2)) is
a weak solution of

vy — div(b(t, Dv)) =0 in Q51 (2),

3.28
v=0 onTs(z2) (3.28)
with
][ |DvlP* dx dt < cik
55 (2)
for some ¢, > 1, then
||D,U||pzoo(Q?+(z)) S OK/? (329)

where C' = C(d, A\, A, y1,¥2, ¢, 02) > 0.
We finish this section by recalling the following two lemmas.

Lemma 3.9. Let ¢ € ® be a Young function with ¢ € Ay N Vy and g € L?(Qr).
Then

o(lg]) dr dt = /Ooo {(t2) € Qr : lg] > k| do(k).

Qr

Lemma 3.10. Let ¢ € ® be a Young function as shown in Lemma[3.9. Then, for
any a,b > 0 one has

001 N
=/ gldzdt)aob) < C | (gl daat
0o RANN(tz)eQqr|gl>an} Qr

where C = C(a, b, ¢), see [8, Lemma 3.4].
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4. PROOF OF THEOREM [2.5]

Let us assume that p(t,x) € SLH(Qp) with its range [y1,72] shown as (2.7),
(a,Qr) is (6, R)-vanishing for R € (0,1) with a small § € (0,1/8) such that the
validity of Lemmas Let the given datum

e[ 5, [ D PE), P € L9(Qq)

for Young’s function ¢ € Ay NVsy, and u € A(QT) be the weak solution of
variational inequality (2.4) with the constants M, «, T', ¢, as in Lemma
m = Sup(, y)eq, M(7,y) as (2.16), and Ry > 0 chosen as

0<QROgImn{%g%f(4@*ﬁf*%?+”4F*U@é}, (4.1)
1
wQU%)gImn{i%,Lfﬂli——l}, (4.2)

where p;1, pe are shown in Lemma and (3.20), o > 0 as in ([3.20). For any

Kk > 0, we set
1 m
Ko = (][ \Du|p(m) dx dt + 7][ U(t,z)dx dt) ,
QT 5 QT

the upper-level set
E(k) = {(t,z) € Qr : | Dul[Pt®) > K},

and for fixed (7,y) € Qp and p > 0,
1
J(Kg(ﬂ y)) :][ |Du|p(t’m) dzx dt + *][ U(t, z) dxdt.
Kp(r.y) 0) Ky(ry)

Without loss of generality, we take a suitable positive constant K such that
Q07| < |Qk R, |,

where Ry > 0 is defined by (4.1) and (4.2)).

Step 1. We prove the modified Vitali covering for the major portion of E(k) by a
family of countably many disjoint cylinders. To this end,we have the following.

m
Lemma 4.1. For k > k1 = ((%)%48)(1()‘”2) Ko, there exists a family of
disjoint cylinders { K}, (7i,yi) }i>1 with (1;,y:) € E(k) and

min {5%7 1}R0
48y

0<p <
such that
E(k) C (Uizl XK. (Ti,yi)) U a negligible set,

where the constant x is shown as in Lemma pi = p(73,9:), and for each i > 1
it holds

pi—2
min{x i | 1}R0}
5 .

Proof. For every fixed point zo = (79, y0) € E(k), we consider the radius p with

J(K;fi (Ti,yi)) = K, J(Kf'f(n,yi)) <k forallpe (pi,

po—2 pPo—2
min{x 2r0 1} Ry min{x 20 ,1} Ry
Sp= ;
48x 2

(4.3)
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where x is as in Lemma and pg = p(z0). It is clear that for any 2y € E(k) it
holds J (p) < k. Indeed, it follows from the measure density conditions (2.12)) that

J(K;f)—;gl(/K;

Q%] |QT|][ 1
< gl Dup(t’w)d:cdtJrf][ U(t,z)dedt
< G @5 o, Y i o, Y et

( 2 )d|QKRo\ L
K

1
| Du|P®®) da: dt + 5 /

U(t,z) do dt)
K

K
P

1—-0/ Qs
() ()

We now divide it into the cases 2 < pg < y2 and 71 < py < 2. If 2 < py < 2, we ob-

)
tain that m = sup(, ,ycq, m(7,y) > m(70,y0) = % by (2.16) and min{ffpgTo7 1} =
1. Therefore,

d — _
%5) (48YK) 26" ki < k"% ko = k;

If 1 < po < 2, one gets that m = sup(, ,)cq, m(7,y) > m(70,y0) =
po—2 po—2
(2.16)) and min{k 20 |1} = k 2p0 . This implies that

J(KF) < (

2p,
po(d+20)—2d by

2 d 2—pg pg—2 1 (2—=pg)d  pg(d+2)—2d
. 5) (48XK)d+2K/ 2p0 (d+2)li o Iiom S Kk 20 K 250 = k.

