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MAXIMAL REGULARITY FOR NON-AUTONOMOUS CAUCHY

PROBLEMS IN WEIGHTED SPACES

ACHACHE MAHDI, TEBBANI HOSSNI

Abstract. We consider the regularity for the non-autonomous Cauchy prob-

lem

u′(t) +A(t)u(t) = f(t) (t ∈ [0, τ ]), u(0) = u0.

The time dependent operatorA(t) is associated with (time dependent) sesquilin-
ear forms on a Hilbert space H. We prove the maximal regularity result in

temporally weighted L2-spaces and other regularity properties for the solution

of the problem under minimal regularity assumptions on the forms and the
initial value u0. Our results are motivated by boundary value problems.

1. Introduction

The aim of this article is to study autonomous and non-autonomous evolution
equation governed by time dependent sesquilinear forms. Let (H, (·, ·), ‖ · ‖) be a
Hilbert space over R or C. We consider another Hilbert space V which is densely
and continuously embedded in H. We denote by V ′ the (anti-) dual space of V, so
that

V ↪→d H ↪→d V ′.
i.e. V is a dense subspace of H such that for some constant CH > 0,

‖u‖ ≤ CH‖u‖V (u ∈ V).

We denote by 〈, 〉 the duality V ′ − V and note that 〈ψ, v〉 = (ψ, v) if ψ, v ∈ H. We
consider a family of sesquilinear forms

a : [0, τ ]× V × V → C

such that

(H1) D(a(t)) = V (constant form domain),
(H2) |a(t, u, v)| ≤M‖u‖V‖v‖V (uniform boundedness),
(H3) Re a(t, u, u) + ν‖u‖2 ≥ δ‖u‖2V for all u ∈ V, for some δ > 0 and some ν ∈ R

(uniform quasi-coercivity).

We denote by A(t),A(t) the usual associated operators with a(t) (as operators on
H and V ′).
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In 1961 J. L. Lions proved that the non-autonomous Cauchy problem

u̇(t) +A(t)u(t) = f(t)

u(0) = u0
(1.1)

has L2-maximal regularity in V ′.
Theorem 1.1 (Lions’ theorem). Given f ∈ L2(0, τ ;V ′) and u0 ∈ H, there is a
unique solution u ∈MR(V,V ′) := H1(0, τ ;V ′) ∩ L2(0, τ ;V) of problem (1.1).

Note that MR(V,V ′) ↪→ C([0, τ ];H) so that the initial condition makes sense. In
Theorem 1.1 only measurability of t→ a(t, ·, ·) with respect to the time variable is
required to have a solution u ∈MR(V,V ′). However, considering boundary valued
problems one is interested in strong solution, i.e. solution u ∈ H1(0, τ ;H) and not
only in H1(0, τ ;V ′) (note that H ↪→ V ′ by the natural embedding).

In the recent decades, the maximal regularity approach has become very useful
in application to parabolic partial differential equations. The question of maximal
regularity in H (autonomous or non-autonomous cases) is so important for several
reasons. First of all, if Robin boundary conditions are considered, only the operator
A(t) realizes these boundary conditions. The main reason for studying this problem
is its importance for non-linear problems. They are mainly solved by applying
Banach or Schauder fixed point theorems.

Problem 1.2. Let f ∈ L2(0, τ ;H). Under which conditions on the forms a(·) the
solution u ∈MR(V,V ′) of (1.1) satisfies u ∈ H1(0, τ ;H).

Lions asked this question on maximal regularity for several conditions on the
form and on the initial value. He also gave partial positive answers in [17, XVIII
Chapter 3, p. 513]. More recently, this problem has been studied with a lot of
progress. See the recent papers [3] or [4] for more details and references. The
main focus of this work is the presence of the temporal weights. The choice of
the weighted spaces has a big advantages. One of them is to reduce the necessary
regularity for initial conditions of evolution equations. Time-weights can be used
also to exploit parabolic regularization which is typical for quasilinear parabolic
problems.

This paper focuses on proving the maximal regularity in the non-autonomous
case, i.e. we prove the existence and the uniqueness of solution to Problem (1.1).
We shall allow considerably less restrictive assumptions on f and the initial data u0.
Here, f belongs to the weighted Hilbert space L2(0, τ, tβdt;H), with β ∈ [0, 1[ and
the initial data u0 takes its values in a certain interpolation space (H, D(A(0))) 1−β

2 ,2

between H and D(A(0)).
The maximal regularity for the autonomous case in weighted spaces was the

subject of treatment of many authors, see for instance [5]. In the non-autonomous
case (Section 5) we prove that if f ∈ L2(0, τ, tβdt;H) and u0 ∈ (H, D(A(0))) 1−β

2 ,2

for arbitrary β ≥ 0 with the assumption that the operator A(·) belongs to the space
W 1/2,2(0, τ ;L(V,V ′))∩Cε([0, τ ],L(V,V ′)) for some ε > 0, then problem (5.2) has a
unique solution u such that u̇, A(·)u ∈ L2(0, τ, tβdt;H). Throughout this paper we
assume that the Kato square root property (3.3) is satisfied. This property plays
an important role in the questions of (non-autonomous) maximal regularity and
optimal control. To prove our results we appeal to classical tools from harmonic
analysis such as square function estimate or functional calculus and from functional
analysis such as interpolation theory or operator theory.
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This work is structured as follows. In Section 2 we present basic definitions and
properties used throughout this paper, in particular those of weighted spaces. In
Section 3, we prove some preparatory results. Section 4 uses this result to show the
maximal regularity for the autonomous equations, while in Section 5 we prove our
result on maximal regularity to the considered non-autonomous Cauchy problems in
the weighted space L2(0, τ, tβdt;H) and other regularity properties for the solution.
We illustrate our abstract results by two applications in the final section. One of
them concerns the heat equation with Robin boundary conditions on a bounded
Lipschitz domain Ω.

Notation. We denote by L(E,F ) (or L(E)) the space of bounded linear operators
from E to F (from E to E). The spaces Lp(a, b;E) and W 1,p(a, b;E) denote
respectively the Lebesgue and Sobolev spaces of function on (a, b) with values in
E. Cα(a, b;E) denote the space of Hölder continuous functions of order α. Recall
that the norms of H and V are denoted by ‖ · ‖ and ‖ · ‖V . The scalar product of
H is (·, ·).

We denote by C, C ′ or c. all inessential positive constants. Their values may
change from line to line. In some cases we will use the notation a . b to signify
that there exists an inessential positive constant C such that a ≤ Cb.

2. Properties of weighted spaces

In this section we briefly recall the definitions and we give the basic properties of
vector-valued function spaces with temporal weights. Let (X, ‖ · ‖X) be a Banach
space over R or C. For −1 < β < 1 we set L2

β(0, τ ;X) = L2(0, τ, tβdt;X), endowed
with the norm

‖u‖2L2
β(0,τ,X) :=

∫ τ

0

‖u(t)‖2Xtβ dt.

It known that L2
β(0, τ ;X) ↪→ L1

loc(0, τ ;X). Indeed, for u ∈ L2
β(0, τ ;X) we find by

Hölder’s inequality∫ τ

0

‖u(t)‖X dt ≤
(∫ τ

0

t−β dt
)1/2

‖u‖L2
β(0,τ ;X).

It clearly holds that L2(0, τ ;X) ↪→ L2
β(0, τ ;X) for β > 0 and L2

β(0, τ ;X) ↪→
L2(0, τ ;X) for β < 0.

We define the corresponding weighted Sobolev spaces

W 1,2
β (0, τ ;X) := {u ∈W 1,1(0, τ ;X) s.t. u, u̇ ∈ L2

β(0, τ ;X)},

W 1,2
β,0(0, τ ;X) := {u ∈W 1,2

β (0, τ ;X), s.t. u(0) = 0},

which are Banach spaces for the norms, respectively,

‖u‖2
W 1,2
β (0,τ ;X)

:= ‖u‖2L2
β(0,τ ;X) + ‖u̇‖2L2

β(0,τ ;X),

‖u‖2
W 1,2
β,0(0,τ ;X)

:= ‖u̇‖2L2
β(0,τ ;X).

We set also

L∞β (0, τ ;X) := {u ∈ L1(0, τ ;X), s.t. s→ sβ/2u(s) ∈ L∞(0, τ ;X)},
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endowed with the norm ‖u‖L∞β (0,τ ;X) := ‖s 7→ sβ/2u(s)‖L∞(0,τ ;X). For s ∈ (0, 1)

we define the fractional weighted Sobolev space W s,2
β (0, τ ;X) by

W s,2
β (0, τ ;X) = (L2

β(0, τ ;X);W 1,2
β (0, τ ;X))s,2,

endowed with the norm

‖u‖2
W s,2
β (0,τ ;X)

:= ‖u‖2L2
β(0,τ ;X) +

∫ τ

0

∫ t

0

‖u(t)− u(s)‖2X
|t− s|1+2s sβ ds dt.

