Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 128, pp. 1-12.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

CONTINUABILITY OF SOLUTIONS TO FRACTIONAL
DIFFERENTIAL EQUATIONS

MIROSLAV BARTUSEK

ABSTRACT. This article concerns the Caputo fractional differential equation
Dealn =1 (t) = f(t,2(t) + e(t), n>2

where z["~1] is the quasiderivative of & of order (n—1) and D¢ is the Caputo
derivative of the order @ € (0,1). We study the continuability and noncon-
tinuability of solutions.

1. INTRODUCTION
We consider the fractional differential equation
DUty = f(t,2(t)) +e(t) (1.1)

where a > 1, @ € (0,1), n > 2 is an integer, “D%u(t) is the Caputo derivative of
order «, defined as

Déu(t) := ﬁ/a (t —s)"%u/(s) ds,

- (1.2)
I'(x) :/ s*le7dds, x>0
0
is the Gamma function and u[?, i = 0,...,n — 1 are quasiderivatives of u defined
as
uOt) = u(t), u(t) =a;(t)(WV@), i=1,...,n—1. (1.3)

Let [a,b] C [a,0), and AC]a,b] the set of all functions defined on [a, b] that are
absolutely continuous on [a, b].

Let [a,b) C [a,00). Then we denote by ACc[a,b) the set of all functions defined
on [a,b) that are absolutely continuous on every compact subinterval of [a,b).

In the reminder of this article we assume the following:

(H1) a;: [a,00) = (0,00) are continuous functions for i = 1,...,n — 1;

(H2) e: [a,00) = R = (00, 00);

(H3) f:[a,00) x R — R is continuous.
Note that

2P (t) = an 1 (8) (an—a(t)(. .. (@12 (1)) ...) .

In some places, the following assumptions will be used:
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(H4) There exist continuous functions r: [a,00) — Ry = [0,00) and w: Ry —
R, such that w(z) > 0 for > 0, w is nondecreasing and

’f(t,x)’ <rt)w(z|), Vte]la, ), zeR;

(H5) e € AC\oc[a, ), f(t,u) € AC\pcla, o) for any fixed u € R,
f(t,u) € AC)oc(R) for any fixed t € [a, o).

The Caputo derivative given by (1.2) is the special case of Caputo derivative of
order o > 0, defined as

Dou(t) := L ] / (t —s)m o™ (5) ds

F'im-a
where m is the smallest integer greater than or equal to «, see e.g. [4, [5] [7]. Frac-
tional differential equations have attract eda great attention in the last two decades
because of their importance in applications in areas of physics, chemistry, aerody-
namics, etc., see e.g. monographs [4 B, 0] and the references therein.

There are a lot of papers devoted to the study of asymptotic behavior of solutions
of fractal differential equations, see e.g. [6] [7, [8 [0 10, [12]. But results of forced
fractional differential equations are relatively scarece. Equation is studied in
[7] (when n =2 or n = 3 and as = 1) where sufficient conditions for boundedness
of all non-oscillatory solutions are given.

A function z: [a,b) = R, b < oo is said to be the solution of if zln—1 ¢
ACioc[a, b) and is valid on [a,b). We will suppose that = is nonextendable to
the right, i.e., if b < oo, then x cannot be defined at ¢ = b. Solution z is said to
be continuable if b = oo, otherwise it is said to be noncontinuable. A continuable
solution z is said to be proper if it is nontrivial in any neighbourhood of co.

In this article we study problem with

ala)=d;, i=0,....,n—1, (1.4)

where d; e R, i =0,...,n—1.
Let (1.1)), (1.4) have a solution x. We investigate whether or not, x is continuable.
When o = 1, then (1.1)) is the ordinary differential equation (¢ > a)

aM () = f(t,x(t)) + e(t) (1.5)

with (" (t) = (21 (t))/. It is known that ([1.5)) can have noncontinuable solutions,
see [2L[8]. A special case of (1.5 is the equation
2" (t) = r(t)h(x) (1.6)
where Ay > 1, A € (0,1), M > 0, r € C°a,00), h € C(R), r(t) > 3 for large t,
h(z)x > 0 for z # 0,
|h(z)| > lz|M for |z > 1,
|h(z)| < lz|* for |z| < 1.
Then, by [Il Lemma 4], equation (1.6) has no proper solution.
Some papers only study proper solutions of (|1.1]) because of their great impor-
tance. In this article, we study only the part corresponding to the continuability of

solutions to (1.1). However, the methods used here can be applied for other types
of Caputo differential equations.
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Notation. We denote

