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PYRAMIDAL TRAVELING FRONTS IN THE
BELOUSOV-ZHABOTINSKII REACTION-DIFFUSION
SYSTEMS IN R3

LUYI MA, HONG-TAO NIU, ZHI-CHENG WANG

ABSTRACT. In this article, we consider a diffusion system with the Belousov-
Zhabotinskii (BZ for short) chemical reaction. The existence and stability
of V-shaped traveling fronts for the BZ system in R? had been proved in
our previous papers [30} [31]. Here we establish the existence and stability of
pyramidal traveling fronts for the BZ system in R3.

1. INTRODUCTION

Consider the reaction-diffusion system
up(x,t) = Au(x,t) + u(x, t)(1 — u(x,t) — rv(x,t)), 1
vi(x,t) = Av(x,t) — bu(x, t)v(x, t), (L.1)

where r, b > 0 are positive parameters and u, v correspond to the concentrations
of the bromous acid and bromide ion respectively. is called the BZ system,
which stems from a typical chemical oscillating reaction. The possible existence
of such chemical oscillation was predicted by Turing [39] through the method of
mathematical calculation, and the chemical phenomenon was observed by Belousov
[1]. When the concentrations of the reactants change orderly along with time and
space, chemical waves appear [47]. To investigate the mechanism of the BZ reaction,
Field and his coworkers formulated a complex model [8] and then simplified it [9].
Later, the simplified model was nondimensionalized by Murray [25, 26] to be (L.1)).
It is found that the front solution of is an appropriate mathematical tool to
describe the planar waves [47].

After that, mathematical studies on system , a lot of progress has been made,
mainly including the existence of 1-D traveling wave fronts, admissible traveling
speeds and the asymptotic behavior of traveling wave fronts [12], 20] 2T, 22| 37, [38]
A1]. In fact, studies of traveling wave solutions on reaction-diffusion equations

up(x,t) = Au(x,t) + f(u(x,t)), xRN, t>0,

which can be originated from the pioneer work of Fisher [6], have attracted a lot of
attention [4, 10 1], 23] 24} [42], which mainly focus on 1-D traveling wave solutions
and planar traveling wave solutions in RY (N > 2). The gradually mature theory of
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1-D traveling wave solutions promotes the research on multidimensional traveling
wave solutions, which are proper to describe the traveling wave phenomena in multi-
dimensional space, see [2] 3, [13], 14} [15] 28, [29] 34} [35] [44] for the scalar equation
and [B], [16, 17, 18| 19, 27, 36| [43] [45] [46] for the reaction diffusion system.

For the BZ reaction, along with the development of research, nonplanar chemical
waves were also observed. In 1995, stable V-shaped chemical waves were observed in
the BZ reaction [40], for which we have already made rigorous mathematical proofs
[30, B1]. However, mathematical studies of multidimensional nonplanar traveling
waves on the BZ system are still very few.

In this article, we continue to study the pyramidal traveling fronts of and
expect to give some theoretical implications to the observation of new nonplanar
chemical waves in the experiment. Precisely, we go on studying under the
case 7 > 1, which means that is bistable. We still want to emphasize that the
case ‘bistable’ for the BZ system is different from those in Ni and Taniguchi [27]
and Wang [43] since it is degenerate at one of its the equilibria.

Now we set ui(x,t) = u(x,t), us(x,t) = 1 —v(x,t), u = (u1,uz2), then system
(1.1)) can be rewritten as

u; = Au + F(u), (1.2)

where F(u) = (fi(u), fo(u)) = (u1(1 — r — uy + ruz),bus (1 — uz)). Under the
condition r > 1, [37, Theorem 9] tells that system (1.2)) admits a unique positive
traveling front U(§) = (U1 (), Uz(§)) satisfying

U{' (&) — cUi(§) + f1(U(€)) = 0, (1.3)
U3 () = cU3(€) + £2(U(€) =0 |
with

U(—00) = (0,0), U(+00) = (1,1), 0<Ui(€) < Us(€) <1, VEER,

where ¢ € (b/(Z\/(r + b)[min(1,b)(r + b) — 0.5b]), 2\/min(1, b)) is the wave speed,
see [37, Theorem 6, Theorem 9 and Proposition 10].

Denote x' = (21,x2), x = (x/,x3). Without loss of generality, we assume that
the traveling solutions travel towards the —z3 direction with speed s, then they
have the form u(x,t) = v(x’, 23 + st) and satisfy

vi=Av—sv,, +F(v), xR t>0, (1.4)
V|0 = vo(x), X € R3. (1.5)

We aim to find a nontrivial steady state V(x) of the system
~ AV +sV,, —F(V)=0, xcR. (1.6)

Since the acceleration effect of the curvature, it is natural to take s > ¢. Fix s and

set
Me = V52 — cz/c.
Now we introduce the definition of pyramid. Let n > 3 be a given integer. As-
sume {(A;, Bj)}j_, is a set of unit vectors, i.e. A5+ B3 =1forallj € {1,2,...,n},
and satisfies

Aij+1 — Aj+1Bj >0, 1<53<n—1; A,By — A1B,, > 0.
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We also assume that (A;, Bj) # (A4;, B;) if i # j. Now (—m,A;,—m.Bj,1) is a
normal vector of the plane {x € R® : —x5 = m.(A;z1 + Bjz2)}. We put
hj(x') = m.(Ajz1 + Bjza),

AN . AN . .
h(x') = max h;(x’) = m. max (A;z) + Bjza).

Then —x3 = h(x’) represents a pyramid in R3. Set Q; = {x’ € R? : h(x/) =
hj(x')},j € {1,2,...n}. Then R* = U?_,€;. Denote

FE = U;—LZI(?QJ‘ c R2.

Now the lateral surfaces of a pyramid are S; = {x € R® : —z3 = h;(x/), x' € Q;}
for 7 =1,2,...,n. We put

I — SjﬂSjJrl 1f1§]§n—17
TSNS ifj=n

Then T'; represents an edge of the pyramid and I' = Uj_;I'; represents the set of
all edges. Denote
v (x)=U (g(xg + h(x'))) = max U (f(gg3 + hj(x'))) . (1.7)

1<j<n S

Since U(x) is a planar traveling wave of (1.2)), it is easy to see that v~ (x) is
combined with several such planar traveling waves and thus becomes a nonplanar
traveling wave with pyramidal level sets. We also define

D(v) := {x € R? : dist(x,T) > ~}, Vy>0.

We now define the a relation of order in R®. We say that x < y (resp. x < y)
An interval [x1,x3] C R? denotes the set of x € R? with x; < x < x,. Throughout
this paper, we denote 0 = (0,0) and 1 = (1,1). The following theorem is the main
assertion in this paper.

Theorem 1.1. Assume that v > 1 and b > 0. Then for each s > ¢, there exists a
solution V(x) = (V1(x), Va(x)) to (1.6) with
vi(x)<V(x)<1l inR?
and
lim  sup w -0, i=1,2
17 xeD(y)  (vg (x))
Furthermore, for any ug(x) € C(R?,R?) with up(x) € [0,1] for x € R? and
lim sup —|Vi(x)7— Uo,ﬁz‘.(x)| =0, =12,
1o%xen(y)  (vg (%))P (1.8)
V(%) < wplx), xR,

the solution u(x,t;ug) of (1.2) with initial data ug satisfies

. ui(',',',t;UO)—‘/i(',',"f'St)
tlgrolo H (02*())61 HL"°(R3) -

Here, 0 < o < 1 < % are arbitrary (see (3.4)) for 8*).

0, i=1,2.
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To use the comparison argument, we consider a modified system

V= AV —sv,, + F(¥), xeR%t>0, (1.9)
‘~’|t:0 = V(](if, Z)v X € R?)a (110)
where F(u) = (f1(1), fo(u) = F(u) + G(w), G(u) = (g1 (w), g2(w)) with
gi(u) =0, go(u)=>b(u; —1)max{0,us — 1}.