Here, (·; ·)s,2 is the real interpolation space. For more details we refer the reader to
[20, (2.6)].

Lemma 2.1 (Weighted Hardy inequality). For every f ∈ L2
β(0, τ,X), we have∫ τ

0

(1

t

∫ t

0

‖f(s)‖X ds
)2

tβ dt . ‖f‖L2
β(0,τ ;X).

This lemma was proved in [23, Lemma 6].

Proposition 2.2. We have the following properties
(1) (a) For p > 2 and β > 2

p − 1, Lp(0, τ ;X) ↪→ L2
β(0, τ,X),

(b) For p < 2 and β < 2
p − 1, L2

β(0, τ,X) ↪→ Lp(0, τ ;X).

(2) For all u ∈ L2
β(0, τ,X), we have t→ v(t) = 1

t

∫ t
0
u(s) ds ∈ L2

β(0, τ,X).

(3) We define the operator Φ : L2
β(0, τ ;X) → L2(0, τ ;X), such that (Φf)(t) =

tβ/2f(t) for f ∈ L2
β(0, τ ;X) and t ∈ [0, τ ]. Then Φ is an isometric iso-

morphism. We note also that Φ ∈ L(L2(0, τ ;X), L2
−β(0, τ ;X)) and Φ ∈

L(W 1,2
β,0(0, τ ;X),W 1,2

0 (0, τ ;X)).

(4) W 1,2
β,0(0, τ ;X) ↪→ L2

β−2(0, τ ;X) ∩ L∞β−1(0, τ ;X).

(5) L2
−β(0, τ ;V ′) is the dual space of L2

β(0, τ ;H) by the duality defined for the

space L2(0, τ ;H).

(6) If u ∈W 1,2
β (0, τ ;X), we obtain that u has a continuous extension on X and

W 1,2
β (0, τ ;X) ↪→ C([0, τ ];X).

(7) C∞c ((0, τ);X) and C∞([0, τ ];X) are dense in L2
β(0, τ ;X) and W s,2

β (0, τ ;X)

respectively, for all s ∈ [0, 1].

Proof. (1a) Let p > 2 and β > 2
p − 1, we set p′ = p

2 > 1, 1
p′ + 1

q = 1. This implies

that q = p
p−2 and by using Hölder’s inequality we obtain

‖u‖2L2
β(0,τ ;X) =

∫ τ

0

‖u(t)‖2Xtβ dt

≤
(∫ τ

0

‖u(t)‖pX dt
)2/p(∫ τ

0

tβq dt
)1/q

=
( 1

βq + 1
τβq+1

)1/q

‖u‖2Lp(0,τ ;X).

(1b) Similarly, for p < 2 and β < 2
p − 1 we have

‖u‖pLp(0,τ ;X) =

∫ τ

0

‖u(t)‖pXt
− βp2 t

βp
2 dt

≤
(∫ τ

0

‖u(t)‖2Xtβ dt
)p/2(∫ τ

0

t
βp
p−2 dt

) 2−p
2
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= C‖u‖p
L2
β(0,τ ;X)

.

(2) Lemma 2.1 shows that

‖v‖2L2
β(0,τ ;X) =

∫ τ

0

‖1

t

∫ t

0

u(t) ds‖2Xtβ dt . ‖u‖2L2
β(0,τ ;X).

We obtain the result since u ∈ L2
β(0, τ ;X).

(3) Note that ‖Φf‖L2(0,τ ;X) = ‖f‖L2
β(0,τ ;X) and Φ−1 : L2(0, τ ;X)→ L2

β(0, τ ;X)

where (Φ−1g)(t) = t−β/2g(t) for all g ∈ L2(0, τ ;X).

(4) Let u ∈W 1,2
β,0(0, τ ;X). We write u(t) =

∫ t
0
u̇(l) dl. Then

‖u(t)‖2Xtβ−2 = ‖
∫ t

0

u̇(l) dl‖2Xtβ−2.

This implies

‖u‖2L2
β−2(0,τ ;X) =

∫ τ

0

‖u(t)‖2Xtβ−2 dt

=

∫ τ

0

1

t2
‖
∫ t

0

u̇(s) ds‖2Xtβ dt

≤
∫ τ

0

(1

t

∫ t

0

‖u̇(s)‖X ds
)2

tβ dt

. ‖u̇‖L2
β(0,τ ;X) ≤ ‖u‖W 1,2

β (0,τ ;X),

where we used Lemma 2.1. For t ∈ [0, τ ], by Hölder’s inequality we have

‖u(t)‖Xt
β−1
2 ≤

∫ t

0

‖u̇(s)‖X ds t
β−1
2 ≤ ‖u‖W 1,2

β,0(0,τ ;X).

It follows that W 1,2
β,0(0, τ ;X) ↪→ L2

β−2(0, τ ;X) ∩ L∞β−1(0, τ ;X).

(5) For this proof we use the simple functions in L2
−β(0, τ ;V ′) and the Cauchy-

Schwartz inequality (the proof is analogous to the non-weighted case, for more
details see [11, p.98].

(6) For u ∈W 1,2
β (0, τ ;X) and (t, s) ∈ [0, τ ]2, we obtain

‖u(t)− u(s)‖X = ‖
∫ t

s

u̇(l) dl‖X

≤
(∫ t

s

l−β dl
)1/2

‖u̇‖L2
β(0,τ ;X)

=
1√

1− β
(
t−β+1 − s−β+1

)1/2‖u̇‖L2
β(0,τ ;X).

Letting s→ t we obtain u(s)→ u(t) in X. Therefore u has a continuous extension

on X. Thus we can always identify a function in W 1,2
β (0, τ ;X) by its continuous

representative.
(7) First we note that C∞c ((0, τ);X) is dense L2(0, τ ;X). Then for all f ∈

L2
β(0, τ ;X) and for any given ε > 0 there exists a function ψ ∈ C∞c ((0, τ);X) such

that

‖(Φf)− ψ‖2L2(0,τ ;X) ≤ ε.
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It follows that

‖f − (Φ−1ψ)‖2L2
β(0,τ ;X) ≤ ‖Φ‖L(L2

β(0,τ ;X);L2(0,τ ;X))‖(Φf)− ψ‖2L2(0,τ ;X) ≤ ε.

Thus C∞c ((0, τ);X) is dense in L2
β(0, τ ;X).

As in [24, Theorem 2.9.1] for the scalar-valued case, one sees that the space of

all function f in C∞([0, τ ];X) such that f(0) = 0 is dense in W 1,2
0 (0, τ ;X). Then

for all g ∈ W 1,2
β,0(0, τ ;X) and ε > 0 there exists φ ∈ C∞([0, τ ];X) with φ(0) = 0

such that
‖φ− Φg‖2W 1,2(0,τ ;X) ≤ ε.

Then ‖Φ−1φ − g‖2
W 1,2
β (0,τ ;X)

≤ ε. This shows that the space of all function f in

C∞([0, τ ];X) such that f(0) = 0, is dense in W 1,2
β,0(0, τ ;X). Let f ∈ W 1,2

β (0, τ ;X)

and φ ∈ C∞([0, τ ];X) such that φ(0) = f(0). Then f − φ ∈ W 1,2
β,0(0, τ ;X) and

there is ξ ∈ C∞([0, τ ];X) with ξ(0) = 0, such that ‖f−ξ−φ‖2
W 1,2
β (0,τ ;X)

≤ ε. Since

ξ + φ ∈ C∞([0, τ ];X), then C∞([0, τ ];X) is dense in W 1,2
β (0, τ ;X).

Since C∞([0, τ ];X) is dense in W 1,2
β (0, τ ;X) and

W s,2
β (0, τ ;X) = (L2

β(0, τ ;X);W 1,2
β (0, τ ;X))s,2,

we obtain that C∞([0, τ ];X) is also dense in W s,2
β (0, τ ;X) by [24, p.39]. �

3. Preliminaries

In this section we prove several estimates which will play an important role in
the proof of our results. From now we assume without loss of generality that the
forms are coercive, that is (H3) holds with ν = 0. The reason is that by replacing
A(t) by A(t) + ν, the solution v of (1.1) is v(t) = e−νtu(t) and it is clear that

u ∈W 1,2
β (0, τ ;H) ∩ L2

β(0, τ ;V) if and only if v ∈W 1,2
β (0, τ ;H) ∩ L2

β(0, τ ;V).