7 (t) = e(t) = >a.
F(t) = max 1), elt) = max le(s)], t>a

If « is a solution of (1.1)) defined on [a,d) with b < co, we put
Z(t) = Jnax, lz(s)|, t€la,b).

Let 1 < j <i<n—1 be integers and ¢ € [a,00). Then we put

t Sj+1 Sj+2
Jij(t) :/ a; (5g+1)/ J+1 (8542 / / o)dods;...dsji1,
a

Jii)=1 ifj>q.

Ifi,je€{0,1,...},i<yj andck6Rf0rz<k:<],thenweputzk cc = 0.

2. PRELIMINARIES

The following lemmas state some properties of Caputo fractional differential
equations . For this, we define the Riemann-Liouville fractional integral operator
of order a on Lq[a,b), b < oo by

« 1 ' a—1
To0) = s [ =" ats)ds.

Let Dg(t) = Lg(t).
Lemma 2.1. Let a < b < oo. Then

(i) J¢ maps ACipcla,b) to ACiocla,b).

(i) If g € ACiocla,b), then J1=*J%g = Jlg, and

Dig(t) = DJy~*[9(t) = g(a)], t€[a,b).
(iii) If g € ACioc[a,b), then

Jo Dgg(t) = g(t) —gla), te€lab).

For the proof of (i), see [10, Lemma 2.3]. For (ii), see [B, Theorem 2.2, Definition
3.2 and Lemma 2.11]. For (iii), see [5] Theorem 3.8].

Lemma 2.2. (i) Let x be a solution of (1.1)). Then it is the solution of the nonlinear
Volterra type integral equation (t > a)

Uty = 2P (a) + 1“(104)/ (t—s)* " [f(s,2(s)) + e(s)] ds. (2.1)

Let (H5) be valid. Then equation s equivalent to , i.e. every function x,
defined on [a,b), b < oo such that x!"~1 € ACL [a,b) is the solution of if,
and only if it is the solution of .

(ii) Let a solution x of (1.1)) be deﬁned on [a,b), b < oco. If

lim sup ()| = 2.2

e 3120 - 22)

then it is noncontinuable. If (H5) holds and x is noncontinuable then (2.2)) holds
and

lim Z(t) = o0. (2.3)

t—b—
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Proof. (i) Let z be a solution of (I.1)) on [a,b), b < co. Then z!"1 € ACi,c[a,b)
and according to Lemma iii) (with g = z["~1)
2" () — 2l (a) = JgDgal () = I (f (2 (t)) +e(t)) ;
hence, (2.1) is valid.
Let (H5) hold and = be a solution of . Then x E Cl[a,b) and according to
(H5), f(t,z(t)) + e(t) € ACiocla,b). Usmg Lemma 14i), Je(f(t z(t)) + e(t) €
ACocla,b). From this and (2.1)), we have zI*~1 ¢ AC’IOC [a,b). Applying Lemma

2.1)(ii) and (2.1)), we have

CDg‘x[”fl] =DJI™® (a:[”fl] (t) — P (a))

Luga(réo/ktswwﬂ&x@»+e@ﬂdg
= DJ, T3 (f(t,x(t)) + e(t))
= DJg (f(t,2(t) +e(t) = f(t.x(t)) +e(t)

for t € [a,b). Hence holds.

(i) If holds then z is clearly noncontinuable. Let (H5) hold and let x
be a noncontinuable solution of ( . deﬁned on [a,b), b < co. We prove .
So, suppose, on the contrary, that > . 'zl (#)] is bounded on [a,b). From this
and from b < oo, lim,_,,_ x[U(t) exist for i = 0,1,...,n — 2. The existence of
limy_,p_ "4 (t) follows from . So, the solution z of can be extended
to t = b, z(b) := lim,_,,_ 2(¢), i = 0,1,...,n — 1. Moreover, as z € C'[a,b],
(f(t,z(t)+e(t)) € ACla,b], according to part (i), z is the solution of on [a, b].
This contradicts the noncontinuability of & proves statement .

