Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 117, pp. 1–16. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE AND NONEXISTENCE OF RADIAL SOLUTIONS FOR SEMILINEAR EQUATIONS WITH BOUNDED NONLINEARITIES ON EXTERIOR DOMAINS

JOSEPH IAIA

ABSTRACT. In this article we study radial solutions of $\Delta u + K(r)f(u) = 0$ on the exterior of the ball of radius R > 0 centered at the origin in \mathbb{R}^N where f is odd with f < 0 on $(0,\beta)$, f > 0 on (β,δ) , $f \equiv 0$ for $u > \delta$, and where the function K(r) is assumed to be positive and $K(r) \to 0$ as $r \to \infty$. The primitive $F(u) = \int_0^u f(t) dt$ has a "hilltop" at $u = \delta$. With mild assumptions on f we prove that if $K(r) \sim r^{-\alpha}$ with $2 < \alpha < 2(N-1)$ then there are nsolutions of $\Delta u + K(r)f(u) = 0$ on the exterior of the ball of radius R such that $u \to 0$ as $r \to \infty$ if R > 0 is sufficiently small. We also show there are no solutions if R > 0 is sufficiently large.

1. INTRODUCTION

In this article we study radial solutions of

$$\Delta u + K(r)f(u) = 0 \quad \text{in } \Omega, \tag{1.1}$$

$$u = 0 \quad \text{on } \partial\Omega, \tag{1.2}$$

$$u \to 0 \quad \text{as } |x| \to \infty \tag{1.3}$$

where $x \in \Omega = \mathbb{R}^N \setminus B_R(0)$ is the complement of the ball of radius R > 0 centered at the origin. We assume $f : \mathbb{R} \to \mathbb{R}$ is locally Lipschitz and there exist β, δ with $0 < \beta < \delta$ such that $f(0) = f(\beta) = f(\delta) = 0$ where:

(H1) f is odd, f'(0) < 0, f < 0 on $(0, \beta)$, f > 0 on (β, δ) , $f'(\delta^{-}) < 0$, $f \equiv 0$ on (δ, ∞) .

It follows that $F(u) = \int_0^u f(s) ds$ is even. We also assume that F has a unique positive zero, γ , with $\beta < \gamma < \delta$ such that

(H2) F < 0 on $(0, \gamma)$, F > 0 on (γ, ∞) .

Note from (H1) and (H2) it follows that F is bounded.

In an earlier paper [6] we studied (1.1), (1.3) when $\Omega = \mathbb{R}^N$ and $K(r) \equiv 1$. Interest in the topic for this paper comes from recent papers [5, 12, 14] about solutions of differential equations on exterior domains. In [7] we studied (1.1)-(1.3) with $K(r) \equiv 1$ and $\Omega = \mathbb{R}^N \setminus B_R(0)$, in [8] we studied the case when $K(r) \sim r^{-\alpha}$ with $0 < \alpha < 2$ and in [9] with $\alpha > 2(N-1)$. In [7, 8, 9] we proved existence of an

²⁰¹⁰ Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Sublinear equation; radial solution; exterior domain.

^{©2020} Texas State University.

Submitted January 6, 2020. Published December 1, 2020.

infinite number of solutions - one with exactly n zeros for each nonnegative integer n such that $u \to 0$ as $|x| \to \infty$.

When f grows superlinearly at infinity - i.e. $\lim_{u\to\infty} \frac{f(u)}{u} = \infty$, and $\Omega = \mathbb{R}^N$. problem (1.1), (1.3) has been extensively studied in [1, 2, 3, 11, 13, 15]. The type of nonlinearity addressed here has not been studied as extensively [6, 7, 8].

When f grows sublinearly at infinity - i.e. $\lim_{u\to\infty} \frac{f(u)}{u} = 0$, but $\lim_{u\to\infty} f(u) = \infty$ and $\Omega = \mathbb{R}^N$, problem (1.1), (1.3) has also been studied in [9, 10].

Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) = u(|x|) = u(r) where $x \in \mathbb{R}^N$ and $r = |x| = \sqrt{x_1^2 + \cdots + x_N^2}$ so that u solves

$$u''(r) + \frac{N-1}{r}u'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R,\infty) \text{ where } R > 0, \qquad (1.4)$$
$$u(R) = 0, u'(R) = a > 0. \qquad (1.5)$$

We will assume that there exist constants $k_1 > 0$, $k_2 > 0$, and $\alpha > 0$ such that

(H3) $k_1 r^{-\alpha} \le K(r) \le k_2 r^{-\alpha}$ for $2 < \alpha < 2(N-1)$ on $[R, \infty)$.

In addition, we assume that

(H4) K is differentiable, $\lim_{r\to\infty} \frac{rK'}{K} = -\alpha$ and $\frac{rK'}{K} + 2(N-1) > 0$ on $[R, \infty)$. Note that (H4) implies $r^{2(N-1)}K(r)$ is increasing. Also since f'(0) < 0 and $f'(\delta^{-}) < 0$ then it follows from (H1) that there exist positive constants $f_0, \bar{f}_0, f_1, \bar{f}_1$ such that

$$f_0 = \inf_{(0,\beta/2]} \left(-\frac{f(u)}{u} \right), \quad \bar{f}_0 = \sup_{u \neq 0} \left(-\frac{f(u)}{u} \right), \tag{1.6}$$

$$f_1 = \inf_{[\gamma,\delta)} \left(\frac{f(u)}{\delta - u} \right), \quad \bar{f}_1 = \sup_{[\beta',\delta)} \left(\frac{f(u)}{\delta - u} \right)$$
(1.7)

where $\beta < \beta' < \gamma$ and $F(\frac{\beta}{2}) = F(\beta')$.

Theorem 1.1. Let N > 2, R > 0, $2 < \alpha < 2(N - 1)$ and (H1)–(H4) hold.

(a) There are n solutions of (1.1)-(1.3) on $[R,\infty)$ - one with exactly n zeros for each nonnegative integer n if

$$\gamma \Big(1 + \Big(\frac{h_2 \bar{f}_0}{h_1 f_1} \Big)^{1/2} \Big) < \delta$$

and if R > 0 is sufficiently small.

(b) There are no solutions for any value of R > 0 of (1.1)-(1.3) if

$$\beta' + \frac{\beta}{2} \frac{h_1}{h_2} \left(\frac{f_0}{\bar{f}_1}\right)^{1/2} > \delta$$

(c) There are no solutions of (1.1)-(1.3) on $[R,\infty)$ if R > 0 is sufficiently large.

We note that in Sankar, Sasi, and Shivaji [14] established existence of a *positive* solution to a semipositone version of this problem using sub and super solutions. We use different techniques here and are able to establish existence of multiple solutions.

2. Preliminaries

We first suppose that U(r) solves (1.4) and then make the change of variables:

$$U(r) = u(r^{2-N}).$$

Then for $0 < t < \infty$ we see u satisfies

$$u'' + h(t)f(u) = 0, (2.1)$$

where

$$h(t) = \frac{t^{\frac{2(N-1)}{2-N}}K(t^{\frac{1}{2-N}})}{(N-2)^2}.$$

It follows from (H3) and (H4) that

$$h(t) > 0, \quad h'(t) < 0, \quad \lim_{t \to 0^+} \frac{th'}{h} = -q, \quad h_1 t^{-q} < h(t) < h_2 t^{-q}$$

for $t > 0, \quad q = \frac{2(N-1) - \alpha}{N-2}, \quad h_i = \frac{k_i}{(N-2)^2}.$ (2.2)

In addition, it follows from (H3), (H4) and (2.2) that

$$0 < q < 2.$$
 (2.3)

We also assume that

$$u(0) = 0, u'(0) = b > 0.$$
(2.4)

We want to find b > 0 such that $u(R^{2-N}) = 0$ then $U(r) = u(r^{2-N})$ will satisfy (1.1)-(1.3). Therefore for the rest of this paper we will study (2.1), (2.4) with (H1)-(H4) and attempt to find solutions u such that $u(R^{2-N}) = 0$.

We first prove existence of a solution of (2.1), (2.4) assuming (H1)–(H4) on $[0, \epsilon]$ for some $\epsilon > 0$. Integrating (2.1) twice on (0, t) and using (2.4) gives

$$u(t) = bt - \int_0^t \int_0^s h(x) f(u(x)) \, dx \, ds.$$
(2.5)

Letting $y(t) = \frac{u(t)}{t}$ and y(0) = b > 0 gives

$$y(t) = b - \frac{1}{t} \int_0^t \int_0^s h(x) f(xy(x)) \, dx \, ds.$$
(2.6)

Now let $S = \{y \in C[0, \epsilon] : y(0) = b > 0\}$ with the supremum norm, $\|\cdot\|$, and define $T: S \to C[0, \epsilon]$ by

$$T(y) = b - \frac{1}{t} \int_0^t \int_0^s h(x) f(xy(x)) \, dx \, ds.$$
(2.7)

We first observe that $T: S \to S$. Next let K be the Lipschitz constant for f(u) in a neighborhood of u = 0 and suppose $0 \le t \le \epsilon$. Then

$$|Ty_1 - Ty_2| \le \frac{1}{t} \int_0^t \int_0^s h_2 K |xy_1 - xy_2| x^{-q} \, dx \, ds$$
$$\le \int_0^t h_2 K x^{1-q} |y_1 - y_2| \, dx$$
$$\le \frac{h_2 K}{2-q} \epsilon^{2-q} ||y_1 - y_2||.$$

It follows from this and (2.3) that T is a contraction if $\epsilon > 0$ is sufficiently small. Thus by the contraction mapping principle [4] it follows that (2.7) has a fixed point y in S and therefore u = ty is a solution of (2.5) on $[0, \epsilon]$ for some $\epsilon > 0$.

Next let

$$E_0(t) = \frac{1}{2}u'^2 + h(t)F(u).$$
(2.8)

By (2.1) we have $E'_0 = h'(t)F(u)$ and thus on $(\frac{\epsilon}{2}, t)$ we obtain

J. IAIA

$$\frac{1}{2}u'^2 + h(t)F(u) = \frac{1}{2}u'^2(\epsilon/2) + h(\epsilon/2)F(u(\epsilon/2)) + \int_{\frac{\epsilon}{2}}^t h'(s)F(u(s))\,ds.$$

Since F is bounded and since h, h' are bounded on $[\epsilon/2, \infty)$ it follows that u' is bounded on $[\epsilon/2, \infty)$. It then follows that the solution of (2.1), (2.4) exists on [0, Q) for all Q > 0 and thus we obtain a solution of (2.1), (2.4) on $[0, \infty)$.

Next let

$$E(t) = \frac{1}{2} \frac{u^2}{h(t)} + F(u).$$
(2.9)

Using (2.1)-(2.2) and (2.4) we see that $\lim_{t\to 0^+} E(t) = 0$ and

$$E' = -\frac{u'^2 h'(t)}{h^2(t)} \ge 0 \quad \text{for } t > 0.$$
(2.10)

Thus E is nondecreasing and E(t) > 0 for t > 0.

Lemma 2.1. Assume (H1)–(H4) and let u solve (2.1), (2.4). Then there exists $t_{\gamma,b} > 0$ such that $u(t_{\gamma,b}) = \gamma$, $u'(t_{\gamma,b}) > 0$, and $0 < u < \gamma$ on $(0, t_{\gamma,b})$. In addition, there exists $t_{2,b}$ with $0 < t_{2,b} < t_{\gamma,b}$ such that $u(t_{2,b}) = \beta/2$.

Proof. We first observe from (2.4) that u is initially positive and increasing for t > 0 small. If u has a local maximum M then F(u(M)) = E(M) > 0 thus $u(M) > \gamma$ by (H2) and so the existence of $t_{\gamma,b}$ follows. So now let us assume u is positive, increasing, and $0 < u < \gamma$ for all t > 0. From (2.10) we have $\frac{1}{2}\frac{u'^2}{h(t)} + F(u) = E(t) \ge E(\epsilon) > 0$ for $t \ge \epsilon > 0$. Since $0 < u < \gamma$ then $F(u) \le 0$ so $\frac{1}{2}\frac{u'^2}{h(t)} \ge E(\epsilon)$ for $t \ge \epsilon$. Thus

$$u'| \ge \sqrt{2E(\epsilon)h(t)} \ge \sqrt{2E(\epsilon)h_1}t^{-q/2} > 0 \quad \text{for } t \ge \epsilon.$$
(2.11)

Therefore u' > 0 for $t \ge \epsilon$. Integrating (2.11) on (ϵ, t) gives

$$\gamma \ge u(t) - u(\epsilon) \ge \frac{\sqrt{2E(\epsilon)h_1}}{1 - \frac{q}{2}} (t^{1 - \frac{q}{2}} - \epsilon^{1 - \frac{q}{2}}) \text{ for } t \ge \epsilon.$$
 (2.12)

Recall 0 < q < 2 by (2.3) and so the left-hand side of (2.12) is bounded but the right-hand side goes to infinity as $t \to \infty$. Therefore we obtain a contradiction and so there exists $t_{\gamma,b} > 0$ such that $u(t_{\gamma,b}) = \gamma$ and $0 < u < \gamma$ for $0 < t < t_{\gamma,b}$. In addition, $\frac{1}{2} \frac{u'^2(t_{\gamma,b})}{h(t_{\gamma,b})} = E(t_{\gamma,b}) > 0$ hence $u'(t_{\gamma,b}) > 0$. Since u(0) = 0 it then follows by the intermediate value theorem that there exists $t_{2,b}$ with $0 < t_{2,b} < t_{\gamma,b}$ such that $u(t_{2,b}) = \frac{\beta}{2}$. This completes the proof.

Lemma 2.2. Assume (H1)–(H4) and let u solve (2.1), (2.4). If $\lim_{t\to\infty} u(t) = L \in \mathbb{R}$ then f(L) = 0.

Proof. Since $\lim_{t\to\infty} u(t) = L$ and u(0) = 0 then it follows that u is bounded for all $t \ge 0$. Also $E' \ge 0$ implies $\frac{1}{2}\frac{u'^2}{h(t)} + F(u) \to A \le \infty$ as $t \to \infty$ and thus $\frac{1}{2}\frac{u'^2}{h(t)} \to A - F(L)$. If A - F(L) > 0 then we obtain $|u'| \ge A_1 t^{-q/2}$ for some $A_1 > 0$ and for large t. Thus |u'| > 0 and so without loss of generality suppose that u' > 0. Integrating $u' \ge A_1 t^{-q/2}$ on (t_0, t) gives $u(t) - u(t_0) \ge \frac{A_1}{1-\frac{q}{2}} (t^{1-\frac{q}{2}} - t_0^{1-\frac{q}{2}}) \to \infty$ as $t \to \infty$ but the left-hand side is bounded since $\lim_{t\to\infty} u(t) = L$. Thus we obtain a contradiction and so we see that A - F(L) = 0. Therefore $\frac{1}{2}\frac{u'^2}{h(t)} + F(u) \to F(L)$ and since $F(u) \to F(L)$ it then follows that $\lim_{t\to\infty} \frac{u'^2}{h(t)} = 0$. Therefore by (2.2) we have

$$\lim_{t \to \infty} t^{q/2} u' = 0.$$
 (2.13)

Next note that $(\frac{u'}{h})' = \frac{u''}{h} - \frac{u'h'}{h^2}$. Rewriting (2.1) we see $\lim_{t\to\infty} \frac{u''}{h} = -f(L)$. Also by (2.2) and (2.13) for large t we have $|\frac{u'h'}{h^2}| \leq \frac{2q}{h_1}t^{q-1}|u'| = \frac{2q}{h_1}(t^{q/2}u')\frac{1}{t^{1-\frac{q}{2}}} \to 0$ as $t \to \infty$ since 0 < q < 2. Therefore $\lim_{t\to\infty} (\frac{u'}{h})' = -f(L)$. Then by L'Hôpital's rule

$$\lim_{t \to \infty} \frac{u'}{th} = \lim_{t \to \infty} \frac{\left(\frac{u'}{h}\right)}{t} = \lim_{t \to \infty} \frac{\left(\frac{u'}{h}\right)'}{(t)'} = -f(L).$$
(2.14)

Now suppose without loss of generality that f(L) > 0. Then from (2.2) and (2.14) it follows $-u' \geq \frac{|f(L)|h_1}{2}t^{1-q}$ for large t and so integrating on (t_0, t) gives $u(t_0) - u(t) \geq \frac{|f(L)|h_1}{2(2-q)}(t^{2-q} - t_0^{2-q}) \to \infty$ as $t \to \infty$ so $u(t) \to -\infty$ which contradicts that u is bounded. Thus $f(L) \leq 0$. A similar argument shows $f(L) \geq 0$ hence f(L) = 0. This completes the proof.

Lemma 2.3. Assume (H1)–(H4) and let u solve (2.1), (2.4). Then $\lim_{b\to 0^+} t_{2,b} = \lim_{b\to 0^+} t_{\gamma,b} = \infty$ and

$$\liminf_{b \to 0^+} t_{2,b}^{q/2} u'(t_{2,b}) \ge \frac{\beta}{2} \sqrt{h_1 f_0}, \tag{2.15}$$

$$\limsup_{b \to 0^+} t_{\gamma,b}^{q/2} u'(t_{\gamma,b}) \le \gamma \sqrt{h_2 \bar{f}_0}.$$
(2.16)

Proof. We rewrite (2.1) as

$$u'' = h(t) \left(-\frac{f(u)}{u}\right) u. \tag{2.17}$$

Thus by (1.6), (2.2), and (2.17) we see that

$$u'' \le \frac{h_2 f_0 u}{t^q} \text{ when } u > 0.$$

Now let v_2 solve

$$v_2'' = \frac{h_2 \bar{f}_0}{t^q} v_2, \tag{2.18}$$

$$v_2(0) = 0, \quad v'_2(0) = b > 0.$$
 (2.19)

Then v_2 is positive and increasing for t > 0. Also by (1.6) and (2.2) we see that

$$(u'v_2 - uv'_2)' = \left(h(t)\left(-\frac{f(u)}{u}\right) - \frac{h_2\bar{f}_0}{t^q}\right)uv_2 \le 0 \text{ while } u > 0.$$

J. IAIA

Since $u(0) = v_2(0) = 0$ we see then that $u'v_2 - uv'_2 \leq 0$ while u > 0 and thus $(u/v_2)' \leq 0$. Since $u'(0) = v'_2(0) = b$ we see then that

$$0 < u \le v_2. \tag{2.20}$$

Also $u'v_2 - uv'_2 \leq 0$ and $0 < u \leq v_2$ imply that

$$\frac{u'}{u} \le \frac{v'_2}{v_2} \quad \text{for } u > 0.$$
 (2.21)

Next (2.18)-(2.19) can be solved explicitly and we obtain

$$v_2 = bC\sqrt{t}I_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_2\bar{f}_0}}{2-q}t^{\frac{2-q}{2}}\right)$$
(2.22)

where $I_{\frac{1}{2-q}}$ is the modified Bessel function of order $\frac{1}{2-q}$ with $\lim_{t\to 0^+} I_{\frac{1}{2-q}}(t) = 0$. A well-known fact is that $\lim_{t\to 0^+} \frac{I_{\nu}(t)}{t^{\nu}} = \frac{1}{2^{\nu}\Gamma(\nu+1)}$ where I_{ν} is the modified Bessel function of order ν with $\lim_{t\to 0^+} I_{\nu}(t) = 0$ and thus from this and (2.22) we see $C = \Gamma(\frac{3-q}{2-q})(\frac{\sqrt{h_2f_0}}{2-q})^{-\frac{1}{2-q}} > 0$. (Here $\Gamma(x)$ is the Gamma function). It is also known that $I_{\nu} > 0$, $I'_{\nu} > 0$, and $\lim_{t\to\infty} \frac{I'_{\nu}(t)}{I_{\nu}(t)} = 1$. (Some other general facts about the modified Bessel functions are included in the appendix).

Now using (2.20) we see that

$$\frac{\beta}{2} = u(t_{2,b}) \le v_2(t_{2,b}) = bC\sqrt{t_{2,b}}I_{\frac{1}{2-q}}\left(\frac{2\sqrt{h_2\bar{f}_0}}{2-q}t_{2,b}^{\frac{2-q}{2}}\right).$$
(2.23)

If the $t_{2,b}$ are bounded as $b \to 0^+$ then the right-hand side of (2.23) goes to zero which contradicts that $\beta > 0$. Thus it must be that $\lim_{b\to 0^+} t_{2,b} = \infty$. Since $t_{\gamma,b} > t_{2,b}$ then also $\lim_{b\to 0^+} t_{\gamma,b} = \infty$. This completes the first part of the lemma. Denoting

$$s = \frac{2\sqrt{h_2\bar{f}_0}}{2-q}t^{1-\frac{q}{2}} \quad \text{and} \quad s_{\gamma,b} = \frac{2\sqrt{h_2\bar{f}_0}}{2-q}t^{1-\frac{q}{2}}_{\gamma,b} \tag{2.24}$$

It follows from (2.22) that

$$v_2'(t) = \frac{v_2(t)}{2t} + \sqrt{h_2 \bar{f}_0} t^{-q/2} v_2(t) \frac{I_{\frac{1}{2-q}}'(s)}{I_{\frac{1}{2-q}}(s)}.$$

Therefore

$$\frac{t^{q/2}v_2'(t)}{v_2(t)} = \frac{1}{2t^{1-\frac{q}{2}}} + \sqrt{h_2\bar{f}_0} \frac{I'_{\frac{1}{2-q}}(s)}{I_{\frac{1}{2-q}}(s)}.$$
(2.25)

Evaluating at $t_{\gamma,b}$ it follows from (2.21) and (2.25) that

$$\frac{t_{\gamma,b}^{q/2}u'(t_{\gamma,b})}{u(t_{\gamma,b})} \le \frac{1}{2t_{\gamma,b}^{1-\frac{q}{2}}} + \sqrt{h_2\bar{f}_0} \quad \frac{I'_{\frac{1}{2-q}}(s_{\gamma,b})}{I_{\frac{1}{2-q}}(s_{\gamma,b})}.$$
(2.26)

As mentioned earlier it is well-known that $\lim_{s\to\infty} \frac{I'_{\nu}(s)}{I_{\nu}(s)} = 1$. Recalling that 0 < q < 2 and that $t_{\gamma,b} \to \infty$ as $b \to 0^+$ then we see from (2.26) that

$$\limsup_{b \to 0^+} t_{\gamma,b}^{q/2} u'(t_{\gamma,b}) \le \gamma \sqrt{h_2 \bar{f}_0}.$$

In a similar way let v_1 solve

$$v_1'' = \frac{h_1 f_0}{t^q} v_1, \tag{2.27}$$

$$v_1(0) = 0, \quad v'_1(0) = b > 0.$$
 (2.28)

We note that $v_1 > 0$ and $v'_1 > 0$ for t > 0. Then we can similarly show that

$$\frac{v_1'}{v_1} \le \frac{u'}{u} \quad \text{for } 0 < u < \frac{\beta}{2}.$$
 (2.29)

Solving for v_1 explicitly we have

$$v_1 = bC_1 \sqrt{t} I_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_1 f_0}}{2-q} t^{\frac{2-q}{2}} \right) \quad \text{where } C_1 = \Gamma(\frac{3-q}{2-q}) \left(\frac{\sqrt{h_1 f_0}}{2-q} \right)^{-\frac{1}{2-q}} > 0.$$
 (2.30)

It follows from (2.29) and (2.30) that

$$\frac{t_{2,b}^{q/2}u'(t_{2,b})}{u(t_{2,b})} \ge \frac{t_{2,b}^{q/2}v'_1(t_{2,b})}{v_1(t_{2,b})} = \frac{1}{2t_{2,b}^{1-\frac{q}{2}}} + \sqrt{h_1 f_0} \frac{I'_{\frac{1}{2-q}}(p_{2,b})}{I_{\frac{1}{2-q}}(p_{2,b})}$$
(2.31)

where $p_{2,b} = \frac{2\sqrt{h_1 f_0}}{2-q} t_{2,b}^{1-\frac{q}{2}}$. It is shown in the appendix that

$$\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t} > 1 \quad \text{for } t > 0 \text{ and } \nu > 1/2$$

from which it follows using (2.31) that

$$\liminf_{b \to 0^+} t_{2,b}^{q/2} u'(t_{2,b}) \ge \frac{\beta}{2} \sqrt{h_1 f_0}$$

This completes the proof.

Next we rewrite (2.1) as

$$u'' + h(t) \left(\frac{f(u)}{\delta - u}\right) (\delta - u) = 0.$$
(2.32)

From (1.7) and (2.2) we have

$$h(t)\left(\frac{f(u)}{\delta - u}\right) \ge \frac{h_1 f_1}{t^q} \quad \text{on } [\gamma, \delta), \tag{2.33}$$

$$\frac{h_2 \bar{f}_1}{t^q} \ge h(t) \left(\frac{f(u)}{\delta - u}\right) \quad \text{for } u \in [\beta', \delta).$$
(2.34)

So now we compare (2.32) to

$$w_2'' + \frac{h_1 f_1}{t^q} (\delta - w_2) = 0 \tag{2.35}$$

$$w_2(t_{\gamma,b}) = u(t_{\gamma,b}) = \gamma, w'_2(t_{\gamma,b}) = u'(t_{\gamma,b}).$$
(2.36)

and

$$w_1'' + \frac{h_2 f_1}{t^q} (\delta - w_1) = 0 \tag{2.37}$$

$$w_1(t_{b'}) = u(t_{b'}) = \beta', w_1'(t_{b'}) = u'(t_{b'}).$$
(2.38)

Lemma 2.4. Assume (H1)–(H4) and let u solve (2.1), (2.4). Then $w_1 \leq u$ when $u, w_1 \in [\beta', \delta)$ where w_1 is the solution of (2.37), (2.38). Also $u \leq w_2$ when $u, w_2 \in [\gamma, \delta)$ where w_2 is the solution of (2.35)-(2.36).

7

Proof. It follows from (2.32) and (2.35) that

$$\left((\delta - w_2)u' - (\delta - u)w_2'\right)' + \left(h(t)\left(\frac{f(u)}{\delta - u}\right) - \frac{h_1 f_1}{t^q}\right)(\delta - u)(\delta - w_2) = 0.$$
(2.39)

By (2.33) it follows that the second term in (2.39) is ≥ 0 when $u, w_2 \in [\gamma, \delta)$. Therefore integrating (2.39) on $(t_{\gamma,b}, t)$ gives

J. IAIA

$$(\delta - w_2)u' - (\delta - u)w_2' \le 0. \tag{2.40}$$

Thus

$$\left(\frac{\delta - w_2}{\delta - u}\right)' \le 0.$$
$$\frac{\delta - w_2}{\delta - w_2} - 1 \le 0$$

Integrating on $(t_{\gamma,b}, t)$ gives

$$\frac{\delta - w_2}{\delta - u} - 1 \le 1$$

which implies $u \leq w_2$ when $u, w_2 \in [\gamma, \delta)$.

A nearly identical argument proves that

 $w_1 \leq u$ when $u, w_1 \in [\beta', \delta)$

and

$$(\delta - w_1)u' - (\delta - u)w_1' \ge 0. \tag{2.41}$$

This completes the proof.

Now (2.35) can be solved explicitly and we obtain

$$w_{2} = \delta + \sqrt{t} \left(c_{1} I_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_{1}f_{1}}}{2-q} t^{\frac{2-q}{2}} \right) + c_{2} K_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_{1}f_{1}}}{2-q} t^{\frac{2-q}{2}} \right) \right)$$
(2.42)

where $I_{\frac{1}{2-q}}$ and $K_{\frac{1}{2-q}}$ are the modified Bessel functions of order $\frac{1}{2-q}$ and c_1, c_2 are constants. It is well-known for t > 0 that: $I_{\nu} > 0, I'_{\nu} > 0, K_{\nu} > 0$ and $K'_{\nu} < 0$.

We rewrite (2.42) as

$$w_2 - \delta = c_1 y_1 + c_2 y_2$$

where

$$y_1(t) = \sqrt{t} I_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_1 f_1}}{2-q} t^{\frac{2-q}{2}} \right), \quad y_2(t) = \sqrt{t} K_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_1 f_1}}{2-q} t^{\frac{2-q}{2}} \right).$$
(2.43)

A straightforward computation shows

$$c_1 = \frac{y_2'(t_{\gamma,b})(w_2(t_{\gamma,b}) - \delta) - y_2(t_{\gamma,b})w_2'(t_{\gamma,b})}{y_1(t_{\gamma,b})y_2'(t_{\gamma,b}) - y_1'(t_{\gamma,b})y_2(t_{\gamma,b})},$$
(2.44)

$$c_{2} = \frac{-y_{1}'(t_{\gamma,b})(w_{2}(t_{\gamma,b}) - \delta) + y_{1}(t_{\gamma,b})w_{2}'(t_{\gamma,b})}{y_{1}(t_{\gamma,b})y_{2}'(t_{\gamma,b}) - y_{1}'(t_{\gamma,b})y_{2}(t_{\gamma,b})}.$$
(2.45)

Another well-known fact about the modified Bessel functions I_{ν} and K_{ν} is that

$$I_{\nu}(t)K_{\nu}'(t) - I_{\nu}'(t)K_{\nu}(t) = -\frac{1}{t} \quad \text{for } t > 0.$$
(2.46)

Next a straightforward computation using (2.43) and (2.46) shows

$$y_1(t)y'_2(t) - y'_1(t)y_2(t) = -(1 - \frac{q}{2}).$$

And so we see from (2.36), (2.44)-(2.45) that

$$c_1 = \frac{y_2'(t_{\gamma,b})(\delta - \gamma) + y_2(t_{\gamma,b})u'(t_{\gamma,b})}{1 - \frac{q}{2}},$$
(2.47)

$$c_2 = \frac{-y_1'(t_{\gamma,b})(\delta - \gamma) - y_1(t_{\gamma,b})u'(t_{\gamma,b})}{1 - \frac{q}{2}}.$$
(2.48)

Note that $y_1(t) > 0$ and $y'_1(t) > 0$. In addition, $u'(t_{\gamma,b}) > 0$ and $\delta - \gamma > 0$ so it follows from (2.48) that

$$c_2 < 0.$$
 (2.49)

--- /

Lemma 2.5. Assume (H1)–(H4) and let u solve (2.1), (2.4). If b > 0 is sufficiently small and if

$$\gamma \left(1 + \left(\frac{h_2 \bar{f}_0}{h_1 f_1} \right)^{1/2} \right) < \delta \tag{2.50}$$

then $c_1 < 0$ *.*

Proof. We let

$$r = \frac{2\sqrt{h_1 f_1}}{2-q} t^{1-\frac{q}{2}}, \quad r_{\gamma,b} = \frac{2\sqrt{h_1 f_1}}{2-q} t^{1-\frac{q}{2}}_{\gamma,b}.$$
 (2.51)

It follows from (2.43) and (2.24) that

$$\begin{split} c_1 &= \frac{1}{1 - \frac{q}{2}} \Big[(\delta - \gamma) \Big(\frac{1}{2\sqrt{t_{\gamma,b}}} K_{\frac{1}{2-q}}(r_{\gamma,b}) + \sqrt{h_1 f_1} t_{\gamma,b}^{\frac{1-q}{2}} K'_{\frac{1}{2-q}}(r_{\gamma,b}) \Big) \\ &+ \sqrt{t_{\gamma,b}} K_{\frac{1}{2-q}}(r_{\gamma,b}) u'(t_{\gamma,b}) \Big]. \end{split}$$

Therefore

$$c_{1} = \frac{1}{1 - \frac{q}{2}} t_{\gamma,b}^{\frac{1-q}{2}} K_{\frac{1}{2-q}}(r_{\gamma,b}) \Big[(\delta - \gamma) \Big(\frac{1}{2t_{\gamma,b}^{1-\frac{q}{2}}} + \sqrt{h_{1}f_{1}} \frac{K'_{\frac{1}{2-q}}(r_{\gamma,b})}{K_{\frac{1}{2-q}}(r_{\gamma,b})} \Big) + t_{\gamma,b}^{q/2} u'(t_{\gamma,b}) \Big].$$

$$(2.52)$$

Another well-known fact about the modified Bessel function is that $\lim_{t\to\infty} \frac{K'_{\nu}(t)}{K_{\nu}(t)} =$ -1. We also know that $t_{\gamma,b} \to \infty$ as $b \to 0^+$ by Lemma 2.3 and thus by (2.51) we see $r_{\gamma,b} \to \infty$ as $b \to 0^+$. Thus from Lemma 2.3, (2.16), (2.50), and taking the limit superior of the bracketed term in (2.52) gives

$$\begin{split} &\limsup_{b\to 0^+} \left[(\delta - \gamma) \Big(\frac{1}{2t_{\gamma,b}^{1-\frac{q}{2}}} + \sqrt{h_1 f_1} \frac{K'_{\frac{1}{2-q}}(r_{\gamma,b})}{K_{\frac{1}{2-q}}(r_{\gamma,b})} \Big) + t_{\gamma,b}^{q/2} u'(t_{\gamma,b}) \right] \\ &\leq (\delta - \gamma) (-\sqrt{h_1 f_1}) + \gamma \sqrt{h_2 \bar{f_0}} = \sqrt{h_1 f_1} \Big[\gamma \Big(1 + \sqrt{\frac{h_2 \bar{f_0}}{h_1 f_1}} \Big) - \delta \Big] < 0. \end{split}$$

It follows from this and (2.52) that $c_1 < 0$. This completes the proof.

Lemma 2.6. Assume (H1)-(H4) and let u solve (2.1), (2.4). Let n be a positive integer. If $\gamma(1 + \sqrt{\frac{h_2 \bar{f}_0}{h_1 f_1}}) < \delta$ and b > 0 is sufficiently small then u has n zeros on $(0,\infty).$

Proof. From Lemma 2.5 it follows that $c_1 < 0$ if b > 0 is sufficiently small and (2.50) holds. In addition, $c_2 < 0$ by (2.49). Since $I_{\nu} \to \infty$ as $t \to \infty$ and $K_{\nu} > 0$ then we see from (2.42) that $w_2 < \delta$ for all t > 0. Since $c_1 < 0$ and $I_{\nu} \to \infty$ as $t \to \infty$ it follows from (2.42) that $w_2 \to -\infty$ as $t \to \infty$ so w_2 must have a local maximum, M_{w_2} , and that $w_2(M_{w_2}) < \delta$. Since $u \leq w_2$ by Lemma2.4 it follows that $u(t) \leq w_2(t) \leq w_2(M_{w_2}) < \delta$. This implies that u also has a

9

local maximum for otherwise u would be increasing and have a limit, L, with $\gamma < L < \delta$ which is impossible by Lemma 2.2. Thus u has a local max, M_b , and since $F(u(M_b)) = E(M_b) > 0$ we have $\beta < \gamma < u(M_b) \le w_2(M_b) \le w_2(M_{w_2}) < \delta$. Then from (2.1) we see u is concave down while $\beta < u < \delta$ and so there exists $x_b > M_b$ such that $u(x_b) = \beta$ and $u'(x_b) < 0$. Next recall from (2.10) that $E(t) \ge E(M_b)$ for $t > M_b$ and so

$$\frac{1}{2}\frac{u'^2}{h(t)} + F(u) \ge F(u(M_b)) \quad \text{for } t > M_b.$$
(2.53)

Now for $t > x_b$ we have $F(u) \le 0$ and so from (2.53) we have

$$\frac{1}{2}\frac{u'^2}{h(t)} \ge F(u(M_b)) \quad \text{ for } t > x_b.$$

Thus by (2.2),

$$-u' \ge \sqrt{2F(u(M_b))h(t)} \ge \sqrt{2h_1F(u(M_b))} t^{-q/2} \quad \text{for } t > x_b$$

Integrating this on (x_b, t) gives

$$-u(t) + \beta \ge \frac{\sqrt{2h_1 F(u(M_b))}}{1 - \frac{q}{2}} \left(t^{1 - \frac{q}{2}} - x_b^{1 - \frac{q}{2}} \right) \to \infty \text{ as } t \to \infty$$

and so u must be negative. Thus there exists $z_{1,b} > x_b$ such that $u(z_{1,b}) = 0$. In addition, $\frac{1}{2}u'^2(z_{1,b}) = E(z_{1,b}) > 0$ so $u'(z_{1,b}) < 0$.

Further, $u'(z_{1,b}) \to 0$ as $b \to 0^+$. To see this, recall from (2.8) that $E'_0 = h'(t)F(u)$ and so integrating this on $(t_{\gamma,b}, z_{1,b})$ gives

$$\frac{1}{2}u'^{2}(z_{1,b}) = \frac{1}{2}u'^{2}(t_{\gamma,b}) + \int_{t_{\gamma,b}}^{z_{1,b}} h'(x)F(u(x)) dx
\leq \frac{1}{2}u'^{2}(t_{\gamma,b}) + F_{1}[h(t_{\gamma,b}) - h(z_{1,b})]$$
(2.54)

where $|F(u)| \leq F_1$ for some constant F_1 . (Recall from (H1) and (H2) that F is bounded). Since $t_{\gamma,b}$ and $z_{1,b}$ go to infinity as $b \to 0^+$ by Lemma 2.3 we see by (2.2) that the second term in (2.54) goes to 0 as $b \to 0^+$. Also from (2.16) we see that $u'(t_{\gamma,b}) \to 0$ as $b \to 0^+$. Thus from (2.54) we see $u'(z_{1,b}) \to 0$ as $b \to 0^+$.

Next, let $u_1(t) = -u(t)$. Then since f(u) is odd we see that u_1 also solves (2.1). Further $u_1(z_{1,b}) = 0$, $u'_1(z_{1,b}) = -u'(z_{1,b}) > 0$, and $u'_1(z_{1,b}) \to 0$ as $b \to 0^+$.

Now we can define \bar{v}_2 with \bar{v}_2 solving (2.18) with $\bar{v}_2(z_{1,b}) = 0$, $\bar{v}'_2(z_{1,b}) = u'_1(z_{1,b}) > 0$ and as in Lemma 2.1 there exists $\bar{t}_{\gamma,b} > z_{1,b}$ such that $\bar{v}_2(\bar{t}_{\gamma,b}) = \gamma$. As in Lemma 2.3 we can show that

$$\frac{u_1'}{u_1} \le \frac{\bar{v}_2'}{\bar{v}_2}.$$
(2.55)

We again can solve for \bar{v}_2 explicitly and see that

$$\bar{v}_2 = \bar{c}_1 \bar{y}_1 + \bar{c}_2 \bar{y}_2 \tag{2.56}$$

where $\bar{y}_1 = \sqrt{t} I_{\frac{1}{2-q}}(s)$ and $\bar{y}_2 = \sqrt{t} K_{\frac{1}{2-q}}(s)$ and:

$$s = \frac{2\sqrt{h_2 f_0}}{2-q} t^{\frac{2-q}{2}} \text{ with } s_{\gamma,b} = \frac{2\sqrt{h_2 f_0}}{2-q} t_{\gamma,b}^{\frac{2-q}{2}}.$$

Then

$$t^{q/2}\bar{v}_2' = \bar{c}_1 t^{q/2} \bar{y}_1' + \bar{c}_2 t^{q/2} \bar{y}_2'.$$

As in Lemma 2.3 and with the facts that $\frac{I'_{\nu}}{I_{\nu}} \to 1$ and $\frac{K'_{\nu}}{K_{\nu}} \to -1$ as $t \to \infty$ then

$$\lim_{b \to 0^+} \frac{\bar{t}_{\gamma,b}^{q/2} \bar{y}_1'(\bar{t}_{\gamma,b})}{\bar{y}_1(\bar{t}_{\gamma,b})} = \sqrt{h_2 \bar{f}_0},\tag{2.57}$$

$$\lim_{b \to 0^+} \frac{\bar{t}_{\gamma,b}^{q/2} \bar{y}_2'(\bar{t}_{\gamma,b})}{\bar{y}_2(\bar{t}_{\gamma,b})} = -\sqrt{h_2 \bar{f}_0}.$$
(2.58)

Thus from (2.56),

$$\frac{\bar{t}_{\gamma,b}^{q/2}\bar{v}_{2}'(\bar{t}_{\gamma,b})}{\bar{v}_{2}(\bar{t}_{\gamma,b})} = \frac{\bar{c}_{1}\bar{t}_{\gamma,b}^{q/2}\bar{y}_{1}'(\bar{t}_{\gamma,b}) + \bar{c}_{2}\bar{t}_{\gamma,b}^{q/2}\bar{y}_{2}'(\bar{t}_{\gamma,b})}{\bar{c}_{1}\bar{y}_{1}(\bar{t}_{\gamma,b}) + \bar{c}_{2}\bar{y}_{2}(\bar{t}_{\gamma,b})} \\
= \frac{\bar{c}_{1}\frac{\bar{t}_{\gamma,b}^{q/2}\bar{y}_{1}'(\bar{t}_{\gamma,b})}{\bar{y}_{1}(\bar{t}_{\gamma,b})} + \bar{c}_{2}\frac{\bar{t}_{\gamma,b}^{q/2}\bar{y}_{2}'(\bar{t}_{\gamma,b})}{\bar{y}_{1}(\bar{t}_{\gamma,b})}}{\bar{c}_{1} + \bar{c}_{2}\frac{\bar{y}_{2}(\bar{t}_{\gamma,b})}{\bar{y}_{1}(\bar{t}_{\gamma,b})}}.$$
(2.59)

We note that $\bar{c}_1 \neq 0$ for sufficiently small b > 0 for if so then

$$\frac{\bar{t}_{\gamma,b}^{q/2}\bar{v}_{2}'(\bar{t}_{\gamma,b})}{\bar{v}_{2}(\bar{t}_{\gamma,b})} = \frac{\bar{t}_{\gamma,b}^{q/2}\bar{y}_{2}'(\bar{t}_{\gamma,b})}{\bar{y}_{2}(\bar{t}_{\gamma,b})}$$

for sufficiently small b > 0 but the right-hand side goes to $-\sqrt{h_2 \bar{f}_0} < 0$ while the left-hand side is positive.

Since $\bar{y}_2 \to 0$, $\bar{y}'_2 \to 0$ and $\bar{y}_1 \to \infty$ as $t \to \infty$ it follows from (2.57)-(2.59) that $\frac{\bar{t}_{\gamma,b}^{q/2} \bar{v}'_2(\bar{t}_{\gamma,b})}{\bar{v}_2(\bar{t}_{\gamma,b})}$ goes to $\sqrt{h_2 \bar{f}_0}$ as $b \to 0^+$ and so by (2.55) we see that

$$\limsup_{b \to 0} \bar{t}_{\gamma,b}^{q/2} u_1'(\bar{t}_{\gamma,b}) \le \gamma \sqrt{h_2 \bar{f}_0}.$$

As in Lemmas 2.4 and 2.6 it is then possible to show if b is sufficiently small and $\gamma\left(1+\sqrt{\frac{h_2\bar{f}_0}{h_1f_1}}\right) < \delta$ then u_1 will have a zero and hence u will have a second zero, $z_{2,b}$. Continuing in this way we see that if b > 0 is sufficiently small and $\gamma\left(1+\sqrt{\frac{h_2\bar{f}_0}{h_1f_1}}\right) < \delta$ then u will have n zeros for any given integer n. This completes the proof. \Box

Lemma 2.7. Assume (H1)–(H4) and let u solve (2.1), (2.4). If

$$\beta' + \frac{\beta}{2} \frac{h_1}{h_2} \left(\frac{f_0}{\bar{f}_1}\right)^{1/2} > \delta$$
 (2.60)

then u(t) > 0 for t > 0.

Proof. Since E is nondecreasing,

$$\frac{1}{2}\frac{u^{\prime 2}(t_{b^{\prime}})}{h(t_{b^{\prime}})} + F(\beta/2) = E(t_{b^{\prime}}) \ge E(t_{2,b}) = \frac{1}{2}\frac{u^{\prime 2}(t_{2,b})}{h(t_{2,b})} + F(\beta/2)$$

thus by (2.2) and (2.15),

$$\liminf_{b \to 0^+} t_{b'}^{q/2} u'(t_{b'}) \ge \liminf_{b \to 0^+} \sqrt{\frac{h_1}{h_2}} t_{2,b}^{q/2} u'(t_{2,b}) \ge \sqrt{\frac{h_1}{h_2}} \sqrt{h_1 f_0} \frac{\beta}{2} = h_1 \frac{\beta}{2} \sqrt{\frac{f_0}{h_2}}.$$
 (2.61)

Now (2.37) can be solved explicitly and we obtain

$$w_1 = \delta + \sqrt{t} \left(\hat{c}_1 I_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_2 \bar{f}_1}}{2-q} t^{\frac{2-q}{2}} \right) + \hat{c}_2 K_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_2 \bar{f}_1}}{2-q} t^{\frac{2-q}{2}} \right) \right)$$
(2.62)

where $I_{\frac{1}{2-q}}$ and $K_{\frac{1}{2-q}}$ are the modified Bessel functions of order $\frac{1}{2-q}$ and \hat{c}_1, \hat{c}_2 are constants. We rewrite this as

J. IAIA

$$w_1 - \delta = \hat{c}_1 \hat{y}_1 + \hat{c}_2 \hat{y}_2 \tag{2.63}$$

where

$$\hat{y}_1(t) = \sqrt{t} I_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_2 \bar{f}_1}}{2-q} t^{\frac{2-q}{2}} \right), \quad \hat{y}_2(t) = \sqrt{t} K_{\frac{1}{2-q}} \left(\frac{2\sqrt{h_2 \bar{f}_1}}{2-q} t^{\frac{2-q}{2}} \right).$$
(2.64)

Again we see as in (2.44)-(2.45),

$$\hat{c}_1 = \frac{\hat{y}_2'(t_{b'})(w_1(t_{b'}) - \delta) - \hat{y}_2(t_{b'})w_1'(t_{b'})}{\hat{y}_1(t_{b'})\hat{y}_2'(t_{b'}) - \hat{y}_1'(t_{b'})\hat{y}_2(t_{b'})},$$
(2.65)

$$\hat{c}_2 = \frac{-\hat{y}_1'(t_{b'})(w_1(t_{b'}) - \delta) + \hat{y}_1(t_{b'})w_1'(t_{b'})}{\hat{y}_1(t_{b'})\hat{y}_2'(t_{b'}) - \hat{y}_1'(t_{b'})\hat{y}_2(t_{b'})}.$$
(2.66)

So we see from (2.46) and (2.64) that

$$\hat{y}_1(t)\hat{y}_2'(t) - \hat{y}_1'(t)\hat{y}_2(t) = -(1 - \frac{q}{2}).$$

Then we see from (2.65)-(2.66) that

$$\hat{c}_1 = \frac{\hat{y}_2'(t_{b'})(\delta - \beta') + \hat{y}_2(t_{b'})u'(t_{b'})}{1 - \frac{q}{2}},$$
(2.67)

$$\hat{c}_2 = \frac{-\hat{y}_1'(t_{b'})(\delta - \beta') - \hat{y}_1(t_{b'})u'(t_{b'})}{1 - \frac{q}{2}}.$$
(2.68)

Note that $\hat{y}_1(t) > 0$ and $\hat{y}'_1(t) > 0$. In addition, $u'(t_{b'}) > 0$ and $\delta - \beta' > 0$ so it follows that

$$\hat{c}_2 < 0.$$
 (2.69)

Also

$$\hat{c}_{1} = \frac{1}{1 - \frac{q}{2}} t_{b'}^{\frac{1-q}{2}} K_{\frac{1}{2-q}}(r_{b'}) \Big[(\delta - \beta') \Big(\frac{1}{2t_{b'}^{1-\frac{q}{2}}} + \sqrt{h_{2}f_{1}} \frac{K'_{\frac{1}{2-q}}(r_{b'})}{K_{\frac{1}{2-q}}(r_{b'})} \Big) + t_{b'}^{q/2} u'(t_{b'}) \Big],$$
(2.70)

with
$$r_{b'} = \frac{2}{2-q} \sqrt{h_2 \bar{f}_1} t_{b'}^{1-\frac{q}{2}}.$$
 (2.71)

We show in the appendix that

$$\left(\frac{K'_{\nu}}{K_{\nu}} + \frac{\nu}{t}\right) > -1 \quad \text{for } t > 0 \text{ and } \nu > \frac{1}{2}.$$
 (2.72)

Now here we have $\nu = \frac{1}{2-q} > \frac{1}{2}$ since q > 0 thus using (2.60) and (2.61) we obtain in the bracketed term in (2.70),

$$(\delta - \beta') \left(\frac{1}{2t_{b'}^{1-\frac{q}{2}}} + \sqrt{h_1 f_1} \frac{K'_{\frac{1}{2-q}}(r_{b'})}{K_{\frac{1}{2-q}}(r_{b'})} \right) + t_{b'}^{q/2} u'(t_{b'})$$

$$\geq (\delta - \beta') (-\sqrt{h_2 \bar{f}_1}) + h_1 \frac{\beta}{2} \left(\frac{f_0}{h_2}\right)^{1/2}$$

$$= \sqrt{h_2 \bar{f}_1} \left[-(\delta - \beta') + \frac{\beta}{2} \frac{h_1}{h_2} \left(\frac{f_0}{\bar{f}_1}\right)^{1/2} \right] > 0.$$
(2.73)

It follows from this that $\hat{c}_1 > 0$.

Now recall from (2.63) that $w_1 = \delta + \hat{c}_1 \hat{y}_1 + \hat{c}_2 \hat{y}_2$ and $w_1(t_{b'}) = \beta' < \delta$, $w'_1(t_{b'}) > 0$. It follows from (2.37) that w_1 is concave up when $w_1 > \delta_1$ and w_1 is concave down when $w_1 < \delta_1$. Since $\hat{c}_1 > 0$, $\hat{c}_2 < 0$, $\hat{y}_1 \to \infty$ as $t \to \infty$, and $\hat{y}_2 \to 0$ as $t \to \infty$ it follows therefore that it must be the case that $w_1 \to \infty$ as $t \to \infty$ and thus there exists $t_d > t_{b'}$ with $w_1(t_d) = \delta$ and $w_1 \ge \delta$ for $t \ge t_d$. By Lemma 2.4 it follows that there exists $t_\delta < t_d$ such that $u(t_\delta) = \delta$ and $u \ge \delta$ for $t > t_\delta$. It also follows from Lemma 2.4 that $u \ge w_1 > 0$ for $t_{b'} \le t \le t_\delta$. From Lemma 2.1 we know u > 0 on $(0, t_{\gamma, b})$ and since $t_{b'} < t_{\gamma, b}$ it follows that u(t) > 0 for t > 0. This completes the proof.

3. Proof of Theorem 1.1

Proof. For the proof of part (a), from Lemma 2.6 we see that if R > 0 is sufficiently small then R^{2-N} is very large and so $z_{1,b} < R^{2-N}$. We also know that $t_{\gamma,b} \to \infty$ as $b \to 0^+$ and since $z_{1,b} > t_{\gamma,b}$ it follows that u(t) > 0 on $(0, R^{2-N})$ if b > 0 is sufficiently small. Thus by continuity with respect to initial conditions it follows that there is $b_0 > 0$ such that $u(R^{2-N}) = 0$. Thus we obtain a positive solution, u_0 , of (2.1), (2.4) if R > 0 is sufficiently small and if $\gamma \left(1 + \sqrt{\frac{h_2 f_0}{h_1 f_1}}\right) < \delta$. Similarly if R > 0 is sufficiently small then $z_{2,b} < R^{2-N}$ and if b > 0 is sufficiently small then $z_{2,b} > R^{2-N}$. Then by continuity there exists a b_1 such that $u_1(R^{2-N}) = 0$. Thus u_1 is a solution with exactly one zero on $(0, R^{2-N})$. Continuing in this way we see that if R is sufficiently small then there exists u_0, u_1, \ldots, u_n such that u_k has k zeros on $(0, R^{2-N})$ and $u_k(R^{2-N}) = 0$. This completes the proof part (a).

The proof of part (b) follows immediately from Lemma 2.7.

A proof of part(c) c can be found in [10] but we include it here for completeness. Suppose there is a solution of (1.4)-(1.5) such that $\lim_{r\to\infty} u = 0$. Then a straightforward computation shows if $E_2(r) = \frac{1}{2} \frac{u'^2}{K} + F(u)$ then $E'_2 = -\frac{u'^2}{2K} (2(N-1) + \frac{rK'}{K}) \leq 0$ for $r \geq R$. Now if $\lim_{r\to\infty} u = 0$ it follows that $E_2(r) > 0$ for $r \geq R$. Now u cannot have an infinite number of extrema, M_k , with $M_k \to \infty$ because if so $F(u(M_k)) = E_2(M_k) > 0$ so $|u(M_k)| > \gamma$ contradicting that $u(r) \to 0$ as $r \to \infty$. Also there could not be an infinite number of extrema with $M_k \leq L < \infty$ for if so then for some subsequence $M_k \to M$ and there would exist $s_k \to M$ such that $|u'(s_k)| \to \infty$ contradicting that $\frac{1}{2} \frac{u'^2}{K} - F_0 \leq E(r) \leq E(R) = \frac{1}{2} \frac{a^2}{K(R)}$ which implies u' is bounded on [R, M]. Thus we see that u must have a largest extremum, M, and without loss of generality let us suppose that M > R is a local maximum and u' < 0 for r > M. Then

$$\frac{1}{2}\frac{u'^2}{K(r)}+F(u)\leq F(u(M))\quad\text{for }r>M.$$

Rewriting and integrating on (M, ∞) using that $\alpha > 2$ (from (H3)) gives

$$\int_{0}^{u(M)} \frac{dt}{\sqrt{2}\sqrt{F(u(M)) - F(t)}} = \int_{M}^{\infty} \frac{-u'(r) dr}{\sqrt{2}\sqrt{F(u(M)) - F(u(r))}}$$
$$\leq \int_{M}^{\infty} \sqrt{K} dr$$
$$\leq \frac{\sqrt{k_2}M^{1-\frac{\alpha}{2}}}{\frac{\alpha}{2} - 1} \leq \frac{\sqrt{k_2}R^{1-\frac{\alpha}{2}}}{\frac{\alpha}{2} - 1}.$$
(3.1)

From (H2) we see that F is bounded below so there exists $F_0 > 0$ such that $F(u) \geq -F_0$ for all u. Also, $u(M) > \gamma$ and $F(u(M)) < F(\delta)$ therefore we see that

J. IAIA

$$\int_{0}^{u(M)} \frac{dt}{\sqrt{2}\sqrt{F(u(M)) - F(t)}} \ge \frac{\gamma}{\sqrt{2}\sqrt{F(\delta) + F_0}}.$$
(3.2)

Combining (3.1) and (3.2) gives

$$\frac{\gamma}{\sqrt{2}\sqrt{F(\delta)+F_0}} \le \frac{\sqrt{k_2}R^{1-\frac{\alpha}{2}}}{\frac{\alpha}{2}-1}.$$
(3.3)

The right-hand side of (3.3) goes to zero as $R \to \infty$ which contradicts (3.3) if R > 0is too large. Thus there are no solutions of (1.1)-(1.3) if R > 0 is sufficiently large. This completes the proof of part (c).

4. Appendix - Facts about modified Bessel functions

In this section we collect some facts about modified Bessel functions. There are numerous texts which contain these results such as [4].

The modified Bessel functions I_{ν} and K_{ν} are linearly independent solutions of

$$y'' + \frac{1}{t}y' - \left(1 + \frac{\nu^2}{t^2}\right)y = 0 \quad \text{for } t > 0, \ \nu > 0 \tag{4.1}$$

for which $\lim_{t\to 0^+} I_{\nu}(t) = 0$ and $\lim_{t\to 0^+} K_{\nu}(t) = \infty$. They are normalized so that

$$\lim_{t \to 0^+} \frac{I_{\nu}(t)}{t^{\nu}} = \frac{1}{2^{\nu} \Gamma(\nu+1)}, \quad \lim_{t \to 0^+} \frac{K_{\nu}(t)}{t^{-\nu}} = 2^{\nu-1} \Gamma(\nu).$$

It can in fact be shown that

$$I_{\nu}(t) = t^{\nu} \sum_{n=0}^{\infty} a_n t^n, \quad K_{\nu}(t) = t^{-\nu} \sum_{n=0}^{\infty} b_n t^n$$

for appropriate constants a_n, b_n .

In addition it is known that $I_{\nu}(t) > 0$, $K_{\nu}(t) > 0$, $I'_{\nu}(t) > 0$ and $K'_{\nu}(t) < 0$ for t > 0 and also $I_{\nu}(t) \sim \frac{e^{t}}{\sqrt{t}}$, $K_{\nu}(t) \sim \frac{e^{-t}}{\sqrt{t}}$ for large t. It is also known that

$$\lim_{t \to \infty} \frac{I'_{\nu}}{I_{\nu}} = 1, \quad \lim_{t \to \infty} \frac{K'_{\nu}}{K_{\nu}} = -1.$$

Another well-known fact is that

$$I_{\nu}(t)K_{\nu}'(t) - I_{\nu}'(t)K_{\nu}(t) = -\frac{1}{t} \quad \text{for } t > 0.$$
(4.2)

In addition

$$\left(\frac{K'_{\nu}}{K_{\nu}} + \frac{\nu}{t}\right) > -1 \quad \text{if } \nu > \frac{1}{2}, \ t > 0; \\ \left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right) > 1 \quad \text{if } \nu > \frac{1}{2}, \ t > 0.$$

We prove these last two facts.

Proof. First $\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right) > 0$ and $\lim_{t\to\infty} \left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right) = 1$. From (4.1) we see that $\frac{I_{\nu}''}{I_{\nu}} + \frac{1}{t} \left(\frac{I_{\nu}'}{I_{\nu}} \right) = 1 + \frac{\nu^2}{t^2}.$

Next,

$$\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)' = \frac{I''_{\nu}}{I_{\nu}} - \left(\frac{I'_{\nu}}{I_{\nu}}\right)^2 - \frac{\nu}{t^2}.$$

Combining these gives

$$\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)' + \left(\frac{I'_{\nu}}{I_{\nu}}\right)^2 + \frac{1}{t}\frac{I'_{\nu}}{I_{\nu}} = 1 + \frac{\nu^2 - \nu}{t^2}.$$

Therefore,

$$\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)' + \left(\frac{I'_{\nu}}{I_{\nu}} + \frac{1}{2t}\right)^2 = 1 + \frac{(\nu - \frac{1}{2})^2}{t^2}.$$

And

$$\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)'' + 2\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{1}{2t}\right)\left(\left(\frac{I'_{\nu}}{I_{\nu}}\right)' - \frac{1}{2t^2}\right) = \frac{-2(\nu - \frac{1}{2})^2}{t^3}.$$
(4.3)

Now suppose $\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)$ has a local minimum for t > 0. Then $\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)' = 0$ and $\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)'' \ge 0$. Substituting into (4.3) gives

$$\left(\frac{\nu}{t^2} + \frac{1}{2t}\right)\frac{(\nu - \frac{1}{2})}{t^2} \le \frac{-2(\nu - \frac{1}{2})^2}{t^3}$$

which is impossible since $\nu > \frac{1}{2}$. Thus $\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)$ does not have a local minimum. Since

$$\lim_{t \to 0^+} \left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t} \right) = \infty$$

it follows that $\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right)$ is a decreasing function and since $\lim_{t\to\infty} \left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right) = 1$ it follows that $\left(\frac{I'_{\nu}}{I_{\nu}} + \frac{\nu}{t}\right) > 1$ for t > 0.

Similarly, $\left(\frac{K'_{\nu}}{K_{\nu}} + \frac{\nu}{t}\right)$ does not have a local minimum for $\nu > 1/2$. We also know

$$\lim_{t \to \infty} \left(\frac{K'_{\nu}}{K_{\nu}} + \frac{\nu}{t} \right) = -1.$$

Thus $\left(\frac{K'_{\nu}}{K_{\nu}}+\frac{\nu}{t}\right)>-1$ for t>0 and $\nu>1/2$.

References

- H. Berestycki, P.L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
- H. Berestycki, P.L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
- [3] M. Berger; Nonlinearity and functional analysis Academic Free Press, New York, 1977.
- [4] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Co., Boston, 1962.
- [5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, *Journal of Mathematical Analysis and Applications*, Volume 394, Issue 1, 432-437, 2012.
- [6] J. Iaia, H. Warchall, F. B. Weissler; Localized solutions of sublinear elliptic equations: loitering at the hilltop, *Rocky Mountain Journal of Mathematics*, Volume 27, Number 4, 1131-1157, 1997.
- [7] J. Iaia; Loitering at the hilltop on exterior domains, *Electronic Journal of the Qualitative Theory of Differential Equations*, Vol. 2015, No. 82, 1-11, 2015.
- [8] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, Journal of Partial Differential Equations, Vol. 30, No. 4, 1-17, 2017.
- [9] J. Iaia; 'Existence of solutions for semilinear problems on exterior domains, *Electronic Journal of Differential Equations*, Vol. 2020, No. 34, 1-10, 2020.

15

- [10] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, Vol 2017, No. 214, 1-13, 2017.
- [11] C. K. R. T. Jones, T. Kupper, On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
- [12] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, *Differential and Integral Equations*, Volume 24, Number 9/10, 861-875, 2011.
- [13] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, *Journal of Differential Equations*, Volume 83, Issue 2, 368-373, 1990.
- [14] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
- [15] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph A. Iaia

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, P.O. BOX 311430, DENTON, TX 76203-5017, USA

Email address: iaia@unt.edu