It is clear that both F(u) and F(u) are Lipschitz continuous in R2. Obviously,
Ouy f1 >0, By, fo >0 if (ug,uz) € [0,4+00) x [0, +00).
Then the comparison principle (see [32]) gives
V(x,tv5) < V(x,t;vE), VxR >0

if 0 < vi(x) < v3(x) in R3, where v(x,t;vg) denotes the solution of (1.9) and
(1.10). In particular, it holds
V(x,t;vg) €[0,1] if vo(x) € [0,1], Vx € R3,

which implies that the interval [0, 1] is invariant for the solution of (1.9) and (L.10).
Thus, for vo(x) € [0, 1], the solution v(x,t;vg) of and also the so-
lution of and , namely, v(x,t;vo) = v(x, t; vg), where v(x, t;vg) denotes
the solution of and .

For each unit vector (4;, B;), admits a solution U($(x3 + h;(x’))), which
is called a planar wave. It follows that the function v~ (x) defined by is a
subsolution of (1.9), and obviously v = £U’(£(z3+h(x'))) > 0. Throughout this

paper, we define the operator L by
LIV] :==vi — AV + sv,, — F(v).

The remainder of this paper is organized as follows: in Section 2 we give some
notation and known results. In Section 3 we prove the existence result of pyramidal
fronts by constructing an appropriate supersolution. And in Section 4 we prove the
asymptotic stability of the pyramidal traveling fronts constructed in Section 3.

2. PRELIMINARIES

In this section, we give some notation and known results. By [30, Lemma 1.1]
or [37, Lemma 13], we have

Us(§)
1 205/ N\, =
5—1r—noo UQ(&) 2 ¢
Thus we can define
Uj(z) U3 (x)
Ny :=su 2 ,  Ny:=su 2 . 2.1
! we%l; | UQ(I) 2 weg ’ UQ(x) ’ ( )

[30, Lemma 1.1] also implies that there exist two positive constants L; < 1 and
Lo > 1 such that

Lyem> 2221 < ) (€), U] (€) < Lye™™ 2236 ¢ <., (2.2)
LM < Uy(€),Ub(€) < Lae™s, € <. (2.3)
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Using (|1.2)), the derivative matrix of F' is

DF(u) = (fij(u))2x2 = (1 N 7(;(1 2_u;;; e _7";)21)

where fj;(u) = %u(j“). Because of r > 1, we can find two positive numbers py, po

that satisfy p1 > py > 1 and % > r. Let p = (p1,p2)?, where T means the

transpose. We have

q=(q,9)" :=DF(1)-p <0,
Fix an appropriate €1 € (0, 1) such that
1
DF(u) -p< 79 (I-e1)1 <u<(l4¢)1. (2.4)

Now we introduce a mollified pyramid, see [34]. Let p(r) € C*°([0,00)) be a
function with the following properties:

p(r) >0, p(r)<0 forr>0,
piry=1 ift0o<r<1,

r

p(r)y=e " if r > 0 is large enough,

277/ rp(r)dr = 1.
0

Then p(x’) := p(|x]) belongs to C*°(R?) and satisfies [, p(x')dx’ = 1. For a
pyramid —z3 = h(x’) we define its corresponding mollified pyramid —z5 = p(x’),
where

o) = [ o6 =y ay = [ty hx = vy’ (25)

We set (aj,b;) = m.(A;, Bj). Then (a;,b;) € R? satisfies
s

/ 2 2
1+aj + b5
s

)= AT Neer

where Vi = (¢z,, ¢x,). The following two lemmas come from Taniguchi [34].

Lemma 2.1. Let ¢ and S be as in (2.5)) and (2.6, respectively. Then

=¢, forj=1,2,...n.

We put
—c, (2.6)

') < ol < )+ 2mm, [ 20 V()] < e
0< S(x/)og s—c
for all x' € R%. In particular,
Ali_)rr;o sup{S(x")|x’ € R?,dist(x’, E) > \} =0,
Ali_)ngo sup{p(x’) — h(x')|x' € R? dist(x/, E) > A\} =0

and there exists positive constants vi,vs so that

p(x') = h(x)

< vx' € R2.
S(x’) < V9, X €

0<V1§
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Lemma 2.2. For all integers i1 > 0, io > 0, one has
C1:= sup |D D2 p(x')| < 400,
X/ERZ
and furthermore, for 2 < iy + iy < 3 one also has

D2 Dz (x')
Cy:= —1 =z
P T Sy

3. EXISTENCE OF PYRAMIDAL TRAVELING FRONTS
Set z’ = ax’, z3 = ax3 and z = ax. Define
v+ p(a) o c ,
¢(x) = 5 X) = —(x3 + Z ).
) = A o) = a4 ot
Since 1 < /1 + |Vyp|? < s/c, we have

Zn(x) < (0 < M), i () <0, (3.1)
n(z, 2) < (x) < Zn(x), if ¢(x) > 0. (3.2)

Now we fix a function w(x) € C*°(R) with
w(x)=1, ifx<-1,
O<w(z)<l, -l<d(x)<0, if —l<z<l, (3.3)
w(z)=0, ifz>1
In this section, we denote 3 := (1, 82) and make it satisfies
Ao
0< B <fr1<p:= N (3.4)

see [30, Lemmas 1.1 and 1.4] for A; and As. In the proof of the following lemma,
we denote

Oy(z) =2 —cx+1—7r, I(z):=2>—c.
Obviously, 8* < 1 and II;(5;\2) < 0 for i = 1, 2.

Lemma 3.1. There exist a positive constant 63_ (B) < 1 and a positive function
ag (g, B) such that, for all 0 < e < ef (B) and 0 < a < of (¢, B),

vi(xse, B,0) = U(s(x)) +e5(2) (1 - w(n(x))) p +wnx)u? (n(x)))
s a supersolution to , where UP (&) := (Uzﬁ1 (5),U2ﬁ'" (f)) Furthermore,
. |U*(X;E,ﬂ,0{) _U'_(X)
1 2 K3
reent) (v ()
v (x) <vi(x;e,8,0), xeR3,
0, vi(x;¢,8,a) >0, xcR3

<2, i=1,2, (3.5)

Proof. For the sake of convenience, we denote ¢(x), n(x) by ¢ and 7, respectively.
We also denote v*(x;e, 3, a) by v (x) for simplicity. By a direct computation, we
have

P21 Pz121 T P2y Prozy Pz c
Spy = —Q S+ ) = ¥z
T 1 + ‘V(P(Z/>|2 /1 + |7VQD(Z/)‘2 77w1 59021
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P21 Pz120 T P20 Prr29 Pza

Sep = —Q S+

2 14 [Vo(z')? 1+ [Vo(z)]?’
_c _ 1 _¢

Ney = s@zzv Sxg = i IV(,D(Z/)P’ Ney = s’

C C
Neyzy = a;(pzmlv Neozs = a;@@zw Nesgzs = 07 Szzrs = 07

2 3(@21 Prizq T 9022<Pz2z1)2 @zlzl T P Prizrg + ‘pgzgzl T Pz Przi 2y
Sy — O S

(1+[Ve@)?)? 1+ |Ve(z)[?
(pzlzl(l - <P§1 + 90?2) - 29021 PzoPz12o
(14 [Vep(z)[?)3/2
[3(9‘721 V2125 T P2y ‘PZ2ZQ)2 _ 903122 T P2 Pzr2020 T+ <p3222 F P20 P202029 } ¢

