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EXISTENCE AND NONEXISTENCE OF RADIAL SOLUTIONS
FOR SEMILINEAR EQUATIONS WITH BOUNDED
NONLINEARITIES ON EXTERIOR DOMAINS

JOSEPH IAIA

ABSTRACT. In this article we study radial solutions of Au+ K(r)f(u) = 0 on
the exterior of the ball of radius R > 0 centered at the origin in RY where
f is odd with f < 0 on (0,3), f > 0 on (3,4), f =0 for u > §, and where
the function K (r) is assumed to be positive and K(r) — 0 as r — oo. The
primitive F(u) = [y* f(t) dt has a “hilltop” at u = 6. With mild assumptions
on f we prove that if K(r) ~ r~% with 2 < a < 2(IN — 1) then there are n
solutions of Au + K(r)f(u) = 0 on the exterior of the ball of radius R such
that u — 0 as r — oo if R > 0 is sufficiently small. We also show there are no
solutions if R > 0 is sufficiently large.

1. INTRODUCTION

In this article we study radial solutions of

Au+ K(r)f(u) =0 in Q, (1.1)
u=0 on 04, (1.2)
u—0 as|z]—= o0 (1.3)

where x € Q = RV\Bg(0) is the complement of the ball of radius R > 0 centered
at the origin. We assume f : R — R is locally Lipschitz and there exist 3, with
0 < B < § such that f(0) = f(8) = f(J) = 0 where:
(H1) fisodd, f/(0) <0, f <0on (0,8), f>0on (5,9), f/(67) <0, f=0on
(6,00).
It follows that F(u) = [ f(s)ds is even. We also assume that F has a unique
positive zero, 7, with 5 <« < § such that

(H2) F <0on (0,7), F >0 on (y,00).

Note from (H1) and (H2) it follows that F' is bounded.

In an earlier paper [6] we studied (L.1]), when Q = RY and K(r) = 1.
Interest in the topic for this paper comes from recent papers [l 12 [14] about
solutions of differential equations on exterior domains. In [7] we studied (L.1)-(L.3)
with K(r) = 1 and Q = RV\Bgr(0), in [§] we studied the case when K(r) ~ =
with 0 < o < 2 and in [9] with o > 2(N —1). In [7,[8, 0] we proved existence of an
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infinite number of solutions - one with exactly n zeros for each nonnegative integer
n such that u — 0 as |z]| — oco.
flu)

When f grows superlinearly at infinity - i.e. lim, o =, = o0, and = RN,

problem (L.1)), has been extensively studied in [T, 2, B3, 1T} 13} 15]. The type
of nonlinearity addressed here has not been studied as extensively [0} [7, [§].

When f grows sublinearly at infinity - i.e. lim,_, @ =0, but lim, o f(u) =
oo and Q = RY, problem , has also been studied in [9 [10].

Since we are interested in radial solutions of — we assume that u(z) =

u(|z|) = u(r) where x € RN and r = |z| = \/2? 4+ - - + 2% so that u solves

u”(r) + ?u’(r) + K(r)f(u(r)) =0 on (R,o0) where R > 0, (1.4)

w(R) =0,u'(R) =a > 0. (1.5)
We will assume that there exist constants ky > 0, k2 > 0, and « > 0 such that
(H3) kir * < K(r) <kgr ®for 2 < a<2(N—1)on [R,c0).
In addition, we assume that
(H4) K is differentiable, lim, o 25 = —a and 25 4+ 2(N — 1) > 0 on [R, ).

Note that (H4) implies r2(N =Y K (r) is increasing. Also since J'(0) <0Oand f'(07) <
0 then it follows from (H1) that there exist positive constants fo, fo, f1, f1 such that

=ity (- 5F) A= (-5, )
fi = inf (({(_ul) fi= s (g(_ui) (1.7)

where 8 < 8/ < and F(g) =F(3).

Theorem 1.1. Let N >2, R> 0,2 < a < 2(N —1) and (H1)-(H4) hold.
(a) There are n solutions of (1.1)-(1.3) on [R,00) - one with exactly n zeros

for each nonnegative integer n if

hafo\1/2
1 1)
7( + (hl fl) ) <
and if R > 0 is sufficiently small.
(b) There are no solutions for any value of R >0 of (LI)-(L.3) if

PRV

fi
(¢) There are no solutions of (1.1)-(1.3) on [R,00) if R > 0 is sufficiently

large.