) < (
In summary,

J(K5) < r forall pe [min{/{%, 1} Ro/(48), min{x %% , 1} Ry /2] (4.4)
On the other hand, by the Lebesgue differentiation theorem we infer that

;i_r,% J(K}) > |Du(z)[** > k.
Consequently, one can select a maximal radius po € (0, min{n%, 1}Ro/(48x)] by
the intermediate value theorem such that
J(Kgo) =k and J(K’p’“) <k forallpe (po,min{m%, I}RO/Q}.

Now, let us take { K} (z) : 2 = (7,y) € E(x)} as a covering of E(x), and note that

K 1
< | Du|P®®) da: dt + 7][ U(t,z)dedt < k. (4.5)
(48x)d4+2 ][48Xng (2) d 48x Kk (2)

Therefore, by taking M; = (48x)%t2 > 1 as in Lemma we have

KP:P: < ¢, forall z € E(k),
where ¢, > 1is as in Lemma pi = supK;z(z)p(t,m) and p, = ian;z () P(t, ).
Finally, by employing the Vitall’s covering lemma[3.2) we can find 3 %mily of disjoint
cylinders { K5 (7i, yi) }i>1 with (7;,y:) € E(x) and p; € (0, min{x 27 ,1}Ry/(48X)|,
which reached the desired result. O

Step 2. We are now in a position to show a suitable decay estimate to each of the
above-mentioned covering { K/ (7i,y:)}i>1-
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Lemma 4.2. Under the same hypotheses as in Lemma[{.1], we have

2
|K§l(zz)‘ < *(/ ‘Du|p(z) de dt
. K,’;i(Zi)m{ZEQT:|Du\P(2)>%}
1
" W(t,x) dodt).

1) K;fi (Zi)ﬁ{ZGQT;\IJ(t’I)>%<}

Proof. By Lemma [4.1| we have

1
][ | DulP®) da dt + ,]l U(t,z)dedt = K,
Ky (Ti,y4) Y Ky (7i,y:)

which implies that

WK (72, )| = /

1
| DulP®) da dit + = / U(t,x) dx dt.
Ky (7i,y:) 6

Kp (7i,y:)
Now we split the two integrals above in two parts,

K| K (i, i)

<

/ |DU|P(t,m) dx dt + E|K§,(Tuyz)|
K/';-L (Ti’yi)m{(t’l’)GQT:|Du\P(t,x)>%} 4
1 /
+ <
1) Ky (1iya) 0 {(t,2)€Qr: ¥ (t,2)>2F}

which yields the desired result. O

K K

Based on Lemma we constructed a family of disjoint cylinders { K[ (2;)}i>1
pi=2
min{n 2p; ,I}Ro
48x

0 _ K 1 _ K 2 K
Kzi - sz (Zl)a Kz1 - XKpi(Zi)a Kz,; - QXKpi(zi)a

K3 =4xK} (z), KI =6xKj(z), Qi =6xQ% (2);
and consider the following estimates by parting the settings of Qi C Qp and
2 ¢ Qr
Case 1. For the interior case Qi C Qr, let k, w and h be the unique solution
to the initial-boundary value problems (3.15), (3.17) and (3.23) with Qﬁi, § and

in instead of K§,., K. and KJ,., respectively. With the same argument as the
estimate (4.5)), it holds

for z; = (14,y:) € E(k) with 0 < p; < . We denote

1
ﬁ < ][Qj | DulP®®) da dt + 6][@_ U(t,z)dedt <k (4.6)

for j € {0,1,2,3,4}. Note that

Pi—2
i 2 1} R,
min{x i , 1} Ro < Ry, (4.7)
we take My = (6x)?*2 > 1 in Lemma [3.1] and obtain
P b7 Swl(6xp)®), P <T(6xp) " and WH <o, (48)
p;—2