(1+Ve(z)[?)? 1+ |[Vp(z)]?
902222(1 + 9051 - 9032) - 29021 PrzaPz122
(14 [Vep(z)[?)3/2
It is easy to check that d,,v*(x) > 0 holds according to the definition of v (x).
To prove that v (x) is a supersolution, it suffices to verify that
LIv(x)] = —-AvT(x) + svi (x) — F(vf(x)) >o0.
Throughout the proof, we assume that « < €. From direct computations and (1.3]),
we have

Evt(x)]: = (1-22 U ) (ng] Ul

—+ «

9

2
§a:2952 =«

+ a
ZS%) [(1 = w(m)pi +wm)Us" ()]
Z

3
w(n) [ﬁi(ﬂi — DU 2 () (U3(n))? Z 3,

3
+BUy T U5 (1) Y e
=1

3

+ BUS T U3 () Y2, — eBU5 T () Us(n)| }

+ (W - C) Ui (<) — fi(vT(x)) + f:(U(q)).
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Let . )
152, (2 S, (2,
A —sup‘ ol )|, Ag = SUP‘ZF1 = ()1,

56R S(Z’) £eR S(z') ;

By Lemmas we know that 0 < Ay, Ay < +o0 are well defined. Lemma
and Lemma [2.2] also imply that there exist positive constants As, A4, A5 and Ag
such that

3
‘1 — Zgz ’ < a(Asls] + Ayc? )S(z') < 5(A3|g| + A4§2>S(Z/), (3.8)
j=1
2
| D" Gy | < alds + Asle])S(2) < (A5 + Ac)S(2), (3.9)
j=1

2 2
’ anﬂj’ < |a§ Z(pzm’ < 2a(h. (3.10)
j=1 j=1

Next, we consider three cases.

Case 1: ¢ < —X’ for some X’ > 0 large enough. Recalling (3.1)), ¢ < 7 holds
in this case. Assume that ¢ < ﬁ And without loss of generality, suppose

that n < —X* < —1, where X* > 0 is a positive constant such that Us(n) < % if
n < —X*. Under these conditions, we know

1
vy (x) < 3 +eS(z') <1 ifn<—-X",
which implies that fo(v*t(x)) = f2(v*t(x)). Then by (3.3) we have
LIv(x));

(le%J)UZ” (Zcx zJ)U/

/ ; o? Zj:l 22 Z?:l SZ]’ Na; & Ué(n)
—eS(z )Uzﬂ (W){W + (QQ@‘TZ,) + B ;ijxj) Us(n)
Ub(\2 s~ o, o UY(0) <= Us(n)

87 —C / — . V+ X ; .
s~ VO ~ A6 + £(U()

Recall (3.1) and the monotonicity of the wave profile U. Then by (3.8])-(3.10) we
have

£iv* (o)

> —eS(@) UL (n)(Asls] + Aas?) 'U;ﬁ ((?)' £S() UL (m)(As + Agls]) (fﬁf( ))
 S(a U 2 aa, 2 Us(n)
S5 {1 + 204, 20 )

Us (n)
Uz(n)

+5i(§)2’_ (Ug(n)) -

T |1+ 1Ve()P)



EJDE-2020/112 PYRAMIDAL TRAVELING FRONTS

cy2(Us(n)\? ) Ub(n)\ 2
+67(3) QMM)(LHV%ZW)*ﬁ(@mQ
Uj(n)\? U3(n)
B (Gam) ~ T
(e~ 9V + £V — £ ().

Since Ao = lim,_, oo gﬁgg and A3 = lim, o %&), we have
(e, U
Uz () Uz () ’

Us(x)\? Us(x)
ﬂ%<U2(x)) - Cﬂl UQ(,Z‘) +1—r— Hl(ﬂl)\g) < 0,

ﬁ%(gﬁgi;)Q — By gﬁgig — Hg(ﬂg)\g) <0

as © — —oo. Thus there exists X; > 0 large enough such that
Us(z) _ 3 Us(z)\? | Us(x) 1
LSV — = L(Bi),
(o) <272 | (Ug(x)) Tl | < 1)
Uj(z)\2 Uj(x) 1
T2 - - 1—7r < I (BiA
Bl(UQ(I‘)) CBlUQ(x) + r 2 1(51 2)7
Uj(x)\2 Uj(z) 1
2 2 _ 2 11 A
BQ(UQ(JC)) Pag, ) < 2"2A)
for any x < —X;. For the above positive constants As, A4, A5 and Ag, it follows
from [30, Lemma 1.1] that there exists X2 > 0 large enough such that
1

o U (@) 1
(Aslz| + Asz )Uzﬁ‘(m) < 16Hz(61>‘2)a

Ui ()| < _%Hi(ﬂih)

Uy (x)
for any < —Xao. Also there exists a7 € (0, 5*) small enough such that

(As + Ag|z])

0[2A1 + 304142)\2 + 3&01)\2 < —%Hz(ﬁzAQ), Yo € (0,0&1), 1=1,2.
For the reaction term f;, we have
2
A 00) = £(06) = (3 iy (0" () + (1~ 0)U()) U2 () )5 ()
j=1
2
= (D £is (U(<) + 20,8 (2P (1) U3 (n) )25 (2,
Jj=1
where 0; € (0,1), 1 =1,2. If i = 1, then 0 < U1 (&) < Uz(§) < 1 yields
fiz (U(S) + 01S@ WP () = 7 (Us(s) + 2018z U5" (m)) < (1 +25)U5" ().

It follows that
HvT(x) = f1(U(9))
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IN
—

F11 (U() + 0182 UP () US* (n) + (1 + es) UL () UL* (77)) eS(z')

i1 (U(<) + €018 (2"\UP (1)) + (1 + ES)U22(77)) eS(z)Uy" (n),

IN
—

and f11 (U(z) +€615(2" ) UP (y)) +r(1 +es)U(y) > 1—rasz,y — —oo. Ifi =2,

v () = 12(016)
= ( 2 fos (U(S) + 20282 U (n)) U3 (m) ) =S(2')
- (zijlfzj (U() + 0282 0UP () (Ua(m) = )5 (2 UL ().
Note that (Uy(x))?*=52 — 0 as & — —o0, also we have
Ei: fo5 (U() + €052 UP (y)) (Ua(y))* =7 = 0 as z,y — —oc.
Then we know that there exists X3 > 0 large enough such that
11 (U(@) + 2005 UP () + (1 +29)U8 () — (1= 1) < — e (Bua),

Zfzj )+ 038 UP () (V) < — T (Bue)

for z,y < —X3.
Let X' = max{2X*, X, X5, X3}, then for ¢ < —X’ we have

Llvt(x)]; > fUQBi(n)eS(z ) (Asls| + A2 ) U, //(§)|

Ua(n) Ua(n)
U3 ()2 U3 (1) 2 U,
A A ) )

—eS(&!) (X fis (U(S) + b U () U3 ()

S o
_(Uégn)y Uy (n )‘Jrﬁg( Us(n ))
+

161_[1(/81)\2) + 16 H (Bz)\2) + 16 H (51)\2)

1 1
+ Eni(ﬁi)ﬂ) - §Hi(5i)\2) + 1*6111‘(51')\2))
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Case 2: ¢ > X" for some X" > 0 large enough. Without loss of generality, suppose

that n > 1. By [30, Lemma 1.4], we can take X{ > 0 large enough such that
(Aslal + AU ()] < ~% and (45 + Aol U1(2)| < &

for all z > X{ and i =1, 2.
Fix a constant ap € (0,%) such that a?4;p; < min;— > {—%} for any « in
(0, ap). For the reaction term f;, we have
2

A ) = FUG) = (X s (UG) + 08 (P, )eS(a), i = 1,2,
j=1
Since U;(z) — 1 as # — +oo for ¢ = 1,2, there exists X} > 0 large enough such
that for all £ € (0, m) (see ([2.4) for £1), it holds