We note that in Sankar, Sasi, and Shivaji [14] established existence of a positive
solution to a semipositone version of this problem using sub and super solutions.
We use different techniques here and are able to establish existence of multiple
solutions.
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2. PRELIMINARIES
We first suppose that U(r) solves (|1.4) and then make the change of variables:
U(r) = u(r*=").

Then for 0 < t < 0o we see u satisfies

W+ h(t) f(u) = 0, (2.1)
where
EEN K (1)
h(t) = ————.
It follows from (H3) and (H4) that
th/
h(t) >0, h'(t) <0, lim 5= hat™® < h(t) < hot™1
t—0
orts0 g 2N-Doa ko .
T ) qi N—2 b) 'Li(N_2)2'
In addition, it follows from (H3), (H4) and (2.2 that
0<g<2. (2.3)
We also assume that
w(0) = 0,u/(0) =b > 0. (2.4)

We want to find b > 0 such that u(R2™) = 0 then U(r) = u(r?>=N) will satisfy

(1.1)-(1.3). Therefore for the rest of this paper we will study (2.1)), (2.4) with
(H1)—(H4) and attempt to find solutions u such that u(R?>~) = 0.

We first prove existence of a solution of (2.1)), (2.4) assuming (H1)—(H4) on [0, €]
for some € > 0. Integrating (2.1)) twice on (0,t) and using (2.4) gives

) = bt — / / h(z )) dz ds. (2.5)

Letting y(t) = @ and y(0) = b > 0 gives

=b— f/ / )) dz ds. (2.6)

Now let S = {y € C[0,¢] : y(0) = b > 0} with the supremum norm, || - ||, and define

T:5 — C[0,€] by
_b—f//h ) dz ds. (2.7)

We first observe that T': S — S. Next let K be the Lipschitz constant for f(u) in
a neighborhood of © = 0 and suppose 0 < ¢ < €. Then

1 t s
[Ty — Tys2| < ;/ / hoK|xy; — xyz|a~Tdx ds
0o Jo

t
S/ hoKz' ™ |y; — yo| dz
0

ho K o
< 2762 Uyr = yol|-
—q
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It follows from this and (2.3) that T is a contraction if ¢ > 0 is sufficiently small.
Thus by the contraction mapping principle [4] it follows that (2.7)) has a fixed point
y in S and therefore u = ty is a solution of (2.5)) on [0, €] for some € > 0.

Next let

Eolt) = %u@ + h(t)F(u). (2.8)

By (2.1) we have Ej = h/(t)F(u) and thus on (§,t) we obtain

%u'z + h(t)F(u) = %UQ(E/Q) + h(e/2)F(u(e/2)) + /6 h'(s)F(u(s)) ds.

2

Since F' is bounded and since h, h' are bounded on [¢/2, 00) it follows that v’ is
bounded on [¢/2, 00). It then follows that the solution of (2.1)), (2.4]) exists on [0, Q)
for all @ > 0 and thus we obtain a solution of ({2.1), on [0, 00).

Next let

1 u/2
E(t) = -—= + F(u). 2.
(t) sh (u) (2.9)
Using (2.1)-(2.2) and (2.4) we see that lim; .o+ E(t) = 0 and
u/zh/(t)
E =- > for ¢ . 2.1
) = 0 fort>0 (2.10)

Thus E is nondecreasing and E(t) > 0 for t > 0.

Lemma 2.1. Assume (H1)—(H4) and let u solve (2.1)), (2.4). Then there exists
typ > 0 such that u(typ) =7, W' (typ) >0, and 0 < u <y on (0,ty4). In addition,
there exists top with 0 <ty < typ such that u(tap) = B/2.