min{x 2Pi ,1} Ry

for z; = (1;,4;) € E(k) and 0 < p; < —E where p; = p(z;) =

0 <6xp; <

p(7i,vi),p; = infgs p(t,z),p = supgs p(t,x) with T' > 4, € (0,1) and ¢, > 1
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being the same as in Lemma (3.1} Let us now replace by (4.6)), and make use
of the argument of Proposition 3.10 in [7] by Bui and Duong for general parabolic
equation of p(t, z)-growth. Then we only make very slightly modifications to our
problem, and immediately conclude

Corollary 4.3. Assume that u € A(Qr) is a weak solution of (2.4)), and h; €
Wl’pi(Qi) is a weak solution of (3.23). Then, for any € > 0 there is a small
0 =06(d, N\, A, v1,72,€) > 0 with such that

bi < .Z\flli7 (49)

][Ql |Du — Dhi|p(t’””) dedt <ex and |Dh; L=(Q1)

where N1v = Ni(d, \, A, y1,72,¢) > 1 is the positive constant independent of the
index i.

We omit its proof, which is very similar to that of following boundary setting,
but a simple process.

Case 2. For the boundary case Q‘zli ¢ Qp, we suppose that dist{y;, 9Q} < 6xp;,

p;—2
and take y; € 00 with |y; — yj| < 8xp;. Since 0 < 48xp; < min{x 2*i ,1} Ry < Ry,
by Assumption there exists a new spatial coordinate system, still denoting
x = {x1,...,xq}-coordinate, with the origin at y; = 0’ such that

Biagyp (0") N {1 > 48xpid} C Busyp, (0)) NQ C Basy,, (0') N {21 > —48xpid}.

Since 0 < § < 1/8, it leads to Buagy,, (48xpide1) C Bagy,, (0') for e; = {1,0,...,0}.
We then translate the spatial coordinate system to the zi-direction by 48xp;d, and
denote the new origin by 48xp;de; = 0, so that it yields

B+

40xp; (0) C B40Xp'i (0) nQcC B4OXPi (O) N {J)l > _96Xpi5}-

By considering this transformation is composed of only the translation and the
rotation, it leads to that the basic structure of the problems and the main
assumptions are invariant. Here, we will continuously use the original symbols and
notations in this new coordinate system. Since |y;| < |y — yi| + |y}] < 6xpi +
48y ;6 < 12xp;, for z; = (74,0) we obtain

K! C K} C K} C KI CKS, (4.10)
where
K? =15xK} (z), K2 =28xK} (z), KI =38xK} (z), K5 =48xK} (z).

Similarly, we now let that k, w, h and v is a unique solution to the initial-boundary

value problems (3.15)), (3.17)), (3-23) and ([3.26)) with Kfi, K;, Kgi and QS* instead
of K§., Kf., K5 and Q5,F, respectively, where QS+ = 28xQ%5* (2;). With the same
argument as for (4.5)), it holds

K

1
5 < ZZ Du|P(®) 77[ U < 411
(48y)d+z = Kj’| ul dz dt + 5] (t,x)dxdt <k (4.11)

Zi

for each j = 0,1,...,8. By taking M = (48x)™*? > 1 in Lemma we obtain

pF—p7 <w(T (48xp))™), ki <T?(48xp) 2, WPl P <, (4.12)
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Pi=2
for every z; € E(k), 0 < p; < %Z’I}RO, pi = p(z:), p; = ianfi p(t, ),
pf = Supgs p(t,x); where ' > 4, a € (0,1) and ¢, > 1 are as in Lemma
Similar to the argument in [7, Corollary 3.9], we have the following result.

Corollary 4.4. Assume that u € A(Qr) is the weak solution of (2.4). For any
e > 0, there exist small constcmt 6 =0(d, \, A, v1,72,€) > 0 with (4.11) and a weak

solution v; € Whpi Q ) of (3.26]) such that

][ |Du — Do; [P dedt < ex and ||D17i||1£ix,(K1 < Nok, (4.13)
K1

)
where No = No(d, A\, A, 71,72, Cx, 0, R) > 1 is the constant independent of i. Here,
we extend v; from QS“‘ to Qgi by zero extension, and denote it by v;.
Proof. Let us begin with the fact that

|Dw — Dv; [P < 27271 (|Dw — Dh
then, by Lemmas [3.6] and [3.7] we obtain

P+ |Dh— Do "),

][ |Dw — Dw;|P* dwdt < Cy (f |Dw — Dh|P dz dt +][ \Dh — D[P dx dt)
K3, K3, K?,

< (€3 —|—€4) K

with e3 and e4 being the same as in Lemmas [3.6] and [3.7] respectively, where C is a
positive constant depending only on d, A\, A,y and 7,. This together with Holder’s
inequality implies

][ |Dw — Do;|P4) dz dt
K5

:][ |Dw — D;|? | Dw — D [P4") =% da dt
K5

Zi

S (][ |Dw - D@i
Ki‘

1/2
§C2<(53+64)/<;) (][ |Dwprt o dr dt
K5

1/2 1/2
Pi dp dt) (][ |Dw _ Dl—}i|2p(t,x)*Pi dr dt) (4'14)
KE

1/2
+][ \Dﬁi\zp(t’”)_pidxdt) :
K?®

Zq

Next, by using ) and - we have

2p(t,x) pz<ptx< +p; —pz)
< p(t,x) (1+w (48xpi)” ))
<p(t, ) (1+¢o) in K

where ¢ is the same as in the inequality (3.20). Therefore, from (3.20) it follows
that

][ | Duw|2P0)P g gt < ][ | D[P0 A+ E8x0)) g gt 4 1
< glte@8xpi)®) 4 q,
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By [@.12), kT @8xr)") < ¢, for ¢, > 1, which leads to

]l | Dw P2 7P dy dt < Csk. (4.16)
K3,

Using Lemma(ii) for the weak solution v; € Wi (Q5+) mentioned in Corollary

and formula (4.12) for k > 1 we obtain

| D | P42 =Pi g dt = 1 | D | P42 =P e i
K2 |K'5 | 3
1
_ _ ( |Dvi|2p(t7x)—1’)i dx dt + |K§ \Qi-ﬁ- )
B2\ Jozr T
C 2p(t,@)—p; 4.17
< ey (o™ QT Q) T
Cs L TR 5\ 5t
S el Caa 2 R LAta)
< Cek
Now, combining (4.16) and (4.17) with (4.14) yields
][ \Dw — D@ilp(t’x) dedt < Cy (83 + 54)1/2,‘{. (418)
K3

Then, it follows from Lemmas [3.4] and [3.5 that

][ |Du — Do; [P d: dt
K3,

<3l (][ |Du — DE[P®®) dg dt +][
K3, K

+ ][ |Dw — Do |P4) da: dt)
K3,

|Dk — Dw[P*®) dz dt

Zq

< C(El +ea+ (e3+ 64)1/2)I€

with g; > for 1 = 1,2, 3,4 being the same as in Lemmas respectively, which
means that

]l |Du — D[P da dt < Cho(e1 + 2 + (g3 +£4)'/?) k.
K1

Therefore, by taking ; > 0, i = 1,2, 3,4 sufficiently small we ensure the validity
of first inequality of (4.13)). The second inequality of (4.13) is proved by following
from Lemma (ii). O

Step 3. We now prove a decay estimate of the upper-level set for a variable power of
the gradients of weak solution to ([2.4]). To this end, let N = max{Ny, No} > 1 with

N7, Ny as shown in Corollary and Corollary , and let A = N7 ca 22 > 1.

Lemma 4.5. Let k > k1 be as in Lemma [{.1, For any e € (0,1), there ewists
a small constant 6 = 6(d, \, A, v1,v2) > 0 with § € (0,1/8) such that if (a,Qr)
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SatiSﬁes (5, R) 'UaniShiTZg fO’f’ some ) < R < 1) p(ta x) € SLH with the range [717 72]7
and u € A(Qr) is the weak solution of ([2.4). Then we have the estimate

3( /

RN J{(t @) e Dulr () > £}

U(t,x)dx dt) },

|E(Ar)| < C’e{ | DulP®) dz dt

1
5
0 J{(t.2) Qo (t,z)> 55
where C = C(d, \, A, y1,72, R, ¢q).-

Proof. Considering the fact E(Ax) C E(x) for A > 1, by Lemma [4.1] we obtain
that the family {K] };>1 can cover almost all E(Ax), which implies that

|E(AR)| = |{(t.2) € Qr : | Du[P®) > Ar}|

<3 [{(t,a) € KL : [Dulr®) > Ar}]
=1

4.19
= Y Ht2) e KL : [Duf™) > Ak} (4.19)
i:interior case
+ Y H{ta) e KL« |Dulf™™ > Ak},
i:boundary case
For the interior estimate, by Corollary [d.3] it yields
2t2)  p(t,a) 2 p‘f*pl_ J2 1
sup |Dhi|p(t’z) <supN, " Kk 7= <Nk n k< Ny el k.
Kzli K;i
Recalling dQ—fQ <y <p(t,x) < v9 < oo in Qp leads to
|Du|p(t’$) < 9m2—1 (|Du _ Dhi|p(t’“’) + |Dh¢\p(t’$))
for all (t,z) € K! C Qp. Therefore,
{(t,2) € KL, : [Dulr® > Ag}]
<|{(t,z) € KL : (|Du — Dhy [P 4 |Dhi\”(m)> > 21772 A}
72 1
<|{(t,z) € KL : |Du— Dh;|P"®) > N ¢ K}|
1
Nyt egt k7 HG,
|K] Je
>~ Nl%cjla
which implies
{(t,z) € K : |DuP®®) > Ak}| < Cre|Kp (2i)]- (4.20)

For the boundary case, we carry out the same procedure as the estimate of (4.20]),
and use Corollary [£.4] to discover that

{(t,z) € K2, : |DulP™®) > Ar}| < Coe| K5 (). (4.21)
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Putting (£.20) and (.21) into (£.19) yields

[B(AR)| < Cse 31K 20)]
i=1
Thanks to Lemma (4.2
(2

B(AR)| < Coe {5

( / | DulP®®) dg dt
o1 NS (z)n{z€Qr: Dulpth o) > £}

1
+ =

/ U(t,z)dx dt) }
) K;i(zi)ﬁ{ZEQTZ‘I’(t,I)>JTK}

Note that {K7, (i)} are non-overlapping in Qr, then the required result follows.

Step 4. The step is devoted to Orlicz estimate for the derivatives of weak solution.
Using Lemma we have

(| Duf? ™)) da dt — / {(t,2) € Qp : |DuP®™ > Ax}| dé(Ar)
Qr 0

_ " x : | Du Pt K K
= [ e € 0r s Dupt > anyidoian)

+ / {(t,2) € QO+ |DuP®D) > Ax)| dg(Ar)

= Jl + JQ.

Frist we estimate of J;. Recalling the above definitions of kg and k1, and using
that ¢ € Ay N Vs, we have

J1 < |Qr|¢(Ak1)
yg L 2 d m
— 31 71 972 d+2
(7 2 () ) )
< C1[Q7[¢ (ko)
1 m
:Cl|QT|¢((][ | Duf(t) dxdt—i—f][ U(t, ) d:cdt) )
QT 5 QT
Then by (2.8) it follows that

I < 02¢>((][Q U(t,z) de dt)m),

where Cy = Co(d, 1,72, \, A, a1, 0,6, R, T, |Q]), and ¥(¢,x) is defined by (3.3]).
Now we estimate Jo. From Lemmas and we observe that

< 9
Jy < Cgs/ (—(/ |DufP® de dt
0 KN J{zeQq:|Dulp() > 21

1
Ry
4 {2€Qr: T (2)>2}

o(|DulPt) dedt + | ¢(U(t,x)) da dt).
Qr

U(2) da dt)) do(Ar)

S 046(
Qrp

Inserting the estimates for J; and Jo into (4.22)),

o(| DulPE)Y da dt
Qr
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< 045/ (| DulP®D) da dt+02¢<(][ U(t, ) dxdt)m)
Qr

Qr

+Cs d(U(t,x)) dx dt.

