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EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS TO

PARABOLIC PROBLEMS WITH NONSTANDARD GROWTH

AND CROSS DIFFUSION

GURUSAMY ARUMUGAM, ANDRÉ H. ERHARDT

Abstract. We establish the existence and uniqueness of weak solutions to
the parabolic system with nonstandard growth condition and cross diffusion,

∂tu− div a(x, t,∇u)) = div |F |p(x,t)−2F ),

∂tv − div a(x, t,∇v)) = δ∆u,

where δ ≥ 0 and ∂tu, ∂tv denote the partial derivative of u and v with re-
spect to the time variable t, while ∇u and ∇v denote the one with respect

to the spatial variable x. Moreover, the vector field a(x, t, ·) satisfies certain

nonstandard p(x, t) growth, monotonicity and coercivity conditions.

1. Introduction

The study of parabolic problems, i.e. equations and systems, like reaction-diffusion
systems or evolutionary equations is motivated amongst others by several applica-
tions. For instance, such equations and systems are important for the modeling of
space- and time-dependent problems, e.g. problems from physics or biology. In par-
ticular, evolutionary equations and systems can be used to model physical processes
like heat conduction or diffusion processes, see [9, 25]. One example is the Navier-
Stokes equation, the basic equation in fluid mechanics. In addition, applications
also include climate modeling and climatology [15]. Furthermore, an interesting
aspect of this paper is the nonstandard growth setting, which arises for instance by
studying certain classes of non-Newtonian fluids such as electro–rheological fluids
or fluids with viscosity depending on the temperature. Some properties of solutions
to systems of such modified Navier-Stokes equation are studied in [4]. In general,
electro–rheological fluids are of high technological interest, because of their ability
to change their mechanical properties under the influence of an exterior electro-
magnetic field [16, 30]. Many electro-rheological fluids are suspensions consisting of
solid particles and a carrier oil. These suspensions change their material properties
dramatically if they are exposed to an electric field [31]. Most of the known results
concern the stationary case with p(x) growth condition, see [2, 3, 18]. Further-
more, for the restoration in image processing one also uses some diffusion models
with nonstandard growth condition [1, 14, 27, 28]. In the context of parabolic
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problems with p(x, t) growth applications are flows in porous media [6] or nonlin-
ear parabolic obstacle problems [19, 22, 23]. Moreover, in the last years parabolic
problems with p(x, t) growth arouse more and more interest in mathematics, see
[7, 8, 11, 24, 26, 29, 32, 35, 37]. A further aspect of our paper is the effect of a
cross diffusion term. Parabolic nonstandard growth problem with cross diffusion
is a new and very interesting topic, since the interaction between the species often
leads to cross diffusion effects, which may show unexpected behavior, see [13], i.e.
the forward of the special issue “Advances in Reaction-Cross-Diffusion Systems”
[12]. For instance, in our case the cross diffusion term δ∆u, δ ≥ 0 requires that
the growth exponent p(x, t) is greater or equal to two. Only in case δ = 0 we may
assume that 2n

n+2 < p(x, t), n ≥ 2. In addition, parabolic systems with cross diffu-
sion play a crucial role in biological applications like epidemic diseases, chemotaxis
phenomena, cancer growth and population development.

In this article, Ω ⊂ Rn denotes a bounded domain of dimension n ≥ 2 and we
write ΩT := Ω× (0, T ) for the space-time cylinder over Ω of height T > 0. Here, ut
or ∂tu respectively denote the partial derivative with respect to the time variable t
and ∇u denotes the one with respect to the space variable x. Moreover, we denote
by ∂PΩT = (Ω̄× {0}) ∪ (∂Ω× (0, T )) the parabolic boundary of ΩT and we write
z = (x, t) for points in Rn+1.

The aim of our investigation is to establish the existence of a (weak) solution to
the following inhomogeneous parabolic Dirichlet problem with nonstandard growth
condition and cross diffusion term δ∆u, δ ≥ 0:

∂tu− div a(x, t,∇u)) = div |F |p(x,t)−2F ), in ΩT ,

∂tv − div a(x, t,∇v)) = δ∆u, in ΩT ,

u = v = 0, on ∂Ω× (0, T ),

u(·, 0) = u0, v(·, 0) = v0, on Ω× {0},

(1.1)

where the vector field a(x, t, ·) satisfies certain nonstandard p(x, t) growth, mono-
tonicity and coercivity conditions, which we will specify in the next paragraph.
Furthermore, we will specify the regularity assumption on the inhomogeneity F
and the conditions which are supposed for the supercritical growth exponent func-
tion p : ΩT → [2,∞) later.