Proof. We first observe from (2.4) that w is initially positive and increasing for
t > 0 small. If u has a local maximum M then F(u(M)) = E(M) > 0 thus
u(M) > « by (H2) and so the existence of ¢,; follows. So now let us assume

u is positive, increasing, and 0 < u < « for all ¢ > 0. From (2.10) we have
%;f':) + F(u) = E(t) > E(e) >0 for t > € > 0. Since 0 < u < 7y then F(u) <0 so
%:(/:) > E(e) for t > e. Thus

/| > \/2E(e)h(t) > \/2E(e)hyt 92 >0 fort>e. (2.11)
Therefore v’ > 0 for t > €. Integrating (2.11)) on (e, t) gives

v > u(t) — ule) > 7W(tl_% —e'73) fort>e (2.12)

2

Recall 0 < ¢ < 2 by (2.3)) and so the left-hand side of (2.12)) is bounded but the
right-hand side goes to infinity as ¢ — co. Therefore we obtain a contradiction and
so there exists t, > 0 such that u(ty;) =vand 0 <u <y for 0 <t <ty In

addition, %“,;2(3”5) = E(ty3) > 0 hence u/(t,,) > 0. Since u(0) = 0 it then follows

by the intermediate value theorem that there exists to; with 0 < t23 < ¢, such

that u(tap) = g This completes the proof. (]

Lemma 2.2. Assume (H1)-(H4) and let u solve (2.1)), (2.4)). Iflim; oo u(t) =L €
R then f(L) = 0.
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Proof. Since limy_, o, u(t) = L and u( ) = 0 then it follows that u is bounded for
all t > 0. Also E' > 0 implies 1 2h(t) + F(u) - A < co as t — oo and thus

2h(t) — A—F(L). If A~ F(L) > 0 then we obtain |u/| > A;t~9/2 for some A; > 0
and for large ¢. Thus |u/| > 0 and so without loss of generality suppose that ' > 0.
Integrating u’ > A1t79/2 on (to,t) gives u(t) — u(ty) > 12 (1% — t37 ) — o0 as
t — oo but the left-hand side is bounded since lim;_s o u( )2 L. Thus we obtain a
contradiction and so we see that A — F(L) = 0. Therefore : u” F(u) = F(L)

20)
and since F'(u) — F(L) it then follows that lim; . 77 0 Therefore by (2.2)

()

we have
lim ¢7/%u = 0. (2.13)
t—o0
Next note that (%)’ = “};/ - we see hm,g_>oo "T = —f(L). Also
2‘1 q—11,,/ q/2 1
by (2.2)) and (2.13)) for large ¢ we have L= | = ( u )t“% — 0 as

’

t — oo since 0 < ¢ < 2. Therefore limtﬁoo(ﬁ)’ = —f(L). Then by L’Hépital’s rule

o ()

tll}IEo th tlggo t tooo (t) —f(L). (2.14)

Now suppose without loss of generality that f(L) > 0. Then from ({2.2)) and ([2.14)) it
follows —u' > th_q for large ¢ and so integrating on (¢g,t) gives u(to) (t) >
%(t%q — 1277 — o0 as t — 00 s0 u(t) = —oo which contradicts that v is
bounded. Thus f(L) < 0. A similar argument shows f(L) > 0 hence f(L) = 0.
This completes the proof. O

Lemma 2.3. Assume (H1)—(H4) and let u solve (2.1)), (2.4). Then lim; o+ tap =
limy,_, o+ t,,5 = 00 and

lim ir+1f tg{b2u’(t2,b) > gx/ hi fo, (2.15)
lim sup tq/ "(ty ) < v\ hafo. (2.16)
b—0+
Proof. We rewrite (2.1)) as
u = h(t)(— M)u (2.17)
u
Thus by (1.6), (2.2)), and (2.17) we see that
"< hafou when u > 0.
ta
Now let vy solve
ha fo
vl = U2 (2.18)
v2(0) =0, v5(0) =b>0. (2.19)
Then v9 is positive and increasing for ¢ > 0. Also by (|1.6) and (2.2)) we see that

)y _ hafo

” )uvg <0 while u > 0.
U

(u'vy — uvh) = (h(t)( -
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Since u(0) = v2(0) = 0 we see then that w'vy — uvh < 0 while v > 0 and thus
(u/v2)" < 0. Since u/(0) = v5(0) = b we see then that

0<u<vs. (2.20)

Also u'vg —uvh < 0 and 0 < u < vg imply that

u/ /

Y e foru>o. (2.21)
u Vo

Next (2.18)-(2.19) can be solved explicitly and we obtain

2 h2f0t2%4>

vzzbc\/{efﬁ( o

(2.22)

where Irlq is the modified Bessel function of order ﬁ with lim;_, g+ Iﬁ (t)=0.

A well-known fact is that lim;_,q+ I”t—(t) = m where I, is the modified Bessel
function of order v with lim; ,o+ I, (¢) = 0 and thus from this and (2.22]) we see
C= F(%)(iﬁ))*ﬁ > 0. (Here I'(z) is the Gamma function). It is also known
that I, > 0, I/, > 0, and lim;_, o, ?8; = 1. (Some other general facts about the
modified Bessel functions are included in the appendix).

Now using (2.20]) we see that

2/ hafo 2za
g = u(tg’b) < Ug(tg’b) = bC\/tg’bIﬁ (fi]fotli ) (223)
If the to; are bounded as b — 01 then the right-hand side of (2.23) goes to
zero which contradicts that 8 > 0. Thus it must be that lim,_,o+ t2 5, = oc. Since

.6 > tap then also limy_,g+ t 5 = 0o. This completes the first part of the lemma.

Denoting
24/ hzfo 1-4 24/ hzfo 1-4
= —t d = ————f 2 2.24
s 92— q 2 an Sv.b 9 _ q ~v,b ( )
It follows from ([2.22)) that
Iy (s)
! qu(t) r 7q/2 Ziq
vy(t) = o T hafo t Uz(t)Iz% )
Therefore
!
9720} (t) 1 —1I", (s)
= — 4+ hofo—t—. 2.25
wll) Sy 2o . (2.25)

Evaluating at ¢, it follows from (2.21)) and ([2.25) that
!

tq/2u’(t b) 1 — 1"y (sy)
‘y,b Y 2—q
< - +1/hofo ————. (2.26)
u(t%b) Qt}y_bf Iﬁ (5%17)

As mentioned earlier it is well-known that limg_, ., ?8 = 1. Recalling that 0 <

g < 2 and that ¢, ;, — oo as b — 0T then we see from (2.26) that

li;nsgp ti{fU’(t%b) < y1\/hafo.
—0



EJDE-2020/117 EXISTENCE AND NONEXISTENCE OF RADIAL SOLUTIONS 7

In a similar way let vy solve

h
v = go v, (2.27)
v1(0) =0, v1(0)=5b>0. (2.28)
We note that v; > 0 and v} > 0 for ¢t > 0. Then we can similarly show that
/ /
U g cu< D, (2.29)
U1 U 2

Solving for v; explicitly we have

2v/h —q 3— vh
v = bClx/ZI% (7”0%*) where O = F(ﬂ)( . _”;0) 7> 0. (2.30)
It follows from (2.29)) and ( - ) that
tg/ Utan)  tY20 (ta) 1 I'y_(p2y)
> = =—F7 tVhfor—"— (2.31)
u(tap) v1(t2,) 2,2 I (p2,b)
where pgp = inilqﬂ’t;%.
It is shown in the appendix that
I/
T+:>1 fort > 0and v > 1/2

from which it follows using (2.31]) that
hm mf tQ/ ' (tap) >

V' hifo.

This completes the proof. (Il

Next we rewrite (2.1)) as

N

u" + h(t) (g(_ui) (5 —u) = 0. (2.32)

From (1.7) and we have
) (1) > h; L on o), 39)
hi({l > h(t) ( ) for u € [, 4). (2.34)

So now we compare (2.32) to
5+ h;;fl (6 —wp) =0 (2.35)
w2(t77b) = u(tv,b) =7 w/2(t'ya b) = ul(t'y,b)- (2.36)

and )

4 hi;]fl (6—w)=0 (2.37)
wy(ty) = u(ty) = ,@l,wll (ty) = u’(tb/). (2.38)

u,w; € [B',9) where wy is the solution of (2.37), (2.38)). Also u < wy when
u, we € [y,9) where wy is the solution of ([2.35))-(2.36]).

Lemma 2.4. Assume (H1)—(H4) and let u solve (2.1), (2.4). Then wy < u when
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Proof. Tt follows from (2.32) and (2.35) that

f(u hif
(<6—w2>u’—<6—u>w§)’+ (h(t)(aﬂl) A G_we—un =0 (@239
By (2.33) it follows that the second term in (2.39) is > 0 when u,wy € [v,4).

Therefore integrating (2.39) on (t+,t) gives

(0 —wo)u' — (6 —u)wh <0. (2.40)
Thus 5 )
— wy
<0.
( 0—u ) -
Integrating on (¢ ,t) gives
o — Wo
—-1<0
0—u -

which implies u < we when u, ws € [, 9).
A nearly identical argument proves that

wy < w when u,w; € [, 9)

and
(0 —wy)u' — (§ —uw)wy > 0. (2.41)
This completes the proof. ([

Now (2.35)) can be solved explicitly and we obtain
2¢/h —q 2vh —q
w2:5+\/i(clf2+< 1f1t2T) + oK ( 1f1t27)> (2.42)

2—q

where I . and K 1 are the modified Bessel functions of order T and ¢y, co are
constants It is Well known for t > 0 that: I, > 0,1, >0, K, >0 and K| <.

We rewrite as

wy — 6 = c1y1 + c2¥2

where
y1<t>=mﬁ(2i;ﬁlqﬁtz%), y2<t>=¢£f<ﬁ(22—vﬁft%). (2.43)

A straightforward computation shows

by ) (waltyp) — 0) — ya(typ)wh(typ)
- Y1 (ty,0)Y2(ty,0) — Y1 (ty,0)y2(ty ) (2.44)
Yty e) (waltys) = 8) + ya (ty ) wh(ty )

2 T b h(b) — il e(b) (2.45)

Another well-known fact about the modified Bessel functions I, and K, is that

LK, (t)—I,t)K,(t) = —% for t > 0. (2.46)
Next a straightforward computation using and ( shows
y1(t)ya(t) — yi(t)yz(t) =—-(1- 5)-
And so we see from ([2.36)), (2.44))-(2.45]) that

_ Yaltyp) (0 — ’Vl) - 1212(%17)“’“%") : (2.47)
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—yh (¢ 6—r)— t "(t
Cy = Y1(ty,0) (0 =) — ya(typ)u'( %b). (2.48)
1-3
Note that y1(¢t) > 0 and y{(¢) > 0. In addition, v'(¢y,) > 0 and 6 — v > 0 so it
follows from ([2.48)) that

co < 0. (249)
Lemma 2.5. Assume (H1)-(H4) and let u solve (2.1)), (2.4). If b > 0 is sufficiently
small and if -
ha fo\1/2
14 ( ) ) <4 2.50
(0 (G (2.50)
then ¢1 < 0.
Proof. We let
2\/h 2Vl _a
1f1 T =g 7151 t2 (2.51)

It follows from and ( - ) that
1 1-g
S [w s+ VAR o)
+ 4/t K ’r‘fy b t%b):| .

Therefore
- K’y (rys)
1 1 1 o (ry,
= Tgth Koy () [0 =) (g + VAT )
2 2t7b 2 \Tyb (2.52)
+ 19 Eu’(t%b)}

Another well-known fact about the modified Bessel function is that lim;_, o K—Eg

—1. We also know that t,;, — co as b — 0% by Lemma |2 and thus by (2.51)
we see 1y, — 00 as b — 0*. Thus from Lemma . - 50)), and taking the

limit superior of the bracketed term in gives

K/1 (T b

= ;) O ()]

. 1
lim sup [((5 - 7)(2151_ h1f1 - (r .
K1 (ry,

+
b—0 ob

< (0= (V) + whafo = Vi [ (1 520) 8] <0

It follows from this and (2.52)) that ¢; < 0. This completes the proof. O

Lemma 2.6. Assume (H1)—-(H4) and let u solve (2.1), (2.4). Let n be a positive

integer. If’y(l + 4/ hzf") < 0 and b > 0 is sufficiently small then u has n zeros on
(0, 00).

Proof. From Lemma [2.5] it follows that ¢; < 0 if b > 0 is sufficiently small and
- ) holds. In addltlon7 ca < 0 by ( - Since I, -+ o0 ast — co and K, > 0
then we see from that wy < 6 for all ¢ > 0. Since ¢; < 0 and [, — o0
as t — oo it follows from that wa — —o00 as t — 00 so ws must have
a local maximum, M,,, and that wa(M,,) < §. Since u < wy by LemmaP2.4]
it follows that u(t) < wa(t) < wa(M,,) < 6. This implies that u also has a
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local maximum for otherwise u would be increasing and have a limit, L, with
v < L < § which is impossible by Lemma [2.2] Thus u has a local max, M, and
since F(u(My)) = E(Mp) > 0 we have § < v < u(Mp) < wa(Mp) < wa(My,) < 6.
Then from (2.1)) we see u is concave down while § < u < ¢ and so there exists
xp > My such that u(xp) = S and u/(xp) < 0. Next recall from (2.10) that
E(t) > E(M,) for t > M, and so

1 u?