If does not hold then implies z!"~ is bounded on [a,b) and, hence,
zl i =0,1,...,n — 2 are bounded on [a,b) that contradicts . Thus, is
valid. d

Because of Lemma[2.2]i), we will investigate (2.1 instead of ([L.1)) without men-
tion it. The proofs of the main results are based on the following lemmas.

Lemma 2.3. Let u: [a,b) = R, a < b < oo be a function such that ul~Y exists
on [a,b) and let

[l U@ < K(t), telab) (2.4)

where K is a nondecreasing, continuous function. Then
n—2 ]
()] < Jai@®)]ul(a)| + Jom-1 () E(t)  fort € [a,b). (2.5)

Proof. If n = 2, then (2.5) follows from (2.4). Hence, suppose n > 3. We prove
that

}u[j] (t)’ < Z Jj+1yi(t)|u[i] (a)’ + K(t)Jj11,n-1(t) (2.6)

for j=1,2,...,n— 2. Using (|1.3) we have
1
(u[n—Q] (t))/ -

gy
@ (t)
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From this and from (2.4]), the integration implies

[n72] 7 n 2] ( ) do < K(t).J t
=)~ 20)] < [t < i) sma0
and (| . ) holds for j = n — 2. We apply mathematical induction. Suppose, that
([2:6) holds for j =n —2,n—3,...,k. Then, by (L.3),
1
(k] _ [k+1]
u™(t)) = U t
(™ )> ap+1(t) )

and the integration on [a, t] implies

t
(1) —uM(a)] < [ aiyy (@)l (0)] do

S/ a0 [ Z Tera,i(o)[ul(a)| + K (0) Jyi2,0-1(0) | do

i=k+1

< 3 T (@) + K (#) it (t).
1=k+1

Hence, (2.6) is valid for j = k. Now, (2.5) is given by (2.6) for j = 1. O

Lemma 2.4. Let (H4) hold and let x be a solution of (1.1)) defined on [a,b), b < oo.
Then

) < Mi(t / My (s ) ds (2.7)

fort € [a,b), where

My(t) = |29 (a |+/ [ZJ2 )] (a)

+ (@) + 2 a>a>Jz,n71<s>} as, @Y

Mo(t) = JF(&) a; (1)t = a)* Tom1(8).

Proof. By (2.1)) and (H4), we hve

0] < )]+ e e
1 ! a—1
i ﬁ/a (t=8)* " r(s)w(|2(s)]) ds (2:9)
<[ o)+ e 0+ S0 - 0 (eto)
Applying Lemma [2.3| for v = z, b =t and
1) = |+ - " 4 G- o ule0)
from we obtain
@9 (1))| = 2] < Mq(t) + Ma(t)w(z(t)) (2.10)
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My (1) = a7! {ZJZZ )|t );+(|x[n11(a)|+a‘;(&(t—a)a)bm_l(t)}.

Hence, using the first equality in (L.3)), the integration of (2.10]) on [a,7), a <7 <t
implies
lz(7)| < My (t / Ms(s)w(Z(s)) ds,
or
) < My (t / Moy(s (s))ds.
Hence, (22.7) is valid. O

The following two lemmas are well known.

Lemma 2.5 ([11 Lemma 2.1]). Let k > 0, A > 1, tg > 0 be constants, F' be a con-
tinuous, nonnegative function on Ry and v be a continuous, nonnegative function
on Ry satisfying the inequality

¢

v(t) <k +/ F(s)v™(s)ds, t>t. (2.11)

to
If
(A — 1)/&*1/ F(s)ds <1 (2.12)
to
then
W(t) < k(l — (A= DEMLFE F(s) ds) T

fort >tg.
Lemma 2.6 ([8, Lemma 9.2]). Let k> 0, g > 0 be a continuous function on [to,b),
b < oo and w(t) > 0 for t > k be a continuous function such that foo wdi = 00.

Then for any continuous function x: [ty,b) — Ry fulfilling

x(t) <k —|—/ g(s)w(z(s))ds, t€ [to,b)

to
the estimation

z(t) < Q_1</tg(s) ds) ., t€[to,b)

to

S dr
k w(r)’

holds where Q=" is the inverse function to Q(s) =

Consider the auxilliary system of differential equations

yi = bi(t)yir1, i=1,...,n—1, y,=F(tun),

where b; € C°[a,00), b; >0 on [a,00),i=1,...,n—1and F € C°([a,0),R).

Furthermore, suppose 3 > 0, b, € C’O[a,oo) b, >0, A > 1, f € {-1,1} exist
such that

BF(t,u) > b,(t)|ul* fort>a, fu>yo. (2.14)
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A solution {y;}} of (2.13)), defined on [a, b) with b < oo, is called noncontinuable
if it can not be extended to ¢t = b. In this case

sy Y~ (0] =

t—b—

The following lemma states sufficient condltlons for the existence of noncontinuable
solutions of with .
Lemma 2.7. Suppose holds.
(i) Ift1 € (a,00), then possesses a noncontinuable solution {y;}i, that
is defined on a subinterval [a,b) C [a,t1) and
Byi(t) > yo for teE€a,b), i=1,...,n.
(ii) Let 6 >0, p; €R fori=1,...,n,
bi(t) > dtt, i=1,...,n
and let

n—1

pn + A (L4 pi) +1>0. (2.15)
i=1
Then any solution {y;}T of (2.13), satisfying the initial conditions

ﬁyi(a)>y07 t=1,...,n,
s noncontinuable.
(i) Let [~ bi(t)dt = oo fori=1,...,n. Then the statement in (i) is valid.

The above lemma follows [2, Theorems 3, 4 (for I = n)] or [3| Theorems 1, 2, 3].

3. CONTINUABLE SOLUTIONS

The first theorem gives a sufficient condition for all solutions of (1.1)) be con-
tinuable. It is a generalization of well known theorem by Winter and Osgood [8]
for differential equations.

Theorem 3.1. Suppose (H4) and

/loowcii):oo. (3.1)

Then every solution of (1.1]) is continuable.

Proof. Suppose, on the contrary, that x is a noncontinuable solution of (1.1]) defined
on [a,b). Then according to Lemma [2.2(ii), b < oo and

lim Z(t) = co. (3.2)
t—b—
Lemma implies
t) < M (t /M2 )ds<M1 +M/ ()
on [a ,b) where M; and M, are given by (2.8) and M = maxa<s<bM (s). From
this, and Lemma [2.6] (with ¢, = a, k = Ml(b) g(t) = x(t) = Z(t)) we
obtain

< gr #(t) ¢
/ :nm/ < lim [ Mds=M(®b—a)<oo.
o w(T)  t=b—J,  w(T) T tsb- J,
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This contradicts (3.1)) and proves that  is continuable. O

If (3.1)) does not hold, then noncontinuable solutions may exist (see Theorem
below). The following theorem gives us a set of initial conditions under which
solutions are continuable.

Theorem 3.2. Let A > 1, (H4) and (H5) hold with w(x) = 2> for x € Ry and let
x be a solution of (1.1)) satisfying the initial conditions d; € R,

;v[j](a):dj, j=0,...,n—1. (3.3)
If
k :=|do| ay'(s)9 D Jails)|di]
Lo
+ (\d _ ar(((i) (s — a)o‘)Jg,n_l(s)} ds < o0,
and
—DEMY 2R (t— a)

(A arl()j) / ( )if(t) S (Bt <1, (3.5)

then x is continuable.

Proof. Let = be a solution of (1.1)) with (3.3), (3.4) and (3.5). Suppose, on the

contrary, that « is noncontinuable and it is defined on [a, b), b < co. Then according
to Lemma ii)
lim Z(t) = c0. (3.6)

t—b—

Lemma implies
) < Myt / Ma(s (3.7)

for t € [a,b) where M7 and M are given by . As My is nondecreasing, (3.4)
implies k = M (c0) is finite.
Let T € [a,b) be fixed. We define

- i T
v(t) = g_c(t) e (a.T) (3.8)
z(T) ift>T.
Then with respect to ,
t
v(t) < k+/ May(s)v*(s)ds, t€[a,00).