Proposition 3.1. The solution of problem (1.1) is unique.

Proof. We suppose that there are two solutions u1, u2 to Problem (1.1). Obviously,
v = u1 − u2 satisfies

v̇(t) +A(t)v(t) = 0

v(0) = 0.
(3.1)

Then for all t ∈ [0, τ ] we have

2 Re

∫ t

0

(v̇(s), v(s))sβ ds+ 2 Re

∫ t

0

(A(s)v(s), v(s))sβ ds = 0.

Integration by parts gives

tβ‖v(t)‖2 − β
∫ t

0

‖v(s)‖2sβ−1 ds+ 2δ

∫ t

0

‖v(s)‖2Vsβ ds ≤ 0.

It is clear that for the case β ≤ 0 we obtain v(t) = 0 for all t ∈ [0, τ ]. Therefore
u1 = u2 and then the solution of Problem (1.1) is unique. For the case β ≥ 0 we
have

tβ‖v(t)‖2 +

∫ t

0

‖v(s)‖2(2δC2
Hs

β − βsβ−1) ds ≤ 0.

So for the case t ≤ 2δC2
H

β we have v(t) = 0 for all t ∈ [0,
δC2
H
β ]. Now we proceed

inductively to obtain v = 0 on [0, τ ]. �
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We denote by Sθ the open sector Sθ = {z ∈ C∗ : |arg(z)| < θ} with vertex 0.
It is known that −A(t) is sectorial operator and generates a bounded holomorphic
semigroup on H. The same is true for −A(t) on V ′. From [14] (Proposition 2.1),
we have the following lemma which point out that the constants involved in the
estimates are uniform with respect to t.

Lemma 3.2. For any t ∈ [0, τ ], the operators −A(t) and −A(t) generate strongly
continuous analytic semigroups of angle γ = π

2 − arctan(Mδ ) on H and V ′, respec-
tively. In addition, there exist real constants C > 0, Cθ > 0 independent of t, such
that

(1) ‖e−zA(t)‖L(H) ≤ 1 and ‖e−zA(t)‖L(V′) ≤ C for all z ∈ Sγ .

(2) ‖A(t)e−sA(t)‖L(H) ≤ C
s and ‖A(t)e−sA(t)‖L(V′) ≤ C

s for all s ∈ (0,∞).

(3) ‖e−sA(t)‖L(H,V) ≤ C√
s

for all s ∈ (0,∞).

(4) ‖(z−A(t))−1‖L(H,V) ≤ Cθ√
|z|

and ‖(z−A(t))−1‖L(V′,H) ≤ Cθ√
|z|

for all z /∈ Sθ
with fixed θ > γ.

The following lemma is proved in [19, Corollary 4.3.12]

Lemma 3.3. Let H1,H2 be two Hilbert spaces, with H2 ⊂ H1, and H2 dense in
H1. Then for every θ ∈ (0, 1),

[H1,H2]θ = (H1,H2)θ,2,

with ‖u‖[H1,H2]θ = C‖u‖(H1,H2)θ,2 , where C is a positive constant independent of
H1 and H2.

As a consequence from the previous lemma and [19, Theorem 4.2.6] we have that
for all γ ∈ (0, 1), t ∈ [0, τ ],

(H, D(A(t)))γ,2 = [H, D(A(t))]γ = D(A(t)γ).

Lemma 3.4. For all x ∈ (H, D(A(t)))1/2,2 one has∫ ∞
0

‖A(t)e−sA(t)x‖2 ds ≤ C‖x‖2(H,D(A(t))) 1
2
,2
,

where C > 0 is independent of t.

Proof. Note that ‖e−sA(t)‖L(H) ≤ 1 and ‖sA(t)e−sA(t)‖L(H) ≤ M1, where M1 is
independent of t. Let x ∈ (H, D(A(t))) 1

2 ,2
. We write x = a + b, where a ∈ H and

b ∈ D(A(t)) to obtain

s1/2‖A(t)e−sA(t)x‖ ≤ inf
x=a+b; a∈H, b∈D(A(t))

M1s
−1/2‖a‖+ s1/2‖b‖D(A(t))

≤ max{M1, 1} inf
x=a+b; a∈H, b∈D(A(t))

s−1/2{‖a‖+ s‖b‖D(A(t))}

≤ max{M1, 1} inf
x=a+b; a∈H, b∈D(A(t))

s−1/2K(s, x;H, D(A(t))).

So ‖A(t)e−sA(t)x‖ ≤ max{M1, 1}s−1K(s, x;H, D(A(t))), where

K(s, x;H, D(A(t))) = inf
x=a+b; a∈H, b∈D(A(t))

(
‖a‖+ s‖b‖D(A(t))

)
.

Since ‖x‖2(H,D(A(t))) 1
2
,2

=
∫∞

0
|K(s, x;H, D(A(t)))|2 ds

s2 [19, Definition 1.1.1],∫ ∞
0

‖A(t)e−sA(t)x‖2 ds ≤ max{M1, 1}‖x‖2(H,D(A(t))) 1
2
,2
.
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This completes the proof. �

In the next lemma we prove the quadratic estimate that was proved in [3] under
assumption (3.3). Here we prove it without the assumption.

Lemma 3.5. Let x ∈ H and t ∈ [0, τ ]. We have∫ τ

0

‖A(t)1/2e−sA(t)x‖2 ds ≤ c‖x‖2, (3.2)

where c is a positive constant independent of t.

Proof. Note that by [16, (A1) p. 269],

A(t)−β =
1

π

∫ ∞
0

µ−β(µ+A(t))−1 dµ.

Then Lemma 3.2 gives ‖A(t)−1/2‖L(H) ≤ C ′, where C ′ is a positive constant inde-
pendent of t. Let x ∈ H and t ∈ [0, τ ]. By Lemma 3.4 we have∫ 1

0

‖A(t)1/2e−sA(t)x‖2 ds =

∫ 1

0

‖A(t)e−sA(t)A(t)−1/2x‖2 ds

≤ ‖A(t)−1/2x‖2(H;D(A(t))) 1
2
,2

= ‖x‖2 + ‖A(t)−1/2x‖2

≤ (C ′2 + 1)‖x‖2.
This completes the proof. �

In the sequel, we assume that D(A(t)1/2) = V for all t ∈ [0, τ ] and there exist
c1, c

1 > 0 such that for all v ∈ V
c1‖v‖V ≤ ‖A(t)1/2v‖ ≤ c1‖v‖V , (3.3)

this also holds for adjoint-operators and we find

c1‖v‖V ≤ ‖A∗(t)1/2v‖ ≤ c1‖v‖V .

Note that this assumption is always true for symmetric forms such that c1 =
√
δ

and c1 =
√
M .

Lemma 3.6. For all t ∈ [0, τ ] we have D(A(t)1/2) = H and D(A(t)∗
1
2 ) = V.

Proof. We write

A(t)1/2u = A(t)A(t)−1/2u.

Therefore
α

c1
‖u‖ ≤ ‖A(t)1/2u‖V′ ≤

M

c1
‖u‖.

So A(t)1/2 ∈ L(H,V ′) and by duality we find A(t)∗
1
2 ∈ L(V,H). �

Let t ∈ [0, τ ]. For f ∈ L2(0, t;H), we define the operator

(R(t)f) :=

∫ t

0

e−(t−s)A(t)f(s) ds.

The next lemma shows that R(t) is bounded in L(L2(0, t;H),V), and it was proved
in [3, Lemma 4.1].

Lemma 3.7. We have R(t) ∈ L(L2(0, t;H),V) for all t ∈ [0, τ ].
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Lemma 3.8. Assume that A(·) ∈ Cε([0, τ ];L(V,V ′)), ε > 0. Then for all λ ∈
(0,∞), we obtain (λ+A(·))−1 ∈ Cε([0, τ ];L(H)) and

‖(λ+A(·))−1‖Cε([0,τ ];L(H)) ≤
C

λ
.

Proof. Let λ ∈ (0,∞), t, s ∈ [0, τ ]. We obtain

(λ+A(t))−1 − (λ+A(s))−1 = (λ+A(t))−1(A(t)−A(s))(λ+A(s))−1.

Therefore by Lemma 3.2 we have

‖(λ+A(t))−1 − (λ+A(s))−1‖L(H)

≤ ‖(λ+A(t))−1‖L(V′,H)‖A(t)−A(s)‖L(V′,V)‖(λ+A(t))−1‖L(H,V)

≤ C |t− s|
ε

|λ|
.

�

We denote by L2
β(0, τ ;D(A(·))) the space of all measurable functions f : [0, τ ]→

H for which f(t) ∈ D(A(t)) for almost all t ∈ [0, τ ] and A(·)f ∈ L2
β(0, τ ;H). Then

the following density result holds.