2 h(t)
Now for ¢ > x;, we have F(u) < 0 and so from (2.53)) we have

1 ulQ

(t)

+ F(u) > F(U(Mb)) for t > Mj,. (253)

> F(u(My)) for t > ay.

N |
>

Thus by ,
—u' > \2F (u(My))h(t) > /2h F(u(My)) t=9/2  for t > xy,.
Integrating this on (z3,t) gives

2h1 F(u( M, _a
—11 (uq( b)) (tk% —m; 2) — 00 ast — 00
2

—u(t) + 8>

and so u must be negative. Thus there exists z;,;, > @ such that u(z1;,) = 0. In
addition, u?(z1,) = E(21,5) > 0 s0 ¢/(21,) < 0.

Further, u/(z15) — 0 as b — 07. To see this, recall from that E} =
I (t)F(u) and so integrating this on (t,5,21,5) gives

1 1 w1

—u?(21p) = zu?(t,p) + W (x)F(u(z))dz

2" i b 1; (2.54)
< Su(typ) + Falhltyp) = h(z1,)]

where |F(u)| < Fy for some constant Fy. (Recall from (H1) and (H2) that F is
bounded). Since ¢4 and 21, go to infinity as b — 07 by Lemma [2.3| we see by
that the second term in goes to 0 as b — 07. Also from (2.16) we see
that u'(t,) — 0 as b — 0F. Thus from we see u/(21) = 0 as b — 0T,
Next, let uy (t) = —u(t). Then since f(u) is odd we see that u; also solves (2.1)).
Further uy(z15) = 0, v} (215) = —u/(21) > 0, and ) (z1) = 0 as b — 0.
Now we can define 95 with 95 solving with 92(z1) = 0,05(21,5) = uj(216) >

0 and as in Lemma there exists ¢, > 21, such that 02(¢, ) = 7. As in Lemma
2.3 we can show that

! =/
L (2.55)
Ul V2
We again can solve for 75 explicitly and see that
Uy = C1Y1 + C2¥2 (2.56)

where §; = \/H% (s) and 7o = \/EK%(S) and:
—9q —q

2v/ho fo 2— 2+/h 2—q
272fot27q with s, = 2J0
—q

Then
1925} = 1t/ 4 &t 2.
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As in Lemma and with the facts that i — 1 and %’lf — —1 as ¢ — oo then

E’I/Qy/( b) —
li M —/h 257
L \/ h2fo. (2.57)
25 (E ) =
lim 222207 — ko fo. 2.58
bgggr yg(t ) 2o ( )
Thus from (2.56]),
W2mw_mﬁmeMﬂﬁwm
Ua(typ) c1y1(typ) + oo (typ)
= fq/b 71 (Ty,) _ fq/by2(tw b) (259)
_ R I 27 51 ()
. )
RN Gy

We note that ¢; # 0 for sufficiently small b > 0 for if so then

2_ —
220 (6 ) ()

'02(t%b)  ha(tye)

for sufficiently small b > 0 but the right-hand side goes to —v/hafy < 0 while the
left-hand side is positive
Since > — 0, ¥4 — 0 and §; — oo as t — oo it follows from (2.57)-(2.59) that

1/

%(t;)b) goes to \/hafo as b — 0T and so by (2.55) we see that
Y

lim sup fq/ Lty 0) < 2\ a2 fo.
b—0

As in Lemmas 2.4 and [2.6] it is then possible to show if b is sufficiently small and

7(1 +4/ h2f0) < 6 then u; will have a zero and hence u will have a second zero, z3 .

Continuing in this way we see that if b > 0 is sufficiently small and 'y(l+ Z’;’;‘; ) <9

then u will have n zeros for any given integer n. This completes the proof. O
Lemma 2.7. Assume (H1)—(H4) and let u solve (2.1), (2.4). If
B hi(fo)l/?
/!
+ 5 (T> >0 2.60
: 2ha \ fi (2.60)

then u(t) > 0 for ¢t > 0.