Qr

If fQ (| Du|P®*)) dz dt < oo, then we can select ¢ > 0 sufficiently small such that
0 < C4e < 1/2, then

o(|Du|PH)) dz dt
Qr

§Cg<¢((][QT\IJ(tx dzdt / o(U(t, 1)) dzdt)

where Cs = Cg(d, 1,72, \, A, a1, 0,6, R, T, |Q2]). Otherwise, the integral on the
left may be +o00, and wee need to refine the estimate for |Du|. Let us consider the
truncated gradients

|Du(t, )2 := min {|Du(t,z) P4, X} for (t,2) € Qr and X € [k, 00),

and set

(4.23)

Es(k) ={(t,x) € Qr: \Du|§(t’w) > K}
By Lemma [£.5] we obtain

|Ex(Ak)| < CE{ (/ |D“|§(t’x) dz dt
{(t,2)€Qr:| Dul2™) > 5}

+7/ U(t,x)dedt) .

d {(t.2)eQr: ¥ (t,2)> 2} )}

In the case A < Ak, we have |E5(Ar)| = 0 so that (£.23)) holds trivially. Otherwise,
while A > Ak, working exactly as in the previous lines, we obtain the inequality

$(|Dul2™) dz dt
Qr

§06{¢((][QT (txda:dt / H(U(t, 1)) da:dt}

instead of ([4.23]). Taking A\ — oo and using the lower semi-continuity of Orlicz norm
with respect to almost everywhere convergence, we obtain (4.23]). This completes
the proof. 0

(4.24)

As a direct consequence of Theorem by taking ¢(v) = v? for q € (1,00) we
conclude the classical Calderén-Zygmund theory for parabolic obstacle problems
with p(t, z)-growth.

Corollary 4.6. Let g € (1,00). Assume that p(t,z) € SLH with the range [y1, V2],
and (a,R x Q) satisfies (8, R)-vanishing. If u € A(Q2r) is a weak solution of the
variational inequality (2.4]) with

|¢t|%, |Dy[PE2) | AptE) e L9(Qy),
then we have |DulP™"®) € L1(Q7) with the estimate

/QT | Du|P®)4 dg dt < C(/QT (\I/(t,x))qdmdt + 1)m,
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where C' = C(d,v1,72, A\, A, 6, R, T, |Q, |[uall2(0)), ¥(t,7) and m > 1 are the same
as in Theorem [2.3.

Acknowledgements. H. Tian was supported by the National Natural Science
Foundation of China Youth Fund, grant no. 11901429.

(8]
9]
(10]

(11]

(12]
(13]
14]

[15]
[16]

(17)
(18]
(19]
20]
(21]
(22]
23]
24]

[25]

REFERENCES

Acerbi, E.; Mingione, G.; Gradient estimates for the p(z)-Laplacian system, J. Reine Angew.
Math., 584 (2002), 117-148.

Acerbi, E.; Mingione, G.; Gradient estimates for a class of parabolic systems, Duke Math.
J., 136 (2007), 285-320.

Baroni, P.; Lorentz estimates for obstacle parabolic problems, Nonlinear Anal., 96 (2014),
167-188.

Baroni, P.; Bogelein, V.; Calderdn-Zygmund estimates for parabolic p(x,t)-Laplacian Sys-
tems, Rev. Mat. Iberoam., 30 (2014), 1355-1386.

Bogelein, V.; Duzaar, F.; Higher integrability for parabolic systems with nonstandard growth
and degenerate diffusions, Publicacions Matemétiques, 55 (2011), 201-250.

Bogelein, V.; Duzaar, F.; Mingione, G.; Degenerate problems with irregular obstacles, J.
Reine Angew. Math., 650 (2011), 107-160.

Bui, T. A.; Duong, X. T.; Weighted Lorentz estimates for parabolic equations with non-
standard growth on rough domains, Calc. Var., 56 (177) (2017), https: //doi.org/ 10.1007
/s00526-017-1273-y.

Byun, S. S.; Cho, Y.; Nonlinear gradient estimates for parabolic problems with irregular
obstacles, Nonlinear Anal., 94 (2014), 32-44.

Byun, S. S.; Cho, Y.; Nonlinear gradient estimates for parabolic obstacle problems in non-
smooth domains, Manuscripta Math., 146 (2015), 539-558.

Byun, S. S.; Ok, J.; Nonlinear parabolic equations with variable exponent growth in non-
smooth domains, SIAM J. Appl. Math., 48 (2016), 3148-3190.