Lemma 3.9. Suppose that A(·) ∈ Cε([0, τ ];L(V,V ′)). Then L2
β(0, τ ;D(A(·))) is

dense in L2
β(0, τ ;H).

Proof. Let f ∈ L2
β(0, τ ;H) and set fn(t) = n(n + A(t))−1f(t) for n ∈ N. Since

the map t 7→ (n + A(t))−1 ∈ Cε([0, τ ];L(H)), then for all n ∈ N the function
fn : [0, τ ] → H is measurable and satisfies fn(t) ∈ D(A(t)) almost everywhere as
well as ‖A(t)fn(t)‖ ≤ Cn‖f(t)‖. Moreover

‖fn(t)− f(t)‖ = ‖(n(n+A(t))−1 − I)f(t)‖.
Hence, the convergence fn → f in L2

β(0, τ ;H) holds by the dominated convergence
theorem. �

Proposition 3.10. Assume that A(·) ∈ Cε([0, τ ];L(V,V ′)), for some ε > 0. Then
for all f ∈ L2

β(0, τ ;H), with β < 1 the operator L defined by

(Lf)(t) := A(t)

∫ t

0

e−(t−s)A(t)f(s) ds

is bounded on L2
β(0, τ ;H).

Proof. Let f ∈ L2
β(0, τ ;D(A(·))). We split the integral into two parts to obtain

(Lf)(t) = A(t)

∫ t/2

0

e−(t−s)A(t)f(s) ds+A(t)

∫ t

t/2

e−(t−s)A(t)f(s) ds

:= I1(t) + I2(t).

We begin by estimating the first integral

‖I1(t)‖ = ‖A(t)

∫ t/2

0

e−(t−s)A(t)f(s) ds‖ .
∫ t/2

0

1

t− s
‖f(s)‖ ds

.
2

t

∫ t/2

0

‖f(s)‖ ds.
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Lemma 2.1 gives ∫ τ

0

‖A(t)

∫ t/2

0

e−(t−s)A(t)f(s) ds‖2tβ dt

.
∫ τ

0

(
2

t

∫ t/2

0

‖f(s)‖ ds)2tβ dt

. ‖f‖2L2
β(0,τ ;H).

Similarly, we estimate the second integral. For x ∈ H we obtain

|(I2(t), x)|

= |
∫ t

t/2

(A(t)1/2e−
1
2 (t−s)A(t)f(s), A(t)

1
2∗e−

1
2 (t−s)A(t)∗x) ds|

≤
(∫ t

t/2

‖A(t)1/2e−
1
2 (t−s)A(t)f(s)‖2 ds

)1/2(∫ t

t/2

‖A(t)∗
1
2 e−

1
2 (t−s)A(t)∗x‖2 ds

)1/2

.
(∫ t

t/2

‖A(t)1/2e−
1
2 (t−s)A(t)f(s)‖2 ds

)1/2

‖x‖.

In the above inequality we used the quadratic estimate (3.5). Taking the supremum
over all x ∈ H, we obtain∫ τ

0

tβ‖I2(t)‖ dt =

∫ τ

0

tβ‖A(t)

∫ t

t/2

e−(t−s)A(t)f(s) ds‖2 dt

.
∫ τ

0

tβ
∫ t

t/2

‖A(t)1/2e−
1
2 (t−s)A(t)f(s)‖2 ds dt

.
∫ τ

0

∫ t

t/2

‖A(t)1/2e−
1
2 (t−s)A(t)

(
sβ/2f(s)

)
‖2 ds dt.

Let g be the function defined by g = (Φf). Using Fubini’s theorem and the basic
inequality (x+ y)2 ≤ 2x2 + 2y2, we obtain∫ τ

0

∫ t

t/2

‖A(t)1/2e−
1
2 (t−s)A(t)[sβ/2f(s)]‖2 ds dt

≤ 2

∫ τ

0

∫ t

t/2

‖A(s)1/2e−
1
2 (t−s)A(s)g(s)‖2 ds dt

+ 2

∫ τ

0

∫ t

t/2

‖(A(s)1/2e−
1
2 (t−s)A(s) −A(t)1/2e−

1
2 (t−s)A(t))g(s)‖2 ds dt

≤ 2

∫ τ

0

∫ 2s

s

‖A(s)1/2e−
1
2 (t−s)A(s)g(s)‖2 dt ds

+ 2

∫ τ

0

∫ t

t/2

‖(A(s)1/2e−
1
2 (t−s)A(s) −A(t)1/2e−

1
2 (t−s)A(t))g(s)‖2 ds dt

. ‖g‖2L2(0,τ ;H) +

∫ τ

0

∫ t

t/2

‖(A(s)1/2e−
1
2 (t−s)A(s) −A(t)1/2e−

1
2 (t−s)A(t))g(s)‖2 ds dt.

The functional calculus for the sectorial operators A(t), A(s) gives

A(s)1/2e−
1
2 (t−s)A(s) −A(t)1/2e−

1
2 (t−s)A(t)
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=

∫
Γ

λ1/2e−
1
2 (t−s)λ(λ−A(t))−1(A(t)−A(s))(λ−A(s))−1 dλ.

Hence,

‖A(s)1/2e−
1
2 (t−s)A(s) −A(t)1/2e−

1
2 (t−s)A(t)‖L(H)

≤
∫

Γ

|λ|1/2e− 1
2 (t−s) Reλ‖(λ−A(t))−1‖L(V′,H)

× ‖(A(t)−A(s))‖L(V,V′)‖(λ−A(s))−1‖L(H,V) |dλ|.
Thus

‖A(s)1/2e−
1
2 (t−s)A(s) −A(t)1/2e−

1
2 (t−s)A(t)‖L(H)

≤
∫ ∞

0

|λ|−1/2e−
1
2 (t−s)cos(γ)|λ| d|λ|‖(A(t)−A(s))‖L(V,V′).

where γ is the angle mentioned in Lemma 3.2. Then

‖A(s)1/2e−
1
2 (t−s)A(s) −A(t)1/2e−

1
2 (t−s)A(t)‖L(H) .

‖A(t)−A(s)‖L(V,V′)

(t− s)1/2
.

Therefore ∫ τ

0

∫ t

t/2

‖(A(s)1/2e−(t−s)A(s) −A(t)1/2e−(t−s)A(t))g(s)‖2 ds dt

.
∫ τ

0

∫ t

t/2

‖A(t)−A(s)‖2L(V,V′)

t− s
‖g(s)‖2 ds dt

. sup
s∈[0,τ ]

∫ τ

s

‖A(t)−A(s)‖2L(V,V′)

t− s
dt‖g‖2L2(0,τ ;H)

. τ2ε‖A‖2Cε([0,τ ];L(V,V′))‖f‖
2
L2
β(0,τ ;H).

This completes the proof. �

Proposition 3.11. For β ≥ 1 the operator L is not bounded on L2
β(0, τ ;H) in

general.

Proof. Let u ∈ H and g ∈ L2
−β(0, τ ;H). Noting that

(L∗g)(t) =

∫ τ

t

A(s)∗e−(s−t)A(s)∗g(s) ds, t ∈ (0, τ)

and L ∈ L(L2
β(0, τ ;H)) if and only if L∗ ∈ L(L2

−β(0, τ ;H)). If A(s)∗ = A(0)∗ for all

s ∈ [0, τ ], then (L∗g)(t) =
∫ τ
t
A(0)∗e−(s−t)A(0)∗g(s) ds. Assume now that t < 1 < τ

and take g(s) = 1[1,τ ](s)u, so

(L∗g)(t) = e−(1−t)A(0)∗u− e−(τ−t)A(0)∗u,

which converges to e−A(0)∗u− e−τA(0)∗u as t→ 0. We claim that

e−A(0)∗u− e−τA(0)∗u 6= 0,

then

‖L∗g‖2L2
−β(0,τ ;H) ≥ ‖L

∗g‖2L2
−β(0,1;H)

=

∫ 1

0

‖e−(1−t)A(0)∗u− e−(τ−t)A(0)∗u‖2 dt
tβ

=∞.
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Now, suppose that e−A(0)∗u− e−τA(0)∗u = 0, thus

e−A(0)∗u = e−(2τ−1)A(0)∗u.

Using induction, for all n ∈ N we obtain

e−A(0)∗u− e−(n(τ−1)+1)A(0)∗u = 0.