Proof. Since E is nondecreasing,

1u?(ty) 1u?(ty )
- F(B/2) = E(ty) > E(t 2
5 o, F(8/2) = Blty) > B(tay) = 55025+ F(B/2
thus by ([22) and ([215),
o hi q/2 hy B B |fo
liminf /%0 (ty) > liminf [ S t720 (ta) > 1) 2/ hifo = hioy /22, (2.61
%335“ i) 2 i\ [ () 2 [V dog = gy (261
Now can be solved explicitly and we obtain
. 2v/hofi 2-a . 2v/hafi 2-a
w1 :5+\/E<01[2T1q (th 2 )+02Kflq (th 2 )) (262)
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where 1 S and K L are the modified Bessel functions of order ﬁ and ¢, ¢y are
—q —q
constants. We rewrite this as

wy — 6 = C191 + Cafo (2.63)

where

in(t) = Vil (22 fgqflt%q), olt) = VIK 1 (22 quflt?). (2.64)

Again we see as in (2.44])-(2.45)),

o 9a(te)(wi(ty) — 6) — Ga(te )wi (ty)
T B ty) - (tb')yz( v) (2.65)
L =ty )(wi(ty) — ) + g1 (b )wy (te)
2 T i) — Rl (266)
So we see from ([2.46|) and - ) that
9172 (t) — 91 (1) g2(t) = —(1 — 5)
Then we see from — that
- B0 501500 .
2
&y = — ¥ (ty) (6 — f/z_g g1<tb’)u/(tb’). (2.68)

Note that ¢1(¢) > 0 and g1(¢) > 0. In addition, u'(tyy) > 0 and 6 — 8’ > 0 so it
follows that

¢ < 0. (2.69)
Also
— K’ (Tb/)
1 1-g 1 L
b= gty K ()]0 = 8) (g + Vhefi ) + 1 ()]
1—§ v T 23 K (ry)
4 2—q
(2.70)
. 2 7o, 1.4
with Ty = — hgfl ty 2. (271)
2—q
We show in the appendix that
K], 1
<KV+V)>_1 for ¢ > 0 and v > 5. (2.72)

Now here we have v = zi > % since ¢ > 0 thus using (2.60) and (2.61) we obtain
in the bracketed term in (2.70)),

K’l (7“1,/)
2—q ‘1/2 ’ ,
66— e BT ) i )

(6 - 8- \/@thé(%)m (2.73)
R [t 2y

It follows from this that ¢; > 0.

v
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Now recall from (2.63)) that wi = 6-+¢é 91+¢E292 and wq (ty) = 5 < 6, wi(ty) > 0.
It follows from at wy is concave up when wy > §; and w; is concave down
when wy < d;. Since é; > 0, ¢3 < 0,9 oo ast — oo, and g — 0 as t — oo it
follows therefore that it must be the case that w; — oo as ¢ — oo and thus there
exists tq > tp with wy(tg) = ¢ and wy > 0 for ¢ > t4. By Lemmait follows that
there exists t5 < t4 such that u(ts) = § and u > § for t > ts. It also follows from
Lemma [2:4] that u > wy > 0 for t <t < ts5. From Lemma 2.1 we know u > 0 on
(0,ty,) and since ty <ty it follows that w(t) > 0 for ¢ > 0. This completes the
proof. O

3. PROOF OoF THEOREM [I.1]

Proof. For the proof of part (a), from Lemmawe see that if R > 0 is sufficiently
small then R*~% is very large and so 21, < R?~. We also know that ¢, — oo
as b — 07 and since z1;, > t, it follows that u(t) > 0 on (0, RZ=N) if b > 0 is
sufficiently small. Thus by continuity with respect to initial conditions it follows
that there is by > 0 such that u(R*>~%) = 0. Thus we obtain a positive solution,

ug, of (2.1), (2.4)) if R > 0 is sufficiently small and if 'y(l + Zi{;‘;) < §. Similarly

if R > 0 is sufficiently small then 25, < R*™Y and if b > 0 is sufficiently small
then 29, > R?>~Y. Then by continuity there exists a by such that u; (R*V) = 0.
Thus u; is a solution with exactly one zero on (0, R2~"). Continuing in this way
we see that if R is sufficiently small then there exists ug,uq,...,u, such that ug
has k zeros on (0, RZ~") and u;(R?~%) = 0. This completes the proof part (a).

The proof of part (b) follows immediately from Lemma

A proof of part(c) ¢ can be found in [I0] but we include it here for com-
pleteness. Suppose there is a solution of — such that lim, ,,,u = 0.