1.1. General assumptions. The vector fields a : ΩT × Rn → Rn are assumed
to be Carathéodory functions — i.e. a(z, w) is measurable in the first argument
for every w ∈ Rn and continuous in the second one for a.e. z ∈ ΩT — and satisfy
the following nonstandard growth, monotonicity and coercivity properties, for some
growth exponent p : ΩT → [2,∞) and structure constants 0 < ν ≤ 1 ≤ L:

|a(z, w)| ≤ L(1 + |w|)p(z)−1, (1.2)

(a(z, w)− a(z, w0)) · (w − w0) ≥ 0, (1.3)

a(z, w) · w ≥ ν|w|p(z), (1.4)

for all z ∈ ΩT and w,w0 ∈ Rn. Further, the growth exponent p : ΩT → [2,∞)
satisfies the following conditions: There exist constants γ1 and γ2, such that

2 ≤ γ1 ≤ p(z) ≤ γ2 <∞ and |p(z1)− p(z2)| ≤ ω(dP(z1, z2)) (1.5)

hold for any choice of z1, z2 ∈ ΩT , where ω : [0,∞) → [0, 1] denotes a modulus
of continuity. More precisely, we assume that ω(·) is a concave, non-decreasing
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function with limρ↓0 ω(ρ) = 0 = ω(0). Moreover, the parabolic distance is given

by dP(z1, z2) := max{|x1 − x2|,
√
|t1 − t2|} for z1 = (x1, t1), z2 = (x2, t2) ∈ Rn+1.

In addition, for the modulus of continuity ω(·) we assume the weak logarithmic
continuity condition

lim sup
ρ↓0

ω(ρ) log
(1

ρ

)
<∞. (1.6)

1.2. Function spaces. The spaces Lp(Ω), W 1,p(Ω) and W 1,p
0 (Ω) denote the usual

Lebesgue and Sobolev spaces, while the nonstandard p(z) Lebesgue space Lp(z)(ΩT ,Rk)
is defined as the set of those measurable functions v : ΩT → Rk for k ∈ N, which
satisfy |v|p(z) ∈ L1(ΩT ,Rk), i.e.

Lp(z)(ΩT ,Rk) :=
{
v : ΩT → Rk is measurable in ΩT :

∫
ΩT

|v|p(z)dz < +∞
}
.

The set Lp(z)(ΩT ,Rk) equipped with the Luxemburg norm

‖v‖Lp(z)(ΩT ) := inf
{
λ > 0 :

∫
ΩT

| v
λ
|p(z)dz ≤ 1

}
becomes a Banach space. This space is separable and reflexive, see [5, 17]. At this
stage, we are able to specify the regularity assumption on the inhomogeneity, i.e.
we suppose that F ∈ Lp(z)(ΩT ,Rn). For elements of Lp(z)(ΩT ,Rk) the generalized

Hölder’s inequality holds in the form: If f ∈ Lp(z)(ΩT ,Rk) and g ∈ Lp′(z)(ΩT ,Rk),

where p′(z) = p(z)
p(z)−1 , we have∣∣ ∫

ΩT

fgdz
∣∣ ≤ ( 1

γ1
+
γ2 − 1

γ2

)
‖f‖Lp(z)(ΩT )‖g‖Lp′(z)(ΩT ), (1.7)

see also [5]. Moreover, the norm ‖ · ‖Lp(z)(ΩT ) can be estimated as follows

− 1 + ‖v‖γ1
Lp(z)(ΩT )

≤
∫

ΩT

|v|p(z)dz ≤ ‖v‖γ2
Lp(z)(ΩT )

+ 1. (1.8)

We will use also the abbreviation p(·) for the exponent p(z). Next, we introduce
nonstandard Sobolev spaces for fixed t ∈ (0, T ). From assumption (1.5) we know
that p(·, t) satisfies |p(x1, t) − p(x2, t)| ≤ ω(|x1 − x2|) for any choice of x1, x2 ∈ Ω
and for every t ∈ (0, T ). Then, we define for every fixed t ∈ (0, T ) the Banach space

W 1,p(·,t)(Ω) := {u ∈ Lp(·,t)(Ω,R) | ∇u ∈ Lp(·,t)(Ω,Rn)}
equipped with the norm

‖u‖W 1,p(·,t)(Ω) := ‖u‖Lp(·,t)(Ω) + ‖∇u‖Lp(·,t)(Ω).

In addition, we define W
1,p(·,t)
0 (Ω) as the closure of C∞0 (Ω) in W 1,p(·,t)(Ω) and we

denote by W 1,p(·,t)(Ω)′ its dual. For every t ∈ (0, T ) the inclusion W
1,p(·,t)
0 (Ω) ⊂

W 1,γ1
0 (Ω) holds true. Furthermore, we denote by W

p(·)
g (ΩT ) the Banach space

W p(·)
g (ΩT ) := {u ∈ [g + L1(0, T ;W 1,1

0 (Ω))] ∩ Lp(·)(ΩT ) : ∇u ∈ Lp(·)(ΩT ,Rn)}

equipped with the norm ‖u‖Wp(·)(ΩT ) := ‖u‖Lp(·)(ΩT ) + ‖∇u‖Lp(·)(ΩT ). In the case

g = 0 we write W
p(·)
0 (ΩT ) instead of W

p(·)
g (ΩT ). Here, it is worth to mention that

the notion (u− g) ∈W p(·)
0 (ΩT ) or u ∈ g +W

p(·)
0 (ΩT ) respectively indicates that u

agrees with g on the lateral boundary of the cylinder ΩT , i.e. u ∈ W p(·)
g (ΩT ). In
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addition, we denote by W p(·)(ΩT )′ the dual of the space W
p(·)
0 (ΩT ). Note that if

v ∈W p(·)(ΩT )′, then there exist functions vi ∈ Lp
′(·)(ΩT ), i = 0, 1, . . . , n, such that