Since ‖A(0)∗e−(n(τ−1)+1)A(0)∗A(0)∗−1u‖ . 1
(n(τ−1)+1)‖A(0)∗−1u‖, by letting n →

∞ it follows that e−A(0)∗u = 0. Hence e−tA(0)∗u = 0 for all t ≥ 1, and we deduce
that u = 0 by an application of the isolated point theorem and the analyticity of
the semigroup. �

Lemma 3.12. For all f ∈ L2
β(0, τ ;H), β < 1 we have (L1f)(t) ∈ V, where

(L1f)(t) = tβ/2
∫ t

0

e−(t−s)A(t)f(s) ds, t ∈ [0, τ ].

Proof. We write

(L1f)(t) = tβ/2
∫ t/2

0

e−(t−s)A(t)f(s) ds+ tβ/2
∫ t

t/2

e−(t−s)A(t)f(s) ds.

A straightforward computation gives

‖tβ/2
∫ t/2

0

e−(t−s)A(t)f(s) ds‖V . tβ/2
∫ t/2

0

‖e−(t−s)A(t)‖L(H,V)‖f(s)‖ ds

. tβ/2(

∫ t/2

0

s−β−1 ds)1/2‖f‖L2
β(0,τ ;H)

. ‖f‖L2
β(0,τ ;H).

Using Lemma 3.5 we deduce

‖tβ/2
∫ t

t/2

e−(t−s)A(t)f(s) ds‖V . ‖
∫ t

t/2

e−(t−s)A(t)(sβ/2f(s)) ds‖V

. ‖f‖L2
β(0,τ ;H).

This completes the proof. �

Lemma 3.13. For all u0 ∈ (H;D(A(0))) 1−β
2 ,2 and β ∈ [0, 1), we have∫ τ

0

‖tβ/2A(0)e−tA(0)u0‖2 dt ' ‖u0‖2(H;D(A(0))) 1−β
2

,2

.

Proof. Note that (H;D(A(0))) 1−β
2 ,2 = D(A(0)

1−β
2 ). Let β ∈ [0, 1). In light of the

quadratic estimate we obtain∫ τ

0

‖tβ/2A(0)e−tA(0)u0‖2 dt =

∫ τ

0

‖tβ/2A(0)
1+β
2 e−tA(0)A(0)

1−β
2 u0‖2 dt

.
∫ τ

0

‖A(0)1/2e−
t
2A(0)A(0)

1−β
2 u0‖2 dt

. ‖A(0)
1−β
2 u0‖2 = ‖u0‖2[H;D(A(0))] 1−β

2

. ‖u0‖2(H;D(A(0))) 1−β
2

,2

.
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Conversely, we know that [19, Definition 1.1.1]

‖u0‖2(H;D(A(0))) 1−β
2

,2

=

∫ 1

0

tβ−2‖K(t, u0)‖2 dt,

where
K(t, u0) = inf

u0=a+b;a∈H,b∈D(A(0))

(
‖a‖+ t‖b‖D(A(0))

)
.

This allows us to write, for t ∈ [0, τ ],

u0 = (u0 − e−tA(0)u0) + e−tA(0)u0

= −
∫ t

0

A(0)e−lA(0)u0 dl + e−tA(0)u0.

Since e−tA(0)u0 ∈ D(A(0)) a.e. t ∈ [0, τ ] and (u0 − e−tA(0)u0) ∈ H, it follows that

‖K(t, u0)‖ ≤
∫ t

0

‖A(0)e−lA(0)u0‖ dl + t‖A(0)e−tA(0)u0‖.

Roughly speaking, by Lemma 2.1 we find

‖u0‖2(H;D(A(0))) 1−β
2

,2

.
∫ τ

0

‖tβ/2A(0)e−tA(0)u0‖2 dt.

This completes the proof. �

Remark 3.14. From the previous lemma, the orbit the map t 7→ e−tA(0)u0 belongs
to the space W 1,2

β (0, τ ;H)∩L2
β(0, τ ;D(A(0))) if and only if u0 ∈ (H;D(A(0))) 1−β

2 ,2.

We define the space

Wβ(D(A(·)),H) := {u ∈W 1,1(0, τ ;H), s.t. A(·)u ∈ L2
β(0, τ ;H), u̇ ∈ L2

β(0, τ ;H)},
with norm

‖u‖Wβ(D(A(·),H) = ‖A(·)u‖L2
β(0,τ ;H) + ‖u̇‖L2

β(0,τ ;H).

It is easy to see that Wβ(D(A(·),H) ↪→W 1,2
β (0, τ ;H).

Lemma 3.15. For all γ ≤ 1/2, we have (H, D(A(0)))γ,2 = [H,V]2γ and for γ >
1/2 we have (H, D(A(0)))γ,2 ↪→ V.

Proof. As a consequence of the interpolation method [19, Remark 1.3.6], for γ ≤ 1/2
we have

(H, D(A(0)))γ,2 = (H, D(A(0)1/2))2γ,2 = (H,V)2γ,2.

Since H and V are Hilbert spaces we obtain by Lemma 3.3

(H, D(A(0)))γ,2 = (H,V)2γ,2 = [H,V]2γ .

Let v ∈ D(A(0)) and γ > 1
2 . We obtain

δ‖v‖2V ≤ Re(A(0)v, v)

. ‖A(0)γv‖‖A(0)∗(1−γ)v‖

. ‖A(0)γv‖‖v‖[H,V]2(1−γ)

. ‖A(0)γv‖‖v‖V .

Therefore we have that for all γ > 1
2 and v ∈ D(A(0)),

‖v‖V . ‖v‖D(A(0)γ).

Finally, by the density of D(A(0)) in D(A(0)γ) we obtain the desired result. �
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4. Maximal regularity for autonomous problems

In this section we are interested in the regularity of the problem

u̇(t) +A(0)u(t) = f(t)

u(0) = u0.
(4.1)

The following is our main result in this section.

Theorem 4.1. Let f ∈ L2
β(0, τ,H) and u0 ∈ (H;D(A(0))) 1−β

2 ,2 for β ≥ 0 and

u0 = 0 if β < 0. There exists a unique u ∈ Wβ(D(A(0)),H) ∩ L∞β (0, τ ;V) be the

solution to Problem (4.1). Moreover, we have the following embeddings

Wβ(D(A(0)),H) ↪→ C([0, τ ]; (H;D(A(0))) 1−β
2 ,2)

Wβ(D(A(0)),H) ↪→W
1
2 ,2

β (0, τ ;V), β ∈ [0, 1[.

Proof. Since A(0) is a generator of an analytic semigroup in H, it is well known
that by the variation of constants formula the solution of Problem (4.1) is

u(t) = e−tA(0)u0 +

∫ t

0

e−(t−s)A(0)f(s) ds.

Thus,

A(0)u(t) = A(0)e−tA(0)u0 +A(0)

∫ t

0

e−(t−s)A(0)f(s) ds

:= (Fu0)(t) + (Lf)(t).

Lemmas 3.12, 3.13 and Proposition 3.10 gives

‖A(0)u‖L2
β(0,τ ;H) ≤ ‖Fu0‖L2

β(0,τ ;H) + ‖Lf‖L2
β(0,τ ;H)

≤ C
(
‖u0‖(H;D(A(0))) 1−β

2
,2

+ ‖f‖L2
β(0,τ ;H)

)
.

Since u̇ = f −A(0)u ∈ L2
β(0, τ ;H), we obtain finally

‖u‖Wβ(D(A(0)),H) ≤ C ′
(
‖u0‖(H;D(A(0))) 1−β

2
,2

+ ‖f‖L2
β(0,τ ;H)

)
. (4.2)

Using Proposition 5.1 and (4.2), for all t ∈ [0, τ ] we obtain

‖u(t)‖(H;D(A(0))) 1−β
2

,2
. ‖u‖Wβ(D(A(0)),H)∩L∞β (0,τ ;V)

. ‖u0‖(H;D(A(0))) 1−β
2

,2
+ ‖f‖L2

β(0,τ ;H).
(4.3)

For 0 ≤ s ≤ l ≤ t ≤ τ , we set v(l) = e−(t−l)A(0)u(l). This yields

u(t)− u(s) = v(s)− u(s) +

∫ t

s

v̇(l) dl

= (e−(t−s)A(0) − I)u(s) +

∫ t

s

e−(t−l)A(0)f(l) dl.

(4.4)

Observe that e−(t−s)A(0) is strongly continuous on (H;D(A(0))) 1−β
2 ,2. In particular,

this ensures that

‖(e−(t−s)A(0) − I)u(s)‖(H;D(A(0))) 1−β
2

,2
→ 0 as t→ s.
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The estimate (4.3) for the case u0 = 0 gives that

‖
∫ t

s

e−(t−l)A(0)f(l) dl‖(H;D(A(0))) 1−β
2

,2
. ‖f‖L2

β(s,t;H).