1—e <Ui(x)+e0,5(z)p;i <1+e, z>X5 i=1,2,
and then

1
Zf” z) +¢0;S(z')p )pj<§q¢, x> X i=1,2.

According to the definition of fy, we know
F(vF(x)) < fo(vF(x)) + b(eS(2)) *prpe.
Take X" = max{ X7, X}, 1}, then for ¢ > X" we have
LIvF(x));
Zf 152,

(130 - (S ot et

+(W—0)Ui(<>—fi<v (%)) + fi(U(s))

> —eS(2')(As|s| + Aals*)| U] (<)
—eS(2') (A5 + Asls))|UL ()| — eS(2)a? Aipy

~S(a (me )+ 0:S(2)p) py) — beS (@) prpe

>eS(z )<8+8+§_§ baplpg(s—c))>0

provided that & < minizl,g{—m}-

Case 3: — X’ <¢ < X". Define u, := min_ x/<z< x» min;—1 o U/(z) and

M;j = sup fij(n), My:= sup M,
u€[—e11,(14€1)1] 1<4,5<2
M, := sup |U/(z)], Ms:= sup |z||U](z)],
Z€R, i=1,2 2€R, i=1,2
Ms:= sup |z||U/(z)], My:= sup 2*|U/(z)|
z€R, i=1,2 z€R, i=1,2

We have
LIvT(x)]i > —aS(@)(Asls| + aAuls|*)|U]' (5)] — e5(2') (A5 + Ag|s])|U] (<)]
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—eS(2')a? Ayp; — 2eaS(Z) As(pi + Ny)
—eS@) {(lw" ()] + a|Azp(2')]) pi + N1 [Azp(2')] + Na}
+8(2")us — b(eS(2))*prp2

— eS(z (Zf” $) -+ £6; (w(np + (1 = wm)U’ () )

x@mm+ufmmwxw)
Z S(Z/){ - OéA3M3 - O{A4M4 - OéA5M1 - OéAGMQ
— adipr — 20Az(p1 + N1) — e A+ us — be(s — ¢)pip2 — 2€M0p1}7

where A := (sup,cg [w” ()| +5up, er [Az0(2')|)p1+ (SUp,era [Azo(2')|) N1+ Na.
See (2.1) for Ny and Ny. Let

U
2[A3 M3 + Ay My + As My + AgMo + Aipr + 2A2(N1 + p1)]’

U

2[A + 2Moyp;1 + b(s — ¢)p1pa]’

a< oz =

E<€Eg =

then L[vt(x)]; > 0, i = 1,2. Combining the three cases above, we have proved

that v*(x) is a supersolution to ([1.9).
Next we prove that v~ (x) < v*(x). Let

€ ! -t x x’
E(X):g(xs-Fh(X))a v(x) = 1+|Vg0(z’)|2( 3+ h(x')),
and recall that
¢ ! - x z)/a
1) = Sl b pla) ), o0 = e + plal) ),

If ¢(x) > £(x), then it is obvious that v~ (x) < v (x) since U;(y)(i = 1,2) are
monotone increasing in y. Thus we need only consider the case ¢(x) < &(x).
follows from the definitions of ¢(x) and £(x) that

)~ €(x) = (—— ) (s 4+ h(x)) +

T+ [Ve@ )P s

= 5() (s + h(x) +

o) /o~ h(x)
T+ Vo)
p(2)ja—h(x) _

1+ |Ve(z')[?
: 1 _c o(z')—h(z")
Since Tvoor c>0and vy < SR < vy, we have
— 1
ra+ () < s SR o < P,

VI Ve@)P S a

which implies that ¢(x) < {(x) < (=) = —% < 0and 2n(x) <<(x) <n(x) <
0. Then we have

vyt (%) = vy (%) > Ui(v(x)) +e8(2")Uy" (n(x)) — Ui(§(x))

1 C / (0. (x _ 0. x
_ (W_;>(x3+h(x NUL(B;v(x) + (1 — 0,)€(x))
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+e8(2')UY" (n(x))

= S SEECIT O (%) + (1= 0)66x)) + =S () UF ()

for some 6; € (0,1), i = 1,2. Since z3 + h(x') < 0, we have v(x) < ¢(x) < £(x) <
n(x) < 0, and hence

Lzernin{/\l,2)\2}§(x) i=1

! X _ . b )

UL6(x) + (1 - 6,)¢(x) < {Lthg(x)’ .

US (n(x)) > LM Pnt) > [eMA600 =19

Then for ¢ = 2, we have
vy (%) — vy (%) > éS(Z/)S(X)Ué (B2v/(x) + (1 = 02)&(x)) + £S(2") U5* (n(x))

L
> S(Z/) (?26()()6)\25()() + ELleM,@’zf(x))
> S(z/)e/\lﬂgg(x) (&g(x)e@z*)\lﬁﬂﬁ(x) + 5L1>

s
L2 2 —w
supw?e” ¥ +¢eL
s(A2 — A1 2)%¢(x) w>I()) 1)

4L2a
c?e?(Ag — A1 82)%1n

> S(Z/)ex\lﬁfzf(x) (

> S(z')eM P28 ( — + 5L1) > 0,

provided that

eLic?e? (Mg — Ba1)*1 eLic?e? (min{\y, 2\ } — 51)\1)2 v }
415 ’ 414 '

A similar argument will lead to v (x) — vy (x) > 0 for the above a and we omit it.
Thus we have that v*(x) > v~ (x) for all x € R3.

Next, we prove (3.5). By Lemm we know that for each fixed «, there exits
a positive constant mq = 22mm, [ r2p(r)dr such that

£(x) < n(x) <E(X) +my, Yx€R? (3.11)

Uy (x)
U2 ($) :

Uz(z +y)e MY < Uy(x) for any y > 0. Using this fact and (3.11)), we can get
Ua(£(x)) < Ua(n(x)) < Us(€(x))e™ ™=, vx € R®.

a < oy ::min{

Since Uz(x + y)e N1¥ is decreasing in y, we know

Recall Ny := sup,cp

In other words,
|2 Va0 _ v,
Ua(8(x))
According to the definition of v*(x) and v~ (x), and using (3.12)), it is sufficient to

prove that
, Ui(s(x)) — Ui(§(x))|
e S (an)
We consider three cases.
Case 1: {(x) = S(w3 + h(x')) — +oo. Then we have 0 < £(x) < ¢(x) and
n(x) < s(x) < 2n(x), which implies that
Ui(s(x)) ~ Ui(€ o)
(Ua(n(x)))P

vx € R3. (3.12)

=0, i=1,2

—0 as(x)— 400, i=1,2.
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Case 2: {(x) = £(23 + h(x’)) = —oo. We have

() = L e ¢ A M)
1+ [Vo(ax)2 ¢ 1+ \V@(GX’)\Q

L , it follows that

Since 0 < p(ax’)/a — h(x") < mq and € < \/W <
2600 < <) < () +ma, (3.13)
which implies ¢(x) — —o0 as £(x) — —oo and vice versa. Thus, we know
§0) < nx) < “6(x) < Zn(x) <0,

Using [30, Lemma 1.1], we have

U{(g) 7 )\1€>\1€ + 0(6(2&*0)5)
Ua(€) ~ ArgeE + O(ei—7%)
Ajeri—A2)E 4 O(e(hfff)ﬁ)
T A+ O(e’\l—h—")f)

Thus we know C := supg<( ;1 » U2(§) < +o0. Then by (3.11)), (3.13) and (2.3)), we
have

—0 asf— —o0.

