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DIRICHLET PROBLEM FOR SECOND-ORDER ABSTRACT

DIFFERENTIAL EQUATIONS

GIOVANNI DORE

Abstract. We study the well-posedness in the space of continuous functions

of the Dirichlet boundary value problem for a homogeneous linear second-

order differential equation u′′ + Au = 0, where A is a linear closed densely
defined operator in a Banach space. We give necessary conditions for the well-

posedness, in terms of the resolvent operator of A. In particular we obtain an

estimate on the norm of the resolvent at the points k2, where k is a positive
integer, and we show that this estimate is the best possible one, but it is not

sufficient for the well-posedness of the problem. Moreover we characterize the
bounded operators for which the problem is well-posed.

1. Introduction

We consider the Dirichlet boundary value problem

u′′(t) +Au(t) = 0 , t ∈ [0, π] ,

u(0) = x0 ,

u(π) = xπ .

where A is a linear closed densely defined operator in a (real or complex) Banach
space. We are interested in the uniform well-posedness of the problem in the sense
of continuous functions, that is we ask that for every x0, xπ in the domain of A
there exists a unique solution u such that Au and u′′ are continuous; moreover we
require that the solution depends continuously on the boundary values.

Unlike most of the articles about abstract Dirichlet problems, we do not suppose
that −A is a positive operator. We give some necessary conditions for the uniform
well-posedness in terms of the resolvent operator of A, in particular we prove that
if the problem is uniformly well-posed then k2 belongs to the resolvent set of A for
every positive integer k and (k2I − A)−1 has norm bounded by C/k for a suitable
C ∈ R+. We give examples showing that this is the best possible estimate of the
resolvent, but it is not sufficient for the well-posedness.

Finally we show that if A is bounded then there is uniform well-posedness if and
only if k2 belongs to the resolvent set of A for every positive integer k.

The Dirichlet problem for an abstract second order equation (homogeneous or
non-homogeneous) has been studied in various papers. Usually it is supposed that
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−A is a positive operator, we refer to Section 4 of the review paper [2], and the
articles quoted therein.

In [1] and [3] maximