Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 114, pp. 1-17. Title: Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth Authors: Rosa Pardo (Univ. Complutense de Madrid, Madrid, Spain) Arturo Sanjuan (Univ. Distrital Francisco Jose de Caldas, Bogota, Colombia) Abstract: We study the asymptotic behavior of radially symmetric solutions to the subcritical semilinear elliptic problem $$\displaylines{ -\Delta u = u^{\frac{N+2}{N-2}}/[\log(e+u)]^{\alpha}\quad \text{in } \Omega=B_R(0)\subset\mathbb{R}^N,\cr u>0,\quad \text{in } \Omega,\cr u=0,\quad \text{on } \partial \Omega, }$$ as $\alpha\to 0^+$. Using asymptotic estimates, we prove that there exists an explicitly defined constant L(N,R)>0, only depending on N and R, such that $$ \limsup_{\alpha\to0^+} \frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{1+\frac{\alpha(N+2)}{2}}} \leq L(N,R) \le 2^*\liminf_{\alpha\to0^+}\frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{\frac{\alpha(N-4)}2}}. $$ Submitted November 11, 2019. Published November 18, 2020. Math Subject Classifications: 35B33, 35B45, 35B09, 35J60. Key Words: A priori bounds; positive solutions; semilinear elliptic equations; Dirichlet boundary conditions; growth estimates; subcritical nonlinearites.