Ui(s(x)) = Ui(€(x))]
(Ua(n(x)))”
Ui(0is(x)) + (1 = 0:)€(x))

= - X

N (U (n(x )))Bz ls(x) — &(x)]
Ul(0:s(x)) + (1 — 0;)€(x)) s

= (Us(n(x)))P (*|n<X)|+|n(x)|+ma)

Uj(0ic(x)) + (1 = 0:)§(x))  Ua(n(x)) S
= Ua(0;6(x)) + (1 — 6;)&(x)) (Ua(n(x)))5 ((E + 1) In(x)| +ma>

< CLye1=Fi)Aan(x) ((f + 1) In(x)| + ma)
c
-0 asnx)— —oo.
And notice that n(x) — —oo is equivalent to £(x) — —oo by (3.11]).

Case 3: ¢(x) = $(x3 + h(x')) is bounded. It is obvious by (3.11]) that n(x) is
bounded in this case. Suppose Ry > 0 is a constant such that |£(x)| < Ry. For
each v > 2Ry and x € D(v), there must hold dist(x’, E) > + and thus

lim sup o(x) - hEx))=0, lim sup S) =0,
Y+ dist(x!,E) > ’y( ( ) ( )) Y0 dist(x!,E) > ( )

and hence

U ~ U]
LN B e i

Finally, let af (¢, 3) = min{e, ay, @, a3, a4} and
ef = min _ min {—————},
0 (A) {pl(sf c)’i= i3 8(s — bpp &2}

The proof is complete. O
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Now we give the existence result for traveling curved fronts.

Theorem 3.2. For each s > ¢, (1.2)) admits a pyramidal traveling front u(x,t) =
V(x/',x3 + st). V(x) satisfies (1.6) with 0,,V(x) > 0 and

v (x) < V(x) <vT(x;e,8,a), VxeR3,
where 0 < e < ed (B) and 0 < a < ag (g, 8). Furthermore, we have

b s V09 =07 ()

= =0, 1=1,2. (3.14)
To+oxen(y) (Vg (%))5

Proof. According to the parabolic estimates, we know that there exists a constant
C > 0 such that the solution v(x;t) of (1.4) and (1.5)) with vo(x) € [0, 1] satisfies
||v(-,t;v0)||C3(Rs) <C, Vt>1.

Since v~ is a subsolution, we have v(x,t1;v™) < v(x,t2;v™) for all x € R? and
0 <ty < tg, see [33] for more details. Thus,

V(x) := tE+mm v(x,t;v7), xeR3 (3.15)

is well defined and independent of ¢, v, and 8. It follows that v(-,¢; v™) converges
monotonically to V(-) under the norm [| - [[o2 (rs), namely,

lim [[v(,tv7) = V(,)lez @ = 0.

t——+oo

By the comparison principle, we know v~ (x) < V(x) < v (x;¢,3,a). And the
proof of is similar to that of [44]. In view of the monotonicity of v~ (x) on
the variable z3, we come to the conclusion that d,,V(x) > 0 for all x € R3. Then
the strong maximum principle implies the strict inequality. U

4. STABILITY OF TRAVELING CURVED FRONTS

This section discusses the stability of the pyramidal traveling fronts constructed
in Section 3 by improving the arguments of Taniguchi [35] and Wang [43] [45].
Consider the Cauchy problem

0 . - 0 . -
w(fv m, 0) = Wo(g, 77)7

where W(&,n,t) = (w01(&,n,t),w2(&,n,t)) and (&,n) € R%t > 0. The following
theorem is established in [30] B1].

(4.1)

Theorem 4.1. Assume b > 0 andr > 1. Then for each § > ¢, there exists a steady
state ®(&,m;5) of (4.1) satisfying ®(&,m;8) > v~ (£,n) and
(I)i ) —v; ’
lim  sup (ffz) Yi (5 )
Roooeayprsge (0y(€,m))5

|=0, i=1,2,

where

v en =u(E(nr %),
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and B;(i = 1,2) is defined as in (3.4). Furthermore, for any wo(¢,n) € [0, 1] with
wo € C(R?,R?) and

lim sup U; (5171) — Wo; (A§7 n)
Roooeypspe (T (6m))%
the solution W(&,n,t; W) of (4.1)) with initial data Wo satisfies
o wis st wo) — @4(, - + st)
lim — -
HooH (g (-,-))Bi HL (R2)

|=0, i=1,2,

=0, i=12.

For any subset D € R3, we denote the characteristic function of D by xp, namely,
(%) 1, xeD,
X) =
AP 0, xeD,
where D¢ denotes the complementary set of D. Let h;j(x,t) € C(R*xR) (i,j = 1,2)
be given continuous functions satisfying

0 S hi_j(X, t) S Mij7 { 7é .]7 sup |hii(x7 t)' S Miiv
xER3,¢>0

where M;; € R (4,7 = 1,2) are constants. Now consider the linear system

2
Li[w;(x,t)] — Z hij(x,w;(x,t) =0, x€R? ¢ >0,

P (4.2)
wi(x,0) = w; o(x), xER3 i=1,2
where L; := % — Zi:l 88% + 53%3 is a linear operator. We have the following
k

result.

Lemma 4.2. Let w(x,t) = (w1 (x,t), wa(x,t)) be a solution of (4.2). Then there

ezist positive constants A, B and Ay such that

[ at Av +oo =3 i
sup  sup w Sﬁek“tfﬂ/ e~ B qr max sup M
i=1,2xeD(2y) (v (%)) B J¥m_on =12xen(y)- (v (%)% w3
~ 3/2 ) ’
+ M A(Z) T max sup JwiolIl -y g
B i=12xep(y) (V3 (%))

for any v > 0, where D(v)¢ is the complementary set of D(y). Moreover, we have

. t ~ 3/2 .
sup sup 7|wf(x’ ) < ekotA(W) max sup 7'10,1’0()()'

2P eh (07 G = 2T 2 (0 ()P
Proof. Let W(x,t) = e Mtw(x,t), where X = Zle M;;. Then w(x,t) satisfies
Lt@i(x7 t) + ()\6 — hii(x, t))@i(x, t) — hij (X, t)@j(x, t) =0, x¢€ RS, t>0,7 75 1,

W 0(x) = w; 0(x), x € R3.

vt > 0. (4.4)

Now consider a linear system with constant coefficients
Lt@i(x,t) -+ ()\6 — M”)@Z(x,t) — Mij@j(x, t) — O, = ]RB,t > 0,] 7& i, (4 5)
Wio(x) = |wio(x)], x€R. '

A similar discussion as [45, Lemma 4.2] implies that

|0 (x,1)] < Wi(x,t), x€R3 t>0,i=1,2.
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By [7, Theorems 2 and 3, Chapter 9], we know that there exists a 2 X 2 matrix
function I'(x,y,t,s) =I'(x —y,t — s) such that

w(x,t) = /3 I'(x—y,t) wo(y)dy,
R
and there exist positive numbers A >1 and B < 1 such that

2 2
IT(x —y,t—s) = Z Ty < A(t —5)73/2 exp{—B%}
1,7=1
for any 0 < s < t < 2. By the uniqueness of solutions, the solution of (4.5 can be
written as

F(x, 1) = / T(x — y1. 1)dy, / T(y1 — yo, 1)dys -
]R3

[P —yeay. [ D=yt k) Soly)ay
R

for any t > 0, where k¥ = max{[t — 1],0} and [t] represents the largest integer no
more than t. Therefore
wi(x, )

ey = Jume v navs [ T -y
/Rg T(yr —y,t—k)- (XD(V)C(}OW + XD(y) (y)m)dy

:/ F(X—Y1,1)dY1/ F(}’1—Y271)dYQ"'/ L(yr-1—Y¥& 1)dys
R3 RS R3

dys - / L(yi—1 — Y&, 1)dyx
RS

/\v

/R T(yr —y,t = k) - xp(y)e(y)
+/ I(x -y, )dY1/ I'(y1—y2 1)dy2-- / T(yr-1— Y& 1)dys
R3 R3 R3

/R3 T(yr —y,t—k) -XD(«Y)(Y)(;;V(())(:),))Bidy
=1+1I

for any ¢ > 0 and ¢ = 1,2. Then by a same computation as in [45, Lemma 4.2], we
have

~ B|z|? k = x—y|2
11 SAk+1(1+t)3/2</ -2 dz) / —8/2,—Bl==Y] ot (y) WL (Wo(y)|
R R? (vy (x))7%

< A, 2t(27f>3’“/2/ (—3/2,— B2 (v (X = ¥))” \foo(x—)’)l v
B D()e (vy (x))% (vy (x —y))P
Moreover, since U (z+y)e™N1¥ is decreasing in y, we know Us(z+y)e N1 < Uy(x)
for any y > 0. With the help of this fact, we have
vy (x—y) Uz( (23 —y3 + h(x' —y")))
vy (%) Uz (£ (23 + h(x')))
_ U (& (a + h(x) + max{1, m } S5 1)
- Us (£(x3 + h(x)))

< Mg max{1,m.}S5_, |y
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3
< eMZisilil

Note that if x € D(2y), then v < | dist(x,I') —dist(y,I')| < |x—y| for all y € D(v)°.
Therefore,

1] SCk,tt*?’/Q/ B NS vl gy oy sup 1220W]
Bl =12y ep(y)e (vy (y))%

N? 2 W
ZOk,tt_3/2€3:k§l / e~ # T (lmimail= ) dy max sup 1@io(y)l. ZO(Y);
B(x)° =12yen(y)e (v (¥))%

3tN2 ~ ]
< Cpat 2553 / o Py max sup 20O
YERS»\ZMZ%V*% 1=1,2 ye’D(,\/)c (U2 (y))ﬁl
382 A +oo ~ ~
= 6Ck e 5 = e B dr - max  sup %,
A =12y epiye (v ()5

where Cy; = Zkﬂezt(%ﬂ)%/z. Similarly,

~ Ble®  \ Kk

I1] < AFH(1 +t)3/2</ e*%dz)
R3

></ t—3/26—§¢61v12§=1 \mi—yi\XD( J(y) oYL [Wo(y)| d

RS T (v (x))r

I N e o)
< Cput %75 / ¢ BT X (v)dy max sup L e0YIL
R3 v i=12yep(y) (v ()5

3/2 3tN2 ~
<Cu(F) < mpy (RO
B =12 yep(y) (05 (y))P

Note that 0 < t — k < 2 and let \g := )\6+2+ln(%) + 3N1 , then
BVB

follows. To prove the inequality (4.4), we just need to replace D(’y) by R? in the

term II. Then the proof is complete. O

By a proper coordinate change, we show that the pyramidal traveling front V(x)
converges to a two dimensional V-form front on edges of the pyramid at infinity.
For each positive integer j € {1,2,...,n}, we consider a plane perpendicular to an
edge I'; = S;NS;4+1. Then the cross section of —z3 = max{h;(x’), hj+1(x’)} in this
plane is V-shaped. Let V7 be the two dimensional V-form front as in Theorem
corresponding to the cross section of —x3 = max{h;(x’), hj+1(x’)}. We now make
some preparations before giving the formulation of V7.

It is easy to see that the expression of I'; is

T T2 T3

= = 9 IL'3 < O
Bj=Bjt1 Aji— A ma(A;Bj — AjnBj)

Define
pj = AijJrl — Aj+1Bj >0, 1<5<m

q; = \/(Aj —Aj11)?+(Bj — Bj1)* >0, 1<j<n
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Then the direction of I'; is given by
1

\/MED; + 4

and the traveling direction of the two dimensional V-form wave V7 is perpendicular
to the direction of I'; and given by

1
Y e (me(Bjs1 — Bj)pjsmu(Aj — Aj)p). ;) -

Let s; be the speed of V7 and 260; € (0, 7) be the angle between S; and Sj1;. It is

not difficult to see that
1/ mip? + (]]2 5q;

s;jsinf; =¢, sinf; = +—F—-—-, 5= —.
J J J @ T+ m2 J %mzp?-i-q?

The speed of V7 toward the z3-axis equals

sj\/m2p} + ¢} /q; = /1 +mi=s,

which coincides with the speed of V. Now we define a matrix

(Bj+1 = Bj, Aj = Ajir,mu(Aj41B; — A;jBji1))

Ajr1=A;  m.(Bit1—Bi)p; Bj+1— B,
TNy 7 AV T e

R, — | Bin=Bi  m.(A;- A 0)p; Aj—Ajt
J qj aj/m2p3+a; VmZpi+q?

0 q; _ Mx«Pj

2,2 2 2,2 2
\/ MEPT a5 AVALL-Y i

and make the following coordinate transformation:

x1 & § z
z2 | =R; | n or n| = R;r To
T3 ¢ ¢ T3

Define V/(x) := ®(&,n; s;). Since R; is an orthogonal matrix, the graph of V7(x)
is the same as that of ® (£, 7; s;) except the position in the space. Direct calculations
show that V7(x) satisfies with speed s; for each j € {1,2,...,n}. Thus we
call V7 a planar V-form front corresponding to the edge I';. Set

Q; = {x € R? : dist(x,T") = dist(x,T';)}.

Then we have R? = U7 ,Q;. Define V(x) = max;<j<, V/(x). From the mono-
tonicity of V7 in x5, V(x) is strictly monotone in 25. In addition, V(x) has the

following properties.

Lemma 4.3. V(x) satisfies v™(x) < V(x) < V(x) for x € R? and

b s V200 07 ()

Y9xen(y)  (va (x))F
Proof. By Theorem [£.1] we have
c c .
max {U(;(zg +hi(x'), U(= (23 + hjs1 (X))} < VI(x), xeR.

S

= 0. (4.6)
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It follows that v~ (x) = U (£(23 + h(x))) < V(x) for x € R®. Moreover, taking
the left and right sides of the inequality

max {U (g(xg +hy (x'))) U (g(xg + th(x')))} < v (x)
as initial values of ([L.6]) respectively, we obtain V7(x) < V(x) for x € R?. Then
we have V(x) < V(x) for x € R3. Finally, ([4.6)) follows from (3.14). O
Let v(x,t;vg) be the solution of (1.4)) with initial value vo € [0, 1] which satisfies
(1.8). By Lemma we have
|vi(x, £ vo) = Vi(x)]

max sup

1=1,2 xED(’y) (1)2_ (X))ﬁ’
i [+oo . () —
< GeAOtg e Brdr max sup —|VZ(X)_ UZ’O_(X”
EAA s pty (0 ()
+ ertﬁ(g)S/z max sup —Wi(x) — vi’o(xﬂ
B =12xep(y)  (vg (%)%

for any v > 0 and ¢ > 0. It follows that
|vi(x, £ vo) — Vi(x)|

lim sup — =0,
T xeD(y) (vy (x))P
which implies that
) . _yJ
lim sup |Uz(x7t’fo) V7 (x)| =0, (4.7
T HO xeD(7),x€Q; (vy (x))Pr
lim  sup ‘Ui(x’t;jo) — Vix)| =0 (4.8)
Y=+ xeD(v) (vg (x))Pi

for any fixed ¢ > 0. Using Theorem and (4.7), we obtain the following re-
sult through a similar discussion as Wang et al. [45] Proposition 4.5] or a slight
modification of the proof in [3, Proposition 1].

Proposition 4.4. Assume that vo € [0,1] satisfies (1.8). For any given € > 0,
one can choose a T* > 0 large enough such that

) 01,5 v0) = V7 ()
im max sup —

R=00 1) <0 x| >R x€Q; (vy ()P

for any fixed t > T™*.

Lemma 4.5. Assume that vy € [0,1] satisfies (1.8). Let V be defined by (3.15)),
then for any given € > 0 one can choose a T* > 0 large enough such that

|vi(x, t; vo) — Vi(x)]

<€ (4.9)

lim max su <e€ 4.10
L W A T 10

for any fixed t > T*. In particular, one has
lim max sup [Vilx) = Vi(x)] =0. (4.11)

Roci=12 g >r  (vy (x))P
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Proof. For any € > 0, by taking vo = V in Proposition [{.4] we have
Vi(x) -V
lim max sup M < e.
R—o0 1<j<n ‘X|>R erJ (’U2 (X))ﬁ’l
Thus because of the arbitrariness of €, we have
(x) — V7
— Vi)~ V7 (x)
R—>°°1<J<”|x\>Rx6Q,- (vy (x))7

Then ) follows from And (| - ) follows from and (| . The

proof is complete

= 0. (4.12)

Equality (4.11)) shows that a pyramidal traveling front V converges to two di-
mensional V-form fronts ® near edges. By a similar proof to that of Wang [45], we
can get the following lemma.

Lemma 4.6. Let 'V be defined by (3.15)). Then for any § € (0,1) we have

min inf iVj() 0, 7=1,23,...,n
=123 (x)e[s,1-5] 073

0
min inf —Vi(x) > 0.
i=1,2 Vi (x)€[5,1-6] OT3
Inequality (3.7) and Lemma yield that for any M > 0, there exists a positive
C, such that
. . 0 . a
min inf —Vi(x) > C,, min mf —u; (x) > C,.
=12 | (z5+h(x'))| <M OT3 i=12|s(x)|<M Oxgz "
Then we can construct the following two supersolutions.
Lemma 4.7. Let'V be as in . For any 0 < ¥ < min { min;—1 o ( 1_[2;1(/@212)) 1}
there exists a positive constant K small enough and a positive constant p = p(k)
sufficiently large such that, for any 6 € (0,0¢) where
. 1 €1 . i
fp:=min{ —, — min{— ,
0 {2(5 —c+1) p i:1,2{ 8bp1p2 }}

the function
W (x,1;6) = V(x', 25 + &+ pd(1 — e 7)) + de " (w(f)p + (1 — w(0)) UP(9))

is a supersolution to (1.9), where 0 = <(x3+&+pd(1—e ") +@(Ix')/V) and € € R
is a constant. See (2.4) for e;.

Proof. By a direct computation, we have
LIWT],
= pre "0, Vi — dre " w(0)p; + (1 — w(0))UY ()]
c —2K i i
+ < p0tke M (i = U3 (0))w'(6) + Bi(1 — w(0))Uy H(O)U3(0)]
3
— o= {uw"(6) (pi — UF(9 Z 02+ (0) (s — US(0)) Y 0,0,
j=1
3

— ' (0)(pi — Uy (0)) — 28,0 (U3~ (0)U3(0) 03

Jj=1
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3 3
(1= w(0)) |88~ VUF A O)NU30)° Y6, + BUS T OUF(0) 2,

j=1
3
+ BUSTHONUS0) D Oy, — cBUS T (0)U3(60)| }
j=1
— [i( W) = gi(WF) + fi( V).
Then the rest of proof is almost the same as that of [30, Lemma 4.2], we omit it. O

By a similar argument to that of Lemma [£.7} we obtain the following lemma.

Lemma 4.8. There exists a positive k constant small enough and a positive con-
stant p = p(k) sufficiently large such that, for any § € (0,00) (0 is given in Lemma

, £ €R and 0 < a < min {ag (g,8), min;—1 (71_%4(6'?123))}, the function

wh(x,t;6) = v (X, z3+E+p5(1—e");e, B, a) +de " (w(é)p+ (1 —w(é))uﬁ(é))

is a supersolution to (L.9), where 6 = (xz+ &+ pd(l — e ") + p(ax')/a) and
& € R is a constant.

Lemma 4.9. Let V be defined by (3.15). Then it satisfies

025 Vi :
lim sup fi(xﬁ) =0, i=1,2. (4.13)
B=00 gy (x| 2 R (Vg (%))%
Proof. We split up the proof into two steps.
Step 1. We prove that
lim sup M =0, =12

R— o0 z3+h(x')>R (1]2_ (X))B7
It is sufficient to prove that limp e SUP,, 41 (x/)> R 05 Vi(X) = 0, since
lim sup vy (x) = lim sup  Us (E(.Ig + h(x’))) =1
R—o0 iEngh(X’)ZR R*)mm3+h(x’)2R S

Obviously, the assumption 3 + h(x’) — oo implies that dist(x,I") — oco. It follows
that

lim sup |V(x)—1|=0,
R=00 g4 h(x')>R

and thus impg— 00 SUP,, 4 p(x>r [F(V(x))| = 0. Applying the interior Schauder’s
estimate to

—AV; +80,,Vi = fi(V) in B(x0,2), Vxo€R? i=1,2
we have

lim sup {[|Villw2r(B(xo,1))| %0 € R?, |23 + h(x()| > R} =0
R—00 =12

for p > 3. Therefore

lim sup 0., Vi(x)=0, i=1,2.
R—>00m3+h(x’)2R
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Step 2. We prove that
lim sup 76{3%()() =
R0 oo tn(x)<—R (Vg (X))5

Note that the set {x € R3|z3 + h(x’) < —R} C D(R) = {x € R3|dist(x,T) > R}.
It follows from ([3.14]) that for i = 1,2,

0, i=1,2.

Vi(x) —v; (x Vi(x) — v,

lim sup w—l()‘ < lim sup ‘()()7—1}1()()‘ —0.
Booopynixy<—r (0 (%))7 Roteoxep(r)  (vg (%)%

Then a similar discussion as that in [30, Lemma 4.6] shows that (4.13) holds for

the case x3 + h(x’) = —oo. The proof is complete. O

To prove the stability result, we also need the following lemma, which can be
referred to [45, Lemma 4.8].

Lemma 4.10. Assume that § € (0,¢1), where 1 is in (2.4). For any x € R® with
§ <Vilx) = max V/(x) <1-4,

1<j
we have
. Vi(x , 3+ 0) — Vi(x . . . 0 .
inf i(x, 23 + 0) = Vilx) > min min inf — V(%) >0,
0<g<go 0 1<j<ni=1,2 8 <y (x)<1-5 Oxs

where oo 1s a positive constant depending only on §.
Let v (x;¢,3,a) be as in Lemma[3.1] Define
V*(x) := lim v(x,t;v"), x¢cR3
t—oo

+

Since v is a supersolution, V*(x) is well defined and satisfies

~AV* +5V: —F(V*) =0,
and it may depend on &, « and 3. By the comparison principle, we have
v (x) < V(x) < V(x) < V*(x) < vT(x;¢,8,a), xeR®
From (3.5)), we have

lim sup M =0, +1=1,2.
Y=+ xen(y)  (vg (x))F

Then applying Proposition [f.4] to V* we obtain
lim max sup W—VZ(X” =0. (4.14)
R—o0i=1,2 |x|>R (’1}2 (X))Bl

It follows immediately that
lim max sup W—VZ(X” =0. (4.15)
R—o0i=1,2 |x|>R (’U2 (X))Bz

The next lemma says that V*(x) is independent of ¢, and 3.

Lemma 4.11. One has V(x) = V*(x) in R3.



24 L. MA, H.-T. NIU, Z.-C. WANG EJDE-2020/112

Proof. Assume that V(x) £ V*(x). We take ¢ € (%0,50), where Jp is given in
Lemma By the definition of V* and (4.15)), there exists A > 0 sufficiently large
such that
V¥ (x) < V(x' a3+ A) +6(v; (9))

<V, 25+ A) +6(w®)p + (1 — w()UP(9)),

where 0 = <(x3 + A+ o(9x’) /). Then the comparison principle implies that
V*(x) < WH, 23+ \t;0), x€R3 t>0.

Letting t — oo, we obtain

V*(x) < V(x',23+ A+ pd), xeR.
Define

A:=1inf{A >0:V*(x) < V(x,23+ 1)), xcR}

Then A > 0, and V*(x) < V(x/,23 + A) for all x € R3. The assumption V(x) #
V*(x) implies that A # 0. Thus the strong maximum principle yields that either
V*(x) = V(x',z3 + A) or V*(x) < V(x',z3 + A). We assert that the former
case is impossible. To see this, we choose a sequence {x/,}men C R? satisfying

h(x!,) — oo and dist(x/,, £) — oco. Then by the fact that v <V < V* < v we
have

m—o0 m— o0

lim V*(x),,—h(x},)) = U(0), liminfV(x],, —h(x],)+A) > U(SA),
which contradicts V*(x) = V(x/, 23 + A). Now we assume that
V*(x) < V(x,z3 +A), xeR%.
By Lemma [4.9] for any fixed p > 0 defined in Lemma [{.7] we can take a R, =
R.(p) > 0 large enough such that

wp | DVl

1

L —, =12
lzs+h(x')|>R.— 4 (v (x))% 3p
Define

= {xeR’:|z; +h( Nl <R}
Choose a constant o satisfying 0 < o < { 3, 4p, 2N1p}, where N1 = sup,cps Uﬁg;
Using Lemma [£.10] for x € D, we have
0

Vi(x', x5+ A) — Vi(x) > min {go, A} 1r<r§1£1mm%n2 : <VJ1(n)f<1_L* a—xBVJ( x) > 0,

where

= _— 1— 7
5. = iy min {1~ s, up V7 + ). i, It V)

and gg is defined in Lemma [4.10| associated with J,. Thus, for x € D, it follows
that

li inf  (Vi(x, A)—VF
Rgnoo|x\>11r%l,x€D( (<23 + A) i (%))

> . . 2,
- ngrclxa |x|>11r%l,fxeD ( Z(X T3+ A) V (X))

o1 . - _g) . . (_)
> Jm ol (Vi + A) = Vilx) ) + Jimn(ViG9 - V0)
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>0,

since limp— 0 SUP|x|> RxeD (Vi (x) — ‘A/;(X)) = 0 by (4.14)). Thus we can choose a
small o such that

Vi(x',x3 + A —2po) > V*(x) inD.
In the domain R? \ D, we have
Vix',z3+ A —2p0) — Vi(x', 23+ A)
Uﬂ‘( (z3 + A —2po + p(ax’)/a))
- Vix', 23+ A —2p0) — Vi(x', 23+ A)
B (vy (%', 25+ A — 2,0(7))’&
S —2po fol Oy Vi(x w3 + A — 2poT)dr
B (vy (x/, 25+ A — 2,00))6i
_ —2p0< vy (X', 23+ A) ﬁz/ Oz, Vi(x/ 23+ A — 2poT)
vy (X, x3+A72p0 (vg (X', 3 + A))P

> 2p0_62N1p0'ﬂi /1 aIS‘/;(X7x3+A_2pUT)dT
0 (vy (x, 34+ A— 2p07))ﬁ1'

> —2;)(7§i = —0.

- 23p

In other other words,
Vi(x', 23+ A) < Vi(x', 235 + A — 2p0) + oUS" ( (x3 + A —2po + plax’ )/a))
Combining the above two cases, we obtain
Vi (x) < Vi(x', 23 + A — 2p0) + oUS' ( (x3 + A —2po + @(ax’ )/a))

for all x € R®. Then Lemma and the comparison principle yield

VA (x) < WH(X 23+ A —2p0,t;0), x€R® ¢>0.
Letting t — oo, we have

Vi (x) < Vi(x' 23+ A —2p0), xR

This contradicts the definition of A. Thus A = 0. The proof is complete. O

Theorem 4.12. Assume b > 0 and r > 1. Fiz a couple of p1,P2 € (0,5*) with
B2 < Bi. Assume that vo € C(R3,R?) with vo € [0,1], vo(x) > v~ (x) for x € R?
and

[vi,0(x) — Vio(x)]

lim sup =0, 1=12
V%0 e D(y) (v2(x))P
Then the solution of (1.2) with initial value vq satisfies
Jim [ (020))F poe@sy =0, i=12. (4.16)

Proof. Under the condition vp € [0, 1], the solution v(x,¢; vo) of (1.9) and (1.10) is
also the solution of (| and (L.F)), namely, v(x,t;vo) = v(x t; vo) For a random
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m > 1 and any given € > 0, by Proposition [I.4] Lemma [£.5] and Lemma [I.11] we
can choose a positive constant R such that
Vi) = = (v (x))* < Bi(x,5v7) S Vi), x| > R, i = 1,2
m
Vi) < il 5vF) S Vi) + —(vy ()%, x| = Ro, i = 1,2,
m

for any fixed ¢ > T™*. On the domain Bp,(0) = {x||x| < Ry}, applying the interior
Shauder estimate to 0;(x,t; v ) — V;(x) and 0;(x,t; v*t) — V;(x), and noticing that
v~ is bounded on Bp,(0), we have
~i ShvT) — V; )
lim  sup i v)ﬂ ()‘:O7
1= xeBg, (0) (va(x))P:

~i 7t1 ) - ‘/l )

lim  sup ‘v( V)B‘ ()’:0
1259 xe By (0) (va(x))7s
for ¢ = 1,2. Since m > 1 can be taken arbitrarily large, we have
’[)1(7{:7‘,7)_‘/1 li ﬂz(atav+)_‘/z

- im || -
t—o0 (v2(x))P t—=o0 (v2(x))P
fori=1,2. Let § € (0,%) and ¢ < min{e] (8), %2}. Taking o € (0,a* (e, B)) small
enough and using Lemma we have

vi(%, T*;v0) < Vi(x) + vy (%)) < of (%) +8(vy (%)%

A similar discussion as in [35] shows that

) ()
||L°°(]R3) =0, ||L°°(1R3) =0,

. ui(xtvT) = Vi(x) _
}E{}o ” (UQ(X))Q,, HLOO(]M) =0,
. vi(x,t;vo) — Vi(x)
Jim | (v2(x))P: | oo sy =0

for i = 1,2. Take ¢ large enough such that
vi(x, 1 v7) <vi(x, 5 vT) < Vi(x) +6(vy (x)%, t>1,i=1,2. (4.17)
Since wt(x, ;) is a supersolution, there exists a # > 0 such that
0i(x,t+ T + 13v0) < Vi(x, 25 + pd) + de P (3 (x))%, t>1, i=1,2.
Denote v9(x) = v (x', 23 + pd). Then Lemma implies that
V(X T+ T 414 1;v0) — v (x) < 8(vy (x))%, i=1,2.
Then by , we have
vi(X, 4+ T+ 14 1;v) < Vi(x, 23 + pd) + 26(vg (x))7.
Thus it follows from Lemma that
V(X t+ T4+ T +1+1;vy) < WHX, 23 + pd, t;25).
Therefore, by letting ¢ — co we have
Vi(x) < wi(x,t;vo) < Vi(x', @3 + pd + 2p6) + 26(v; (x))™,
0 < s(x, t;v0) — Vi(x) < Vi, + pb + 206) — Vi(x) + 28(v; (x))”
0. Vi(x!, x5 + 3p07) (v5 (X, x5 + 3pd7))5
< i 0 (o
< (v (%)% (M.esNi353p 1 2) 5,

+ 25)
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where 7 € (0,1) and

Because of the arbitrariness of §, (4.16]) follows. Thus the proof is complete. O
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