Now, according to Lemma 2.5 (with tg = a, F' = Ma, condition (2.12) follows from
(13.5)) we have

1

o(t) < k(l — (A= DR /Oo Mo (s) ds)_ﬁ =iy < 00

for t > a. Hence, by (3.8),
(t

\/H|

<k, te€laT].
k1

)
As T € [a,b) is arbitrary, Z(t) < for t € [a,b). The contradiction with (3.6]
U

proves that x is continuable.

The following two theorems give us sets of initial conditions for which the solu-
tions are noncontinuable.
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Theorem 3.3. Let A > 1, 2o > 0, 8 € {—1,1}, t; > a and a continuous function
r: [a,t1] — (0,00) ewxist such that

Bf(t,x) > rt)|z]* fortela,t1],Br > xo,

2\ (3.9)
Be(t) > —70 r(t) fort € la,t1].

Then there exists D > 0 such that any solution of (L.1)) satisfying Bx((a) > D,
1=0,...,n — 1 is noncontinuable.

Proof. Let B = 1. Consider the auxiliary differential equations

toz—l

y = Zf(a) roly(t)|* sgny(t) (3.10)

for t € [a,t1), y™(t) = (y"~Y (t))/, ro = min,<;<¢, 7(t) > 0. This equation can be
transformed into

1
ygziyﬂrlv i:1a27"'an_]-7
ai(t)
a—1 (311)
/ 1 A
Yn 2F(0¢)T0|y1( )| Sgny( )
with y; = yl"=4, ¢ = 1,2,...,n. Then, according to Lemma i) (with ¢; =
t1, Yo = o, bi(t) = (ai(t))_l fori =1,....n—1, b, = 2F a)ro , (B11) has
a noncontinuable solution y defined on [a,b) C [a,tl) such that y;(t) > zo for

t € [a,b). Denote by d; = y;+1(a), i =0,...,n — 1. Hence, (3.10) has the solution
y with the initial conditions

yla)=di, i=0,...,n—1 (3.12)

and (3.11]) implies all quasiderivatives are increasing. At the same time

lim sup Y 3.13
t—b lzg ( )

Let x be a solution of (|1.1)) with the initial conditions
2a) >d;, i=0,...,n—1. (3.14)

We denote by I the intervals where both functions y and x are defined. We prove
that
M()>ym(), tel,i=0,....,n—1. (3.15)

Because of the initial conditions (3.12)) and -, equation (|3 is valid in a right
neighbourhood of a. Suppose, that 1t is not valid on the whole 1nterval I. Then there

isaty € I and an index j € {0,...,n — 1} exist such that
2l (ty) = yll(ty),  2l(t) > 4l(t) for t € [a, t2) (3.16)
i=0,...,n—1. First, we prove that j # n—1. Using (3.9) and (3.16)), for t € |

we have

et > dyy + —— / t—s)*"e(t) + f(s,2(s))] ds

(o)
Zdnfl‘f' 1

/ — —Smo + (s )x’\(s)} ds
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a—1 t
>yt / "5) 17 (s) ds
oz 1

> dp—1 + 21"( ;)/ y N s)ds =y ().

Hence, j € {0,...,n — 2}. If w(t) = zVl(t) — yll(¢), then w(a) > 0, w(ts) = 0 and
there exists t3 € (a,t2) such that w'(¢3) <0, i.e.,

(m[j] (ts) — yb! (t3))/ — ajj(tg) [x[j+1] (ts) — ybtll (ts)] <0.

This contradicts and implies is valid. Now, according to ,
and Lemma [2.2{ii), # is noncontinuable. So the statement of the theorem holds
with D = max(do,...,dp—1) + 1.

When 8 = —1, the proof is similar. O

Theorem 3.4. Let A > 1, 8 € {—1,1}, o > 0 and let a continuous function
r: [a,00) = (0,00) be such that

Bf(t,x) > r(t)|z[*  fort € la,00), Bz > w0,
Be(t) > f?r(t) fort € [a,00).