〈〈v, w〉〉ΩT =

∫
ΩT

(
v0w +

n∑
i=1

vi∇iw
)

dz (1.9)

for all w ∈W p(·)
0 (ΩT ). Furthermore, if v ∈W p(·)(ΩT )′, we define the norm

‖v‖Wp(·)(ΩT )′ := sup{〈〈v, w〉〉ΩT : w ∈W p(·)
0 (ΩT ), ‖w‖

W
p(·)
0 (ΩT )

≤ 1}.

Notice, whenever (1.9) holds, we can write v = v0 −
∑n
i=1∇ivi, where ∇ivi has to

be interpreted as a distributional derivative. By

w ∈W (ΩT ) := {w ∈W p(·)(ΩT ) : wt ∈W p(·)(ΩT )′}

we mean that there exists wt ∈W p(·)(ΩT )′, such that

〈〈wt, ϕ〉〉ΩT = −
∫

ΩT

w · ϕtdz for all ϕ ∈ C∞0 (ΩT ),

see also [17]. The previous equality makes sense due to the inclusions

W p(·)(ΩT ) ↪→ L2(ΩT ) ∼= (L2(ΩT ))′ ↪→W p(·)(ΩT )′

which allow us to identify w as an element of W p(·)(ΩT )′. Finally, we are in a
position to give the definition of a weak solution to the parabolic problem (1.1).

Definition 1.1. We call u, v ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) a (weak) solution to
the parabolic Dirichlet problem (1.1), if∫

ΩT

[u · ϕt − a(z,∇u) · ∇ϕ]dz =

∫
ΩT

|F |p(x,t)−2F · ∇ϕdz,∫
ΩT

[v · ζt − a(z,∇v) · ∇ζ]dz =

∫
ΩT

δ∇u · ∇ζdz,

(1.10)

whenever ϕ, ζ ∈ C∞0 (ΩT ), δ ≥ 0, the boundary condition u = v = 0 on ∂Ω × {0}
and initial conditions u(·, 0) = u0 ∈ L2(Ω), v(·, 0) = v0 ∈ L2(Ω) a.e. on Ω, i.e.

1

h

∫ h

0

∫
Ω

|u− u0|2dxdt→ 0 and
1

h

∫ h

0

∫
Ω

|v − v0|2dxdt→ 0 as h ↓ 0. (1.11)

are satisfied.

We will also use the notation

(u, v) ∈ (C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ))2

instead of u, v ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) and similarly we will use (u0, v0) ∈
(L2(Ω))2, which means the same as u0, v0 ∈ L2(Ω).

1.3. Statement of results. The main result of this manuscript reads as follows.

Theorem 1.2. Let δ ≥ 0, Ω ⊂ Rn be an open, bounded Lipschitz domain and the
exponent function p : ΩT → [γ1, γ2] satisfies (1.5) and (1.6). Furthermore, suppose
that F ∈ Lp(z)(ΩT ,Rn) and the vector field a : ΩT × Rn → Rn is a Carathéodory
function satisfying the growth condition (1.2), the monotonicity condition (1.3) and
the coercivity condition (1.4). Moreover, let u0, v0 ∈ L2(Ω). Then, there exists a
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unique weak solution (u, v) ∈ (C0([0, T ];L2(Ω)) ∩ W p(·)
0 (ΩT ))2 with (∂tu, ∂tv) ∈

(W p(·)(ΩT )′)2 of problem (1.1) and satisfies the energy estimate

sup
0≤t≤T

(∫
Ω

|u(·, t)|2dx+

∫
Ω

|v(·, t)|2dx
)

+

∫
ΩT

|∇u|p(·) + |∇v|p(·) ≤ cX , (1.12)

where

X := ‖u0‖2L2(Ω) + ‖v0‖2L2(Ω) +

∫
ΩT

|F |p(·) + 1dz (1.13)

with u(·, 0) = u0, v(·, 0) = v0 and a constant c = c(ν, δ, γ1, γ2, L).

To prove the main result, we need some preliminaries. First of all, we will need
[20, Lemma 3.1], which reads as follows.

Lemma 1.3. Let n ≥ 2. Assume that the exponent function p : ΩT → [γ1, γ2]
satisfies (1.5)-(1.6). Then W (ΩT ) is contained in C0([0, T ];L2(Ω)). Moreover,

if u ∈ W0(ΩT ) := {u ∈ W
p(·)
0 (ΩT )|ut ∈ W p(·)(ΩT )′} then t 7→ ‖u(·, t)‖2L2(Ω) is

absolutely continuous on [0, T ],

dd

dt

∫
Ω

|u(·, t)|2dx = 2〈∂tu(·, t), u(·, t)〉,

for a.e. t ∈ [0, T ], where 〈·, ·〉 denotes the duality pairing between W 1,p(·,t)(Ω)′

and W
1,p(·,t)
0 (Ω). Moreover, there is a constant c such that ‖u‖C0([0,T ];L2(Ω)) ≤

c‖u‖W (ΩT ) for every u ∈W0(ΩT ).

Moreover, we need the following Poincaré type estimate from [21, Lemma 3.9].

Lemma 1.4. Let Ω ⊂ Rn a bounded Lipschitz domain and γ2 := supΩT p(·). As-

sume that u ∈ C0([0, T ];L2(Ω)) ∩ W p(·)
0 (ΩT ) and the exponent p(·) satisfies the

conditions (1.5)-(1.6). Then, there exists a constant c = c(n, γ1, γ2,diam(Ω), ω(·)),
such that the following two versions of the Poincaré type estimate are valid:∫

ΩT

|u|p(·)dz ≤ c
(
‖u‖

4γ2
n+2

L∞(0,T ;L2(Ω)) + 1
)(∫

ΩT

|∇u|p(·) + 1dz
)
, (1.14)

‖u‖γ1
Lp(z)(ΩT )

≤ c
(
‖u‖

4γ2
n+2

L∞(0,T ;L2(Ω)) + 1
)(∫

ΩT

|∇u|p(·) + 1dz
)
. (1.15)

Also we need the Aubin-Lions type Theorem [20, Theorem 1.3], since it implies
the strong convergence in p(z)-Lebesgue spaces.

Theorem 1.5. Let Ω ⊂ Rn an open, bounded Lipschitz domain with n ≥ 2 and
p(·) > 2n

n+2 satisfying (1.5) and (1.6). Furthermore, define p̂(·) := max{2, p(·)}.
Then, the inclusion W (ΩT ) ↪→ Lp̂(·)(ΩT ) is compact.

2. Proof of the main result

In this section, we will prove the existence of a unique weak solution to the
Dirichlet problem (1.1).

Proof of Theorem 1.2. The proof is divided into several steps.

Step 1: Construction of a sequence of Galerkin’s approximations. We
start by constructing a sequence of Galerkin’s approximations, where the limit of
this sequence is equal to the solution of (1.1). Therefore, we consider {φi(x)}∞i=1 ⊂
W 1,γ2

0 (Ω) and {φ̃i(x)}∞i=1 ⊂W
1,γ2
0 (Ω), which are orthonormal basis in L2(Ω). Since,
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W 1,γ2
0 (Ω) is separable, it is a span of a countable set of linearly independent func-

tions {φk} ⊂W 1,γ2
0 (Ω) and {φ̃k} ⊂W 1,γ2

0 (Ω). Moreover, we have the dense embed-

ding W 1,γ2
0 (Ω) ⊂ L2(Ω) for any γ2 ≥ 2, cf. [33, 34]. Thus, without loss of generality,

we may assume that these systems form orthonormal basis of L2(Ω). Now, fix a
positive integer m and define the approximate solution to (1.1) as follows

u(m)(z) :=

m∑
i=1

c
(m)
i (t)φi(x) and v(m)(z) :=

m∑
i=1

c̃
(m)
i (t)φ̃i(x)

where the coefficients c
(m)
i (t) and c̃

(m)
i (t) are defined via the identities∫

Ω

(
u

(m)
t φi(x) +

(
a(x, t,∇u(m)) + |F |p(x,t)−2F

)
· ∇φi(x)

)
dx = 0,∫

Ω

(
v

(m)
t φ̃i(x) +

(
a(x, t,∇v(m)) + δ∇u(m)

)
· ∇φ̃i(x)

)
dx = 0,

(2.1)

for i = 0, . . . ,m and t ∈ (0, T ) with the initial conditions

c
(m)
i (0) =

∫
Ω

u0φidx,

c̃
(m)
i (0) =

∫
Ω

v0φ̃idx,

(2.2)

for i = 1, . . . ,m. Then, system (2.1), with these initial condition, generates a
system of 2m ordinary differential equations(

c
(m)
i

)′
(t) = Fi

(
t, c

(m)
1 (t), . . . , c(m)

m (t), c̃
(m)
1 (t), . . . , c̃(m)

m (t)
)
,

c
(m)
i (0) =

∫
Ω

u0φidx(
c̃
(m)
i

)′
(t) = F̃i

(
t, c

(m)
1 (t), . . . , c(m)

m (t), c̃
(m)
1 (t), . . . , c̃(m)

m (t)
)
,

c̃
(m)
i (0) =

∫
Ω

v0φ̃idx

(2.3)

for i = 1, . . . ,m, since {φi(x)} and {φ̃i(x)} are orthonormal in L2(Ω). By [36,
Theorem 1.44, p. 25] we know that, there is for every finite system (2.3) a solution

(c
(m)
i (t), c̃

(m)
i (t)), i = 1, . . . ,m on the interval (0, Tm) for some Tm > 0. Therefore,

we multiply the first equation of system (2.1) by the coefficients c
(m)
i (t), i = 1, . . . ,m

and the second equation by c̃
(m)
i (t), i = 1, . . . ,m. Then, integrating the resulting

equations over (0, τ) for an arbitrarily τ ∈ (0, Tm) and summing them over i =
1, . . . ,m, yields∫

Ωτ

∂tu
(m) · u(m) +

(
a(x, t,∇u(m)) + |F |p(x,t)−2F

)
· ∇u(m)dz = 0∫

Ωτ

∂tv
(m) · v(m) +

(
a(x, t,∇v(m)) + δ∇u(m)

)
· ∇v(m)dz = 0

(2.4)

for a.e. τ ∈ (0, Tm).

Step 2: Energy estimate for the approximated solution. We derive the
needed energy estimate. Therefore, we use that∫

Ωτ

∂tu
(m) · u(m)dz ≥ 1

2

∫
Ω

|u(m)(·, τ)|2dx− 1

2

∫
Ω

|u0|2dx
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Ωτ

∂tv
(m) · v(m)dz ≥ 1

2

∫
Ω

|v(m)(·, τ)|2dx− 1

2

∫
Ω

|v0|2dx

for a.e. τ ∈ (0, Tm), since u0, v0 ∈ L2(Ω), {φi}∞i=1 ⊂ L2(Ω) and {φ̃i}∞i=1 ⊂ L2(Ω),
cf. [20]. Then, we arrive at

1

2

∫
Ω

|u(m)(·, τ)|2dx+

∫
Ωτ

a(x, t,∇u(m)) · ∇u(m)dz

≤ 1

2
‖u0‖2L2(Ω) +

∫
Ωτ

|F |p(x,t)−1|∇u(m)|dz
(2.5)

and

1

2

∫
Ω

|v(m)(·, τ)|2dx+

∫
Ωτ

a(x, t,∇v(m)) · ∇v(m)dz

≤ 1

2
‖v0‖2L2(Ω) + δ

∫
Ωτ

|∇u(m)||∇v(m)|dz
(2.6)

for a.e. τ ∈ (0, Tm). Using the coercivity condition (1.4) on the left-hand side of
(2.5) and (2.6) yields

1

2

∫
Ω

|u(m)(·, τ)|2dx+ ν

∫
Ωτ

|∇u(m)|p(·)dz ≤ 1

2
‖u0‖2L2(Ω) +

∫
Ωτ

|F |p(·)−1|∇u(m)|dz,

1

2

∫
Ω

|v(m)(·, τ)|2dx+ ν

∫
Ωτ

|∇v(m)|p(·)dz ≤ 1

2
‖v0‖2L2(Ω) + δ

∫
Ωτ

|∇u(m)||∇v(m)|dz.

These estimates holds for a.e. τ ∈ (0, Tm). Applying Young’s inequality with
1/p(x, t)+1/p′(x, t) = 1 to the last term of the second last equation with 0 ≤ ε ≤ 1
and Cauchy’s inequality with 0 ≤ ε̃ ≤ 1 to the last term the last equation, we
obtain∫

Ωτ

|F |p(x,t)−1|∇u(m)|dz ≤ c(γ1, γ2, ε)

∫
Ωτ

|F |p(·)dz + εc(γ1, γ2)

∫
Ωτ

|∇u(m)|p(·)dz

and

δ

∫
Ωτ

|∇u(m)||∇v(m)|dz ≤ c(δ, ε̃)
∫

Ωτ

|∇u(m)|2dz +
ε̃

2

∫
Ωτ

|∇v(m)|2dz

≤ c(γ1, γ2, δ, ε̃)

∫
Ωτ

|∇u(m)|p(·) + 1dz

+ ε̃c(γ1, γ2)

∫
Ωτ

|∇v(m)|p(·) + 1dz.

Choosing ε ≤ ν/(2c(γ1, γ2)) and ε̃ ≤ ν/(2c(γ1, γ2)), we can conclude that∫
Ω

|u(m)(·, τ)|2dx+

∫
Ωτ

|∇u(m)|p(·)dz ≤ c1‖u0‖2L2(Ω) + c1

∫
Ωτ

|F |p(·)dz,∫
Ω

|v(m)(·, τ)|2dx+

∫
Ωτ

|∇v(m)|p(·)dz

≤ c2‖v0‖2L2(Ω) + c2

∫
Ωτ

|∇u(m)|p(·) + 1dz

≤ c2
(
‖v0‖2L2(Ω) + ‖u0‖2L2(Ω) +

∫
Ωτ

|F |p(·) + 1dz
)
,
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where we used the second last estimate to derive the last estimate with constants
c1 = c1(ν, γ1, γ2) and c2 = c2(ν, δ, γ1, γ2). Finally, the Poincaré type estimate (1.15)
in combination with the previous two estimates yields

‖u(m)‖Lp(·)(ΩTm ) ≤ c and ‖v(m)‖Lp(·)(ΩTm ) ≤ c

with c = c(n, ν, δ, γ1, γ2,diam(Ω), ω(·),X ), where X is defined in (1.13). There-
fore, we have shown that u(m) and v(m) are uniformly bounded in W p(·)(ΩTm) and
L∞(0, Tm;L2(Ω)) independently of m. Thus, the solution of system (2.3) can be
continued to the maximal interval (0, T ) and we obtain the estimate

sup
0≤τ≤T

(∫
Ω

|u(m)(·, τ)|2dx+

∫
Ω

|v(m)(·, τ)|2dx
)

+

∫
ΩT

|∇u(m)|p(·) + |∇v(m)|p(·)dz

≤ c
(
‖u0‖2L2(Ω) + ‖v0‖2L2(Ω) +

∫
ΩT

|F |p(·) + 1dz
)

= cX

(2.7)

with c = c(ν, δ, γ1, γ2).

Step 3: Uniform bounds for ∂tu
(m) and ∂tv

(m). We want to derive an uniform
bound for ∂tu

(m) in W p(·)(ΩT )′. Therefore we define a subspace of the set of
admissible test functions

Wm(ΩT ) :=
{
η : η =

m∑
i=1

diφi, di ∈ C1([0, T ])
}
⊂W p(·)

0 (ΩT ).

Then, we choose a test function

ϕ(z) =

m∑
i=1

di(t)φi(x) ∈ Wm(ΩT ) with di(0) = di(T ) = 0.

Note that ∂tϕ exists, since the coefficients di(t) lie in C1([0, T ]). Moreover, we know

that C1([0, T ],W 1,γ2
0 (ΩT )) ⊂W p(·)

0 (ΩT ) and therefore, we have also ϕ ∈W p(·)
0 (ΩT ).

Thus, we can conclude by the definition of u(m) and the first equation of (2.1) that

−
∫

ΩT

u(m)ϕtdz =

∫
ΩT

u
(m)
t ϕdz = −

∫
ΩT

(
a(z,∇u(m)) + |F |p(x,t)−2F

)
· ∇ϕdz.

Then, we derive by utilizing the growth condition (1.2) and the generalized Hölder’s
inequality (1.7) the estimate∣∣ ∫

ΩT

u
(m)
t ϕdz

∣∣ ≤ ∫
ΩT

(
|a(z,∇u(m))|+ |F |p(·)−1

)
· |∇ϕ|dz

≤
∫

ΩT

(
|a(z,∇u(m))|+ |F |p(·)−1

)
· (|∇ϕ|+ |ϕ|) dz

≤ c
[
‖(1 + |∇u(m)|p(·)−1 + |F |p(·)−1)‖Lp′(·)(ΩT )

]
× ‖ϕ‖Wp(·)(ΩT ),

where c = c(γ1, γ2, L). Applying (1.8) and (2.7) to the last estimate, we have for

every ϕ ∈ Wm(ΩT ) ⊂ W
p(·)
0 (ΩT ) and any m the estimate∣∣ ∫

ΩT

u
(m)
t ϕdz

∣∣ ≤ c‖ϕ‖Wp(·)(ΩT )
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with a constant c = c(γ1, γ2, ν, L,X ), which is independent of m. This shows that

u
(m)
t ∈ W p(·)(ΩT )′ with ‖u(m)

t ‖Wp(·)(ΩT )′ ≤ c(γ1, γ2, ν, L,X ). Similarly, one can

conclude that v
(m)
t ∈W p(·)(ΩT )′ with ‖v(m)

t ‖Wp(·)(ΩT )′ ≤ c(γ1, γ2, ν, L,X ).

Step 4: Compactness and passage to the limit. Now, we have the needed

uniform bounds of u(m), v(m), u
(m)
t and v

(m)
t and it follows that

u(m), v(m) ∈W p(·)
0 (ΩT ) ⊆ Lγ1(0, T ;W 1,γ1

0 (Ω))

u
(m)
t , v

(m)
t ∈W p(·)(ΩT )′ ⊆ Lγ

′
2(0, T ;W−1,γ′2(Ω))

are bounded. This implies the following weak convergence for the sequences {u(m)}
and {v(m)} (up to a subsequence):

u(m) ⇀∗ u and v(m) ⇀∗ v weakly* in L∞(0, T ;L2(Ω)),

∇u(m) ⇀ ∇u and ∇v(m) ⇀ ∇v weakly in Lp(·)(ΩT ,Rn),

u
(m)
t ⇀ ut and v

(m)
t ⇀ vt weakly in W p(·)(ΩT )′.

Moreover, by Theorem 1.5 we can conclude that the sequences {u(m)} and {v(m)}
(up to a subsequence) converges strongly in Lp(·)(ΩT ) to some function u, v ∈
W (ΩT ). Thus, we obtain the desired convergences

u(m) → u and v(m) → v strongly in Lp(·)(ΩT ),

u(m) → u and v(m) → v a.e. in ΩT .

In addition, the growth assumption of a(z, ·) and the estimate (2.7) imply that the

sequences {a(z,∇u(m))}m∈N and {a(z,∇v(m))}m∈N are bounded in Lp
′(·)(ΩT ,Rn).

Consequently, after passing to a subsequence once more, we can find limit maps
A0, A

∗
0 ∈ Lp

′(·)(ΩT ,Rn) with

a(z,∇u(m))→ A0 as m→∞,

a(z,∇v(m))→ A∗0 as m→∞.
(2.8)

Our next aim is to show that A0 = a(z,∇u) for almost every z ∈ ΩT . We will only
show that A0 = a(z,∇u) for almost every z ∈ ΩT , but one can easily show that
A∗0 = a(z,∇v) for almost every z ∈ ΩT using the same approach. First of all, we
should mention that each of u(m) satisfies the first equation of the identity (2.1)
with a test function ϕ ∈ Wm(ΩT ). This follows by the method of construction, cf.
[7]. Then, we fix an arbitrary m ∈ N and we have for every s ≤ m the equation

−
∫

ΩT

u
(m)
t ϕ+

(
a(z,∇u(m)) + |F |p(·)−2F

)
∇ϕdz = 0

for all test functions ϕ ∈ Ws(ΩT ). Passing to the limit m → ∞, we can conclude
that for all test functions ϕ ∈ Ws(ΩT ) we have

−
∫

ΩT

utϕ+
(
A0 + |F |p(·)−2F

)
∇ϕdz = 0 (2.9)

with an arbitrary s ∈ N, by the convergence from above. Therefore, it follows

that the identity (2.9) holds for every ϕ ∈ W p(·)
0 (ΩT ). According to monotonicity
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assumption (1.3), we know that for every w ∈ Ws(ΩT ) and every s ≤ m the
following holds ∫

ΩT

[a(z,∇u(m))− a(z,∇w)]∇(u(m) − w)dz ≥ 0. (2.10)

Moreover, it follows from the first equation of (2.1), the conclusion from above and
the choice of an admissible test function ϕ = u(m) − w with w ∈ Ws(ΩT ) that

−
∫

ΩT

u
(m)
t ϕ+

(
a(z,∇u(m)) + |F |p(·)−2F

)
∇ϕdz = 0. (2.11)

Adding (2.10) and (2.11), we have

−
∫

ΩT

u
(m)
t ϕ+ [a(z,∇u(m)) + |F |p(·)−2F ]∇ϕ− [a(z,∇u(m))− a(z,∇w)]∇ϕdz ≥ 0

with a test function ϕ = u(m) − w. This yields

−
∫

ΩT

u
(m)
t (u(m) − w) + [a(z,∇w) + |F |p(·)−2F ]∇(u(m) − w)dz ≥ 0.

Then, we test equation (2.9) with ϕ = u(m) − w, subtract the resulting equation
from the last estimate and finally passing to the limit m→∞ yields

−
∫

ΩT

[A0 − a(z,∇w)]∇(u− w)dz ≥ 0

for all w ∈ Ws(ΩT ). Since,Ws(ΩT ) ⊂W p(·)
0 (ΩT ) is dense, we are allowed to choose

w ∈ W p(·)
0 (ΩT ). Hence, we choose w = u ± εξ with an arbitrary ξ ∈ W p(·)

0 (ΩT ).
This yields

−ε
∫

ΩT

[A0 − a(z,∇(u± εξ))]∇ξdz ≥ 0.

Then, passing to the limit ε ↓ 0, we conclude that∫
ΩT

[A0 − a(z,∇u)]∇ξdz = 0

for all ξ ∈W p(·)
0 (ΩT ). This shows that

A0 = a(z,∇u) for almost every z ∈ ΩT .

Similarly, we can show that A∗0 = a(z,∇v) for almost every z ∈ ΩT .

Step 5: Initial values. Moreover, we have to show that u(·, 0) = u0 and v(·, 0) =
v0. We prove that u(·, 0) = u0 and the conclusion v(·, 0) = v0 follows in the same
way. From (2.9) we obtain by using integration by parts that∫

ΩT

uϕt −
(
a(z,∇u) + |F |p(·)−2F

)
∇ϕdz =

∫
Ω

(u · ϕ)(·, 0)dx

for all ϕ ∈W p(·)
0 (ΩT ) with ϕ(·, T ) = 0. Similarly, we can conclude that∫
ΩT

vζt −
(
a(z,∇v) + |F |p(·)−2F

)
∇ζdz =

∫
Ω

(v · ζ)(·, 0)dx
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for all ζ ∈ W p(·)
0 (ΩT ) with ζ(·, T ) = 0. Here, we will only show that u(·, 0) = u0,

since the conclusion v(·, 0) = v0 is then easily to derive. Furthermore, from (2.11)
— similar to the previous estimates — we obtain that∫

ΩT

u(m)ϕt −
(
a(z,∇u(m)) + |F |p(·)−2F

)
∇ϕdz =

∫
Ω

(u(m) · ϕ)(·, 0)dx

for all ϕ ∈W p(·)
0 (ΩT ) with ϕ(·, T ) = 0. Passing to the limit m→∞ and using the

convergences from above, we obtain∫
ΩT

uϕt −
(
a(z,∇u) + |F |p(·)−2F

)
∇ϕdz =

∫
Ω

u0 · ϕ(·, 0)dx,

where u(m)(·, 0) → u0 as m → ∞, cf. [20]. In addition, ϕ(·, 0) is arbitrary and
hence, we can conclude that u(·, 0) = u0. This together with the conclusion v(·, 0) =
v0 shows that there exists a weak solution to the Dirichlet problem (1.1).

Step 6: Uniqueness. The final aim is to prove the uniqueness of the weak
solution to the Dirichlet problem (1.1). To this end, we assume that there exist

two pairs of weak solutions (u, v) and (u∗, v∗) ∈ (C0([0, T ];L2(Ω)) ∩W p(·)
0 (ΩT ))2

with (∂tu, ∂tv), (∂tu∗, ∂tv∗) ∈ (W p(·)(ΩT )′)2 to the Dirichlet problem (1.1). Thus,
we have the following weak formulations∫

ΩT

[u · ϕt − a(z,∇u) · ∇ϕ] dz =

∫
ΩT

|F |p(x,t)−2F · ∇ϕdz,∫
ΩT

[v · ζt − a(z,∇v) · ∇ζ] dz =

∫
ΩT

δ∇u · ∇ζdz,

and ∫
ΩT

[u∗ · ϕt − a(z,∇u∗) · ∇ϕ] dz =

∫
ΩT

|F |p(x,t)−2F · ∇ϕdz,∫
ΩT

[v∗ · ζt − a(z,∇v∗) · ∇ζ] dz =

∫
ΩT

δ∇u∗ · ∇ζdz,

with the admissible test functions ϕ = u − u∗ ∈ W
p(·)
0 (ΩT ) and ζ = v − v∗ ∈

W
p(·)
0 (ΩT ), since W

p(·)
0 (ΩT )′ is the dual of W

p(·)
0 (ΩT ). Hence, we can conclude

using integration by parts that∫
ΩT

(u− u∗)t(u− u∗) + (a(z,∇u)− a(z,∇u∗))∇(u− u∗)dz = 0,∫
ΩT

(v − v∗)t(v − v∗) + (a(z,∇v)− a(z,∇v∗))∇(v − v∗)dz

= −δ
∫

ΩT

∇(u− u∗) · ∇(v − v∗)dz.

Using the monotonicity condition (1.3), we arrive at

0 ≥
∫

ΩT

(u− u∗)t(u− u∗)dz =
1

2

∫
ΩT

∂t(u− u∗)2dz,

−δ
∫

ΩT

∇(u− u∗)∇(v − v∗)dz ≥
∫

ΩT

(v − v∗)t(v − v∗)dz =
1

2

∫
ΩT

∂t(v − v∗)2dz.
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Therefore, 0 ≥ 1
2‖u(t)−u∗(t)‖2L2(Ω) ≥ 0 for every t ∈ (0, T ), since u(·, 0) = u∗(·, 0) =

u0. In addition, the uniqueness of u implies also that

0 ≥
∫

ΩT

(v − v∗)(v − v∗)tdz =
1

2

∫
ΩT

∂t(v − v∗)2dz

and 0 ≥ 1
2‖v(t) − v∗(t)‖2L2(Ω) ≥ 0 for every t ∈ (0, T ), since v(·, 0) = v∗(·, 0) = v0.

This completes the proof of the Theorem. �

References

[1] Aboulaich, R.; Meskine, D.; Souissi, A.; New diffusion models in image processing. Comput.
Math. Appl., 56 (2008), 874–882.

[2] Acerbi, E.; Mingione, G.; Regularity results for electrorheological fluids: The stationary case.

C. R. Math. Acad. Sci. Paris, 334 (2002), 817–822.
[3] Acerbi, E.; Mingione, G.; Regularity results for stationary electro-rheological fluids. Arch.

Ration. Mech. Anal. 164 (2002), 213–259.
[4] Acerbi, E.; Mingione, G.; Seregin, G. A.; Regularity results for parabolic systems related to

a class of non-Newtonian fluids. Ann. Inst. Henri Poincaré Anal. Non Linéaire 21 (2004),
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[16] Diening, L.; Harjulehto, P.; Hästö, P.; Ru̇žička, M.; Lebesgue and Sobolev Spaces with Variable
Exponents; Springer: 2011.
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[27] Harjulehto, P.; Hästö, P.; Latvala, V.; Toivanen, O.; Critical variable exponent functionals
in image restoration. Appl. Math. Lett. 26 (2013), 56–60.

[28] Li, F.; Li, Z.; Pi, L.; Variable exponent functionals in image restoration. Appl. Math. Comput.

216 (2010), 870–882.
[29] Pan, N.; Zhang, B.; Cao, J.; Weak solutions for parabolic equations with p(x)-growth. Elec-

tron. J. Diff. Equ.. 2016, (2016), no. 209, 1–15.
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