Byun, S. S.; Park, J. T.; Global weighted Orlicz estimates for parabolic measure data prob-
lems: Application to estimates in variable exponent spaces, J. Math. Anal. Appl., 467 (2018),
1194-1207.

Chlebicka, 1.; Gradient estimates for problems with Orlicz growth, Nonlinear Anal., (2018),
https://doi.org/10.1016/j.na.2018.10.008.

DiBenedetto, E.; Friedman, A.; Regularity of solutions of monlinear degenerate parabolic
systems, J. Reine Angew. Math., 349 (1984), 83-128.

DiBenedetto, E.; Manfredi, J.; On the higher integrability of the gradient of weak solutions
of certain degenerate elliptic systems, Amer. J. Math., 115 (1993), 1107-1134.
DiBenedetto, E.; Degenerate parabolic equations, Universitext Springer, New York, 1993.
Erhardt, A.; Ezistence and gradient estimates in parabolic obstacle problems with nonstan-
dard growth, Dissertationsschrift, Universitat Erlangen, 2013.

Iwaniec, T.; Projections onto gradient fields and LP-estimates for degenerate elliptic equa-
tions, Studia Math., 75 (1983), 293-312.

Li, H. Z.; Zhang, J. J.; Zheng, S. Z.; Orlicz estimates for nondivergence linear elliptic equa-
tions with partially BMO coefficients, Complex Var. Elliptic Equ., 63 (6) (2018), 871-885.
Liang, S.; Zheng, S. Z.; Gradient estimate in Orlicz spaces for elliptic obstacle problems with
partially BMO nonlinearities, Electron. J. Differential Equations, 2018 (58) (2018), 1-15.
Liang, S.; Zheng, S. Z.; Feng, Z.; Variable Lorentz estimate for generalized Stokes systems in
non-smooth domains, Electron. J. Differential Equations, 2019 (109) (2019), 1-29.

Jia, H. L.; Li, D. S.; Wang, L. H.; Global regularity for divergence form elliptic equations in
Orlicz spaces on quasiconvex domains, Nonlinear Anal., 74 (2011), 1336-1344.

Kinnunen, J.; Zhou, S. L.; A local estimate for nonlinear equations with discontinuous coef-
ficients, Comm. Partial Differential Equations, 24 (1999), 2043-2068.

Lieberman, G. M., Boundary regularity for solutions of degenerate parabolic equations, Non-
linear Anal., 14 (1990), 501-524.

Li, Q. F.; Very weak solutions of subquadratic parabolic systems with non-standard p(t,x)-
growth, Nonlinear Anal., 156 (2017), 17-41.

Rao, M. M.; Ren, D. Z.; Applications of Orlicz Spaces, New York, Marcel Dekker Inc, 2002.



EJDE-2020/13 ORLICZ ESTIMATES 25

[26] Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Springer Lecture
Notes in Math, Vol. 1748, Springer-Verlag, Berlin, Heidelberg, New York, 2000.

[27] Tian, H.; Zheng, S. Z.; Global weighted Lorentz estimates to nonlinear parabolic equations
over nonsmooth domains, J. Math. Anal. Appl., 456 (2017), 1238-1260.

[28] Zhang, J. J.; Zheng, S. Z.; Lorentz estimates for asymptotically regqular elliptic equations in
quasiconvex domains, Electron. J. Differential Equations, 2016 (142) (2016), 1-13.

HonNG TIAN
COLLEGE OF SCIENCE, TTANJIN UNIVERSITY OF TECHNOLOGY, TIANJIN 300384, CHINA.
DEPARTMENT OF MATHEMATICS, BEIJING JIAOTONG UNIVERSITY, BEIJING 100044, CHINA
Email address: 14118404@bjtu.edu.cn

SHENZHOU ZHENG (CORRESPONDING AUTHOR)
DEPARTMENT OF MATHEMATICS, BEIJING JIAOTONG UNIVERSITY, BEIJING 100044, CHINA
Email address: shzhzheng@bjtu.edu.cn



	1. Introduction
	2. Minimal assumptions on the datum and main result
	3. Comparison estimates to the reference problems
	4. Proof of Theorem ??
	Acknowledgements

	References