Then a straightforward computation shows if Es(r) = %"—; + F(u) then E) =

2

— 4= (2(N-1)+ "Ifg') < 0for r > R. Now if lim, o, u = 0 it follows that Eq(r) > 0
for r > R. Now u cannot have an infinite number of extrema, My, with M — oo
because if so F'(u(My,)) = Ea(My) > 0 so |u(My)| > v contradicting that u(r) — 0
as 7 — 0o. Also there could not be an infinite number of extrema with M, < L < 0o
for if so then for some subsequence M} — M and there would exist s — M such
that |u’(sg)] — oo contradicting that %“7/2 —Fy < E(r) < E(R) = %#;) which
implies «’ is bounded on [R, M]. Thus we see that u must have a largest extremum,
M, and without loss of generality let us suppose that M > R is a local maximum
and v’ < 0 for r > M. Then

1 /2
2 K0 + F(u) < F(u(M)) forr > M.

Rewriting and integrating on (M, co) using that o > 2 (from (H3)) gives
/“(M) dt _ /°° —u/(r)dr
o V2F@(M))-F(t) Ju vV2y/Fu(M))~ F(u(r))
< /Moo VK dr (3.1)
_VEMIY _VBRY

a1 e
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From (H2) we see that F is bounded below so there exists Fy > 0 such that
F(u) > —Fp for all u. Also, u(M) >~ and F(u(M)) < F() therefore we see that

u(M) dt ~y

o VAVE@QD) F@) - VaF0) L Fy (32
Combining and gives
< VRRS (3.3)

B
V2FO)+ R — 51
The right-hand side of ([3.3) goes to zero as R — oo which contradicts (3.3)) if R > 0
is too large. Thus there are no solutions of (1.1)-(1.3) if R > 0 is sufficiently large.
This completes the proof of part (c). |

4. APPENDIX - FACTS ABOUT MODIFIED BESSEL FUNCTIONS

In this section we collect some facts about modified Bessel functions. There are
numerous texts which contain these results such as [4].
The modified Bessel functions I, and K, are linearly independent solutions of
2

1
y“+¥y’—(1+:—2)y:0 for t >0, v>0 (4.1)
for which lim;_,o+ I, (¢t) = 0 and lim;_,g+ K, (t) = co. They are normalized so that
I(t 1 . Kot _
lim ®) _ lim (*) =2""17(v).

ts0+ v 2T (v+ 1) e T

It can in fact be shown that
L) =t"Y ant", K,(t)=t"> byt"
n=0 n=0

for appropriate constants a.,, b,,.
In addition it is known that I,(t) > 0, K, (t) > 0, I,(t) > 0 and K (t) < 0 for

ot et
t > 0 and also I,,(t) ~ 7 K, (t) ~ v for large t.
It is also known that
I K,
R L S

Another well-known fact is that

1
LK, () - I (1)K, (t) = 7 for t > 0. (4.2)
In addition
(—KL+5) > 1 > o >0,
K, t 2’ ’
I v 1
L) >1if —, t>0.
(Iy+t)> 1V>2’ >0

We prove these last two facts.

Proof. First (f—; + %) > 0 and lim;_, o G—L + %) = 1. From (4.1) we see that
2

I[,’_’_l(Il’,)_l_’_y
L, t\L,/)
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Next,

T AN I'\2 v
(Tﬁz) *z*(z) Rz

Combining these gives

(Bot) s (B s lmrtine
I, t I, tI, 2
Therefore,
(£+5)’+<£+i)2:1+ﬂ
I, t I, 2t 2
And I v\ r 1 I\ 1 2(v — 1)2
v v v 2
(7)) 2 a)(F) —sm)=— (43)

Now suppose (% + %) has a local minimum for ¢ > 0. Then (

(% + %)H > 0. Substituting into (4.3]) gives

L vy =0 and

(4+ i) (v=3) _ —2v—3)°
t2 2t 2 t3

C . . I -
which is impossible since v > % Thus (f + %) does not have a local minimum.
v

Since
. (Il', N 1/)
im (X + -] =00
t—0+ \ 1, t
it follows that (5—/“ + %) is a decreasing function and since lim; (f—; + %) =1it
follows that (% + %) > 1 fort > 0.
Similarly, (% + ¥) does not have a local minimum for v > 1/2. We also know
. K, v
Jim (4 7) =L
Thus (g—'/’+%)>flfort>0and1/>l/2. O
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