It follows that u(t) is right continuous on (H;D(A(0))) 1−β
2 ,2. Now, set v(l) =

e−(l−s)A(0)u(l), for 0 ≤ s ≤ l ≤ t. Then

u(s)− u(t) = v(t)− u(t)−
∫ t

s

v̇(l) dl

= (e−(t−s)A(0) − I)u(t)−
∫ t

s

e−(l−s)A(0)(f(l)− 2A(0)u(l)) dl.

The same argument shows that u is left continuous in (H;D(A(0))) 1−β
2 ,2. Thus,

u ∈ C([0, τ ]; (H;D(A(0))) 1−β
2 ,2).

Now, we prove that Wβ(D(A(0)),H) ↪→W
1
2 ,2

β (0, τ ;V). Indeed, let β ∈ [0, 1[ and

u ∈ C∞([0, τ ];D(A(0))). We recall that

‖u‖2
W

1
2
,2

β (0,τ ;V)
= ‖u‖2L2

β(0,τ ;V) +

∫ τ

0

∫ t

0

‖u(t)− u(s)‖2V
|t− s|2

sβ ds dt.

By (4.4) it holds that for all 0 ≤ s ≤ t ≤ τ

u(t)− u(s) = (e−(t−s)A(0)u(s)− u(s)) +

∫ t

s

e−(t−l)A(0)f(l) dl

:= L1(t, s) + L2(t, s),

where f(l) = A(0)u(l) + u̇(l). So

‖u‖2
W

1
2
,2

β (0,τ ;V)
≤ ‖u‖2L2

β(0,τ ;V) + 2

∫ τ

0

∫ t

0

‖L1(t, s)‖2V
|t− s|2

sβ ds dt

+ 2

∫ τ

0

∫ t

0

‖L2(t, s)‖2V
|t− s|2

sβ ds dt.

We write

L1(t, s) = e−(t−s)A(0)u(s)− u(s) =

∫ t−s

0

e−lA(0)A(0)u(s) dl.

Lemma 2.1 and the quadratic estimate gives∫ τ

0

∫ t

0

‖L1(t, s)‖2V
|t− s|2

sβ ds dt ≤
∫ τ

0

∫ τ

s

(∫ t−s
0
‖e−lA(0)A(0)u(s)‖Vdl

|t− s|

)2

dtsβ ds

≤ C
∫ τ

0

∫ τ

s

‖e−tA(0)A(0)u(s)‖2V dtsβ ds

≤ C ′
∫ τ

0

‖A(0)u(s)‖2sβ ds

= C ′‖A(0)u‖2L2
β(0,τ ;H).

Similarly, we obtain∫ τ

0

∫ t

0

‖L2(t, s)‖2V
|t− s|2

sβ ds dt ≤
∫ τ

0

∫ t

0

(∫ t
s
‖e(t−l)A(0)(Φf)(l)‖V dl

|t− s|

)2

ds dt
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≤ C
∫ τ

0

∫ t

0

‖e(t−s)A(0)(Φf)(s)‖2V ds dt

= C

∫ τ

0

∫ τ

s

‖e(t−s)A(0)(Φf)(s)‖2V dt ds

≤ C‖Φf‖2L2(0,τ ;H) = C‖f‖2L2
β(0,τ ;H).

Therefore,

‖u‖
W

1
2
,2

β (0,τ ;V)
. ‖A(0)u‖L2

β(0,τ ;H) + ‖f‖L2
β(0,τ ;H) . ‖u‖Wβ(D(A(0)),H).

We note that C∞([0, τ ];D(A(0))) is dense in Wβ(D(A(0)),H). This shows that

Wβ(D(A(0)),H) ↪→W
1
2 ,2

β (0, τ ;V).

which completes the proof �

Remark 4.2. The following embeddings hold

(1) Wβ(D(A(0)),H) ↪→ C([0, τ ]; [H,V]1−β), for 0 ≤ β < 1.
(2) Wβ(D(A(0)),H) ↪→ C([0, τ ];V), for β ≤ 0.

Theorem 4.3. For all f ∈W 1,2
β,0(0, τ,H), there exists a unique

u ∈ C1([0, τ ]; (H;D(A(0))) 1−β
2 ,2) ∩ C([0, τ ];D(A(0))),

which satisfies the equation

u̇(t) +A(0)u(t) = f(t)

u(0) = 0.
(4.5)

In addition,

‖u‖C1([0,τ ];(H;D(A(0))) 1−β
2

,2
)∩C([0,τ ];D(A(0))) ≤ C‖f‖W 1,2

β (0,τ ;H).

Assume now that τ = +∞ and f is a periodic function with period p. Then u
satisfies

u(t+ p) = e−tA(0)u(p) + u(t), t ∈ [0,∞),

and it is periodic with the same period p if and only if u(p) = 0.

Proof. According to Theorem 4.1, there exists a unique solution u to Problem (4.5)
and for all f ∈ L2

β(0, τ ;H)

u(t) =

∫ t

0

e−(t−s)A(0)f(s) ds, t ∈ [0, τ ]. (4.6)

Moreover u ∈Wβ(D(A(0)),H) and

‖u‖Wβ(D(A(0)),H) ≤ C‖f‖L2
β(0,τ ;H). (4.7)

Integrating by parts, we obtain for t ∈ [0, τ ] and f ∈W 1,2
β,0(0, τ,H)

A(0)u(t) = A(0)

∫ t

0

e−(t−s)A(0)f(s) ds

= f(t)−
∫ t

0

e−(t−s)A(0)ḟ(s) ds

= u̇(t) +A(0)u(t)−
∫ t

0

e−(t−s)A(0)ḟ(s) ds.
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Hence,

u̇(t) =

∫ t

0

e−(t−s)A(0)ḟ(s) ds = (Lḟ)(t).

Theorem 4.1 shows that u ∈ C1([0, τ ]; (H;D(A(0))) 1−β
2 ,2). Since A(0)u = f − u̇ we

deduce that A(0)u ∈ C([0, τ ];H). As a consequence, we obtain the final estimate

‖u‖C1([0,τ ];(H;D(A(0))) 1−β
2

,2
)∩C([0,τ ];D(A(0))) ≤ C‖f‖W 1,2

β (0,τ ;H).

Consider now the case where τ = +∞ and f is a periodic function with some period
p > 0, i.e. f(t + p) = f(t) for all t ∈ [0,+∞). It is clear that if u is periodic with
period p, then u(p) = u(0) = 0. Formula (4.6) yields

u(t+ p) =

∫ t+p

0

e−(t+p−s)A(0)f(s) ds.

Hence,

u(t+ p) =

∫ p

0

e−(t+p−s)A(0)f(s) ds+

∫ p+t

p

e−(t+p−s)A(0)f(s) ds

= e−tA(0)

∫ p

0

e−(p−s)A(0)f(s) ds+

∫ t

0

e−(t−l)A(0)f(l + p) dl

= e−tA(0)u(p) + u(t).

In the previous equality, we made a change of variables, and in the last equality
we used the periodicity of f . Then u is periodic with period p if and only if
e−tA(0)u(p) = 0 for all t ∈ [0,∞). Therefore, the analyticity of the semigroup
shows that u(p) = 0 is a necessary condition for u to be periodic. �

5. Maximal regularity for non-autonomous problems

In this section we focus on the maximal regularity for the non-autonomous prob-
lem (which is our main aim), i.e. we prove the existence and the uniqueness of the

solution to Problem (1.1) in the weighted space W 1,2
β (0, τ ;H). We start by stating

and proving some estimates which we will need in the proof of the main result.

Proposition 5.1. (1) Assume that∫ τ

0

‖A(t)−A(0)‖2L(V,V′)

t
dt <∞.

Then for all s ∈ [0, τ ],

TRs : Wβ(D(A(·),H) ∩ L∞β (0, τ ;V) −→ (H;D(A(s))) 1−β
2 ,2

u 7−→ u(s)

is a bounded operator.
(2) For u0 ∈ (H;D(A(0))) 1−β

2 ,2, we have

t→ (Fu0)(t) = tβ/2A(t)e−tA(t)u0 ∈ L2(0, τ ;H).