Let one of the following two assumptions hold:
(i) Let C; e Ry, A\j €R, j=1,...,n be such that
ai(t) <Gty i=1,...,n—1,1(t) > Cpt* (3.17)
fort > a and

n—1
An>—1+A{1—a—Z(1—Ai)]. (3.18)
i=1
(i) Let [ a;'( )dt:oofori:L.. -2, [ttt (t)dt = oo and

72 r{tyat =

Then any solution x of (1.1) satisfying the initial conditions
Bz[i](a) >zoa' ™, i=0,...,n—2, Bz"Y (a) > xo
s noncontinuable.

Proof. (i) Let 8 = 1. Consider the auxilliary integro-differential equation

a-1 [t
W) =) + g [l sy ds (319)
and its solution with the initial conditions
Yyl a)=d; >0, j=0,....n—1. (3.20)
This equation is equivalent to the system
y; = ajl( )yj_,_l, j=1...,n—2,
/ 1 a—1
Yn—1 = mt Yn (3.21)

r(t)y1|* sgnyy

1 A
t
to + QF(a)r( il

1
2T («)
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with
y=y U i=1,... n—1, y,=t""yll, (3.22)

The solution y of (3.19) and (3.20)), and the solution {y;}", of (3.21) with the

initial conditions
yl(a) = di—l yi=1...,n— 1 ’ yn(a) = aliadn—l (323)
satisfy (3.22)). We apply Lemma [2.7(ii) to (3.21)) and (3.23) with

yo=x0a' "%, bi(t)=a;'(t), i=1,...,n-2,

boo1(t) =t* "ty ba(t) = r(t), pi=-Npi=1,...,n—2,

s LGy
f1 = At — 14 a,  fin=An, (5:m1n(011 o Lo ))

Note, by (3.17) and (3.18]), condition (2.15)) is valid. Now, Lemma ii) implies
the solutions of (3.21}) and (3.23)) and of ((3.19)) and (3.20)) are noncontinuable. The

rest of the proof is similar as the one of Theorem 3.3} only (3.17) has to be replaced
by

a—1

t
A — [n—1]
g ICTA O E OF
—1, the proof is similar.

ii) The proof is similar, we use Lemma [2.7(iii) instead of Lemma [2.7(ii). O

.’E[”fl](t) > >dy g+ ———

If B
(

4. SPECIAL CASE
Consider the special case of (L., (for n =2)
DY (a1(t)z’) = r(t)|z|* sgnz,
w(@) =do, aV(a)=dy,
where A > 0, dy € R, dy € R, r € C[a, ), a; € Cla,o0) and ay(t) > 0 for t > a.

(4.1)

Corollary 4.1.
(i) If A <1, then any solution of (4.1) is continuable.
(ii) Let A > 1 and r > 0 on [a,00). Then there exists D > 0 such that any solu-
tion of (4.1) satisfying |do| > D, |di| > D and dody > 0 is noncontinuable.
(iii) Let A\ > 1, C; >0, Cy >0, A1 € R, X2 € R, either Ao > =1+ A(\1 — ) or
M < a, Ay > —1, and let
ar(t) <Ot r(t) > Cot?  fort>a. (4.2)
If dody > 0, then any solution of (4.1) is noncontinuable.
(iv) Let A > 1, r € ACiocla, o0), and dy, di be such that

k= |do] + \d1|/ a7 (s) ds < 00

A= D =)
T / O <1 (4.3)

Then any solution x of (4.1) is continuable.

Pmof In cases (i), (ii), (iii) and (nﬁthe proofs follow from Theorems [3.1] [3.3] -

and respectively. In Theorem [3.4 we put zo = 3 min(|do|a®~", |d1]).

and
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Note that cases (iii) and (iv) of Corollary are not in a contradiction. Let
be valid. If (iii) holds, then Ay > —1 4+ A(A; — «) is supposed. If (iv) is valid,
then according to we have Ay < —1+ A\; — a. So, the relationships between
A1 and Ay are different in these two cases.
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