Proof. (1) First we consider the case s = 0. We have

‖u(0)‖2(H;D(A(0))) 1−β
2

,2

=

∫ 1

0

‖tβ/2A(0)e−tA(0)u(0)‖2 dt+ ‖u(0)‖2
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≤ 2

∫ 1

0

‖tβ/2A(0)e−tA(0)(u(0)− u(t))‖2 dt+ ‖u(0)‖2

+ 2

∫ 1

0

‖tβ/2A(0)e−tA(0)u(t)‖2 dt

.
∫ 1

0

tβ
(1

t

∫ t

0

‖u̇(l)‖ ds
)2

dl +

∫ τ

0

tβ‖A(t)u(t)‖2 dt

+

∫ τ

0

‖tβ/2(A(0)e−tA(0) −A(t)e−tA(t))u(t)‖2 dt+ ‖u(0)‖2

. ‖u̇‖2L2
β(0,τ ;H) + ‖A(·)u‖2L2

β(0,τ ;H)

+

∫ τ

0

‖A(t)−A(0)‖2L(V,V′)

t
dt‖u‖L∞β (0,τ ;V) + ‖u(0)‖2

. ‖u‖2Wβ(D(A(·),H) + ‖u‖2L∞β (0,τ ;V) + ‖u(0)‖2,

where we have used the quadratic estimate, Hardy inequality and the estimate

‖A(0)e−tA(0) −A(t)e−tA(t)‖L(V,H) .
‖A(t)−A(0)‖L(V,V′)

t1/2
.

Now, we prove the result for all s ∈]0, τ ]. Indeed, let l ∈]0, τ [ and set

v(t) :=

{
u(t+ s), t ∈ [0, τ − s].
u( τs (τ − t)), t ∈ [τ − s, τ ].

Similarly,

B(t) :=

{
A(t+ s), t ∈ [0, τ − s].
A( τs (τ − t)), t ∈ [τ − s, τ ].

Since v(t) ∈Wβ(D(B(·),H), therefore

v(0) = u(s) ∈ (H;D(B(0))) 1−β
2 ,2 = (H;D(A(s))) 1−β

2 ,2.

For the case s = τ , we take v(t) = u(τ − t) and B(t) = A(τ − t).
(2) Note that

(Fu0)(t) = tβ/2A(t)e−tA(t)u0

= tβ/2(A(t)e−tA(t)u0 −A(0)e−tA(0)u0) + tβ/2A(0)e−tA(0)u0.

For β > 0 we have by interpolation

‖(λ−A(0))−1‖L((H;D(A(0))) 1−β
2

,2
,V) .

1

|λ|1− β2
.

Therefore

‖(Fu0)(t)‖ .
‖A(0)−A(t)‖L(V,V′)

t
‖u0‖(H;D(A(0))) 1−β

2

+ ‖tβ/2A(0)e−tA(0)u0‖.

Hence,

‖(Fu0)‖2L2(0,τ ;H) .
∫ τ

0

‖A(0)−A(t)‖2L(V,V′)

t
dt‖u0‖(H;D(A(0))) 1−β

2
,2

+

∫ τ

0

‖tβ/2A(0)e−tA(0)u0‖2 dt
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. ‖u0‖2(H;D(A(0))) 1−β
2

,2

.

This shows the second assertion. �

In the sequel we consider only the case β ∈ [0, 1[.

Proposition 5.2. Suppose A ∈ Cε([0, τ ];L(V,V ′)). Then for each f ∈ L2
β(0, τ ;H),

u0 ∈ (H;D(A(0))) 1−β
2 ,2 and for τ small enough, there exists a unique solution u in

L∞β (0, τ ;V) for (1.1).

Proof. Let f ∈ L2
β(0, τ ;H). We set v(s) = e−(t−s)A(t)u(s). Since u(t) = e−tA(t)u0 +∫ t

0
v̇(s) ds, therefore

u(t) = e−tA(t)u0 +

∫ t

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds

+

∫ t

0

e−(t−s)A(t)f(s) ds

:= (Mu0)(t) + (M1u)(t) + (L1f)(t).

(5.1)

For β > 0 and u0 ∈ (H, D(A(0))) 1−β
2 ,2 we have by interpolation

‖e−tA(t)u0‖V . t−β/2‖u0‖(H,D(A(0))) 1−β
2

,2
. (5.2)

In view of Lemma 3.12 and (5.2), tβ/2(Mu0)(t), tβ/2(L1f)(t) are bounded in V
for all t ∈ [0, τ ]. Now, we show that M1u ∈ L∞β (0, τ ;V) for all u ∈ L∞β (0, τ ;V). We
write

(M1u)(t) =

∫ t/2

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds

+

∫ t

t/2

e−(t−s)A(t)(A(t)−A(s))u(s) ds

:= (M11u)(t) + (M12u)(t).

By taking x ∈ V ′ we obtain

|((M12u)(t), x)V′×V |

=
∣∣ ∫ t

t/2

(e−
(t−s)

2 A(t)(A(t)−A(s))u(s), A(t)∗
1
2 e−

(t−s)
2 A(t)∗A(t)∗−

1
2x) ds

∣∣
≤
(∫ t

t/2

‖e−
(t−s)

2 A(t)‖2L(V′,H)‖A(t)−A(s)u(s)‖2V′ ds
)1/2

×
(∫ t

t/2

‖A(t)∗
1
2 e−

(t−s)
2 A(t)∗A(t)∗−

1
2x‖2 ds

)1/2

.

Now, we estimate the norm of (M11v)(t) in V as follows

tβ/2‖(M11v)(t)‖V

. tβ/2
∫ t/2

0

‖e−
(t−s)

2 A(t)‖L(V′,V)‖A(t)−A(s)‖L(V,V′)s
−β/2 ds‖s

→ sβ/2u(s)‖L∞(0, t2 ;V)
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. tβ/2
∫ t/2

0

s−β/2

(t− s)1−ε ds sup
s∈[0,t/2]

‖A(t)−A(s)‖L(V,V′)

(t− s)ε
‖s

→ sβ/2u(s)‖L∞(0, t2 ;V).

Note that

tβ/2
∫ t/2

0

s−β/2

(t− s)1−ε ds = tε
∫ 1/2

0

l−β/2

(1− l)1−ε dl.

Therefore,

tβ/2‖(M1v)(t)‖V
. tε‖A‖Cε([0,τ ];L(V,V′))‖s

→ sβ/2u(s)‖L∞(0, t2 ;V) +
(∫ t

t/2

‖A(t)−A(s)‖2L(V,V′)

t− s
ds)1/2‖u‖L∞β ( t2 ,t;V)

. tε‖A(·)‖Cε([0,τ ];L(V,V′))‖u‖L∞β (0,t;V).

Choosing τ small enough, M1 ∈ L(L∞β (0, τ ;V)), with norm ‖M1‖L(L∞β (0,τ ;V)) < 1.

Therefore (I −M1) is invertible in L∞β (0, τ ;V). Hence,

u = (I −M1)−1(Mu0 + L1f) ∈ L∞β (0, τ ;V).

This completes the proof. �

Our main result reads as follows.

Theorem 5.3. Suppose that A ∈ W
1
2 ,2(0, τ ;L(V,V ′)) ∩ Cε([0, τ ],L(V,V ′)) with

ε > 0, then for all f ∈ L2
β(0, τ ;H) and u0 ∈ (H;D(A(0))) 1−β

2
, there exists a unique

u ∈Wβ(D(A(·),H) be the solution of (1.1).

Proof. Let τ be small enough and f ∈ L2
β(0, τ ;H), u0 ∈ (H;D(A(0))) 1−β

2 ,2. By

Proposition 5.2, u belongs to L∞β (0, τ ;V), where u is the unique solution to the

Cauchy problem (1.1). Using (5.1), for 0 ≤ t ≤ τ , we have

A(t)u(t) = A(t)e−tA(t)u0 +A(t)

∫ t

0

e−(t−s)A(t)(A(t)−A(s)u(s) ds

+A(t)

∫ t

0

e−(t−s)A(t)f(s) ds

:= (Fu0)(t) + (Su)(t) + (Lf)(t).

Thanks to Propositions 3.10, 5.1, Fu0 and Lf are bounded in L2
β(0, τ ;H). Then to

prove that A(·)u ∈ L2
β(0, τ ;H) it is sufficient to show that Su belongs to L2

β(0, τ ;H).

Taking g ∈ L2(0, τ ;H) we find that

|(·β/2Su, g)L2(0,τ ;H)|

=
∣∣ ∫ τ

0

tβ/2
∫ t

0

〈(A(t)−A(s))u(s), A(t)∗e−(t−s)A(t)∗g(t)〉V′×V ds dt
∣∣

≤ |
∫ τ

0

tβ/2
∫ t/2

0

〈(A(t)−A(s))u(s), A(t)∗e−(t−s)A(t)∗g(t)〉V′×V ds dt|

+ |
∫ τ

0

tβ/2
∫ t

t/2

〈(A(t)−A(s))u(s), A(t)∗e−(t−s)A(t)∗g(t)〉V′×V ds dt|

:= I1 + I2.



EJDE-2020/124 MAXIMAL REGULARITY FOR NON-AUTONOMOUS PROBLEMS 21

For I2 we find,

I2 .
∫ τ

0

tβ/2
∫ t

t/2

‖A(t)−A(s)‖L(V,V′)‖e−
(t−s)

2 A(t)∗‖L(H,V)

× ‖A(t)∗
1
2 e−

(t−s)
4 A(t)∗‖L(H)‖A(t)∗

1
2 e−

(t−s)
4 A(t)∗g(t)‖s−

β
2 ds dt‖ ·β/2 u‖L∞(0,τ ;V)

.
∫ τ

0

∫ t

t/2

‖A(t)−A(s)‖L(V,V′)

t− s
‖A(t)∗

1
2 e−

(t−s)
4 A(t)∗g(t)‖ ds dt‖ ·β/2 u‖L∞(0,τ ;V)

. ‖A‖
W

1
2
,2(0,τ ;L(V,V′))

(∫ τ

0

∫ t

t/2

‖A(t)∗
1
2 e−

(t−s)
4 A(t)∗g(t)‖2 ds dt

)1/2

‖u‖L∞β (0,τ ;V)

. ‖A‖
W

1
2
,2(0,τ ;L(V,V′))

‖g‖L2(0,τ,H)‖u‖L∞β (0,τ ;V).

Similarly,

I1 .
∫ τ

0

tβ/2
∫ t/2

0

s
−β
2

(t− s) 3
2−ε
‖g(t)‖ ds dt

× ‖A‖Cε([0,τ ];L(V,V′))‖ ·β/2 u‖L∞(0,τ ;V)

. ‖A‖Cε([0,τ ];L(V,V′))‖g‖L2(0,τ,H)‖u‖L∞β (0,τ ;V).

Now, we obtain the final estimate

‖A(·)u‖L2
β(0,τ ;H) . ‖Fu0‖L2

β(0,τ ;H) + ‖Su‖L2
β(0,τ ;H) + ‖Lf‖L2

β(0,τ ;H)

. ‖u0‖(H;D(A(0))) 1−β
2

,2
+ ‖u‖L∞β (0,τ ;V) + ‖f‖L2

β(0,τ ;H)

. ‖u0‖(H;D(A(0))) 1−β
2

,2
+ ‖f‖L2

β(0,τ ;H).

Therefore A(·)u ∈ L2
β(0, τ ;H) and since u̇ = f − Au, one has u̇ ∈ L2

β(0, τ ;H).

So u belongs to Wβ(D(A(·),H). Moreover, by Proposition 5.1 we have u(t) ∈
(H;D(A(t))) 1−β

2 ,2 for all t ∈ [0, τ ].

For arbitrary τ we split the interval [0, τ ] into union of small intervals and argue
exactly as before to each subinterval. Finally we stick the solutions and we obtain
the desired result. �

Proposition 5.4. For all g ∈ L2(0, τ ;H) and 0 ≤ β < 1 there exists a unique
v ∈W0(D(A(·),H) be the solution of the singular equation

v̇(t) +A(t)v(t) +
β

2

v(t)

t
= g(t)

v(0) = 0.
(5.3)

Proof. We set f(t) = (Φg)(t) = tβ/2g(t) with t ∈ [0, τ ], so that f ∈ L2
β(0, τ ;H).

Let u ∈Wβ(D(A(·),H) be the solution to the problem

u̇(t) +A(t)u(t) = f(t)

u(0) = 0.
(5.4)

Now, set v = (Φ−1u). Then v ∈ W0(D(A(·),H) and v is the unique solution to
Problem (5.3). �
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6. Applications

This section is devoted to some applications of the results given in the previous
sections. We give examples illustrating the theory without seeking for generality.

6.1. Elliptic operators in the divergence form. Let Ω be a bounded Lipschitz
domain of Rn. We set H := L2(Ω) and V := H1(Ω) and we define the sesquilinear
forms

a(t, u, v) :=

∫
Ω

C(t, x)∇u∇v dx

where here u, v ∈ V and C : [0, τ ] × Ω → Cn×n is a bounded and measurable
function for which there exists α,M > 0 such that

α|ξ|2 ≤ Re(C(t, x)ξ.ξ̄) and |C(t, x)ξ.ν| ≤M |ξ||ν|
for all t ∈ [0, τ ] and a.e x ∈ Ω, and all ξ, ν ∈ Cn. We define the gradient operator
∇ : V → H and ∇∗ : H → V ′. The non-autonomous form a(t) induces the operators

A(t) := −∇∗C(t, x)∇ ∈ L(V,V ′).
The form a(t) is H1(Ω)-bounded and coercive. The part of A(t) inH is the operator

A(t) := −div C(t, x)∇
under Neumann boundary conditions.

We note that

‖A(t)‖L(V,V′) ' ‖C(t, ·)‖L∞(Ω;Cn×n) = M.

Next, we suppose that C ∈ W
1
2 ,2(0, τ ;L∞(Ω;Cn×n)) ∩ Cε([0, τ ];L∞(Ω;Cn×n)),

with ε > 0, which is equivalent to∫ τ

0

∫ τ

0

sup
x∈Ω

‖C(t, x)− C(s, x)‖2Cn×n
|t− s|2

ds dt <∞,

‖C(t, x)− C(s, x)‖Cn×n < C|t− s|ε

a.e. for x ∈ Ω and t, s ∈ [0, τ ]. Note that

‖A(t)−A(s)‖L(V,V′) . ‖C(t, .)− C(s, .)‖L∞(Ω;Cn×n).

Hence A ∈W 1
2 ,2(0, τ ;L(V,V ′)) ∩ Cε([0, τ ];L(V,V ′)).

Remark 6.1. D(A(t)1/2) = V = H1(Ω) for all t ∈ [0, τ ] and

c1‖u‖H1(Ω) ≤ ‖u‖D(A(t)1/2) ≤ c1‖u‖H1(Ω)

where c1, c
1 are two positive constants independents of t [6, Theorem 1].

In the next proposition we assume that β ∈ [0, 1[.

Proposition 6.2. For all f ∈ L2
β(0, τ ;L2(Ω)), u0 ∈ H1−β(Ω) there is a unique

u ∈Wβ(D(A(·), L2(Ω)), be the solution of the problem

u̇(t)− divC(t, x)∇u(t) = f(t)

∂u(t, σ)

∂n
= 0 (σ ∈ ∂Ω)

u(0) = u0.

(6.1)

The above proposition follows by Theorem 5.3.
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6.2. Robin boundary conditions. Let Ω be a bounded domain of Rd with
Lipschitz boundary ∂Ω. We denote by Tr the classical trace operator. Let β :
[0, τ ]× ∂Ω→ [0,∞) be a bounded function and H := L2(Ω). We define the form

a(u, v) :=

∫
Ω

∇u.∇v dx+

∫
∂Ω

β(·)Tr(u)Tr(v) dσ,

for all u, v ∈ V := H1(Ω).
The form a is H1(Ω)-bounded, symmetric and quasi-coercive. The first state-

ment follows readily from the continuity of the trace operator and the boundedness
of β. The second one is a consequence of the inequality∫

∂Ω

|u|2dσ ≤ δ‖u‖2H1(Ω) + Cδ‖u‖2L2(Ω)

which is valid for all δ > 0 (Cδ is a constant depending on δ). Note that this is a con-
sequence of compactness of the trace as an operator from H1(Ω) into L2(∂Ω, dσ).
Formally, the associated operator A is (minus) the Laplacian with the time depen-
dent Robin boundary condition

∂u
∂n + β(·)u = 0 on ∂Ω.

Here, ∂u∂n denotes the normal derivative in the weak sense. For more general bound-
ary conditions with an indefinite weight we refer the reader to the recent paper
[10].

Theorems 4.1 combined with Theorem 4.3 yields the following result.

Proposition 6.3. Let β ∈]− 1, 1[ and f ∈ L2
β(0, τ ;L2(Ω)). There exists a unique

u ∈Wβ(D(A), L2(Ω))∩C([0, τ ], (L2(Ω);D(A)) 1−β
2 ,2) be the solution to the problem

u̇(t)−∆u(t) = f(t)

∂u
∂n + β(·)u = 0 on ∂Ω

u(0) = 0.

(6.2)

If we assume moreover that f ∈ W 1,2
β,0(0, τ ;L2(Ω)), then the solution u belongs to

the space C1([0, τ ]; (L2(Ω);D(A)) 1−β
2 ,2) ∩ C([0, τ ];D(A)).

Remark 6.4. Note that for all β ∈ [0, 1[ we have

(L2(Ω);D(A)) 1−β
2 ,2 = [L2(Ω);D(A)] 1−β

2
= [L2(Ω);H1(Ω)]1−β = H1−β(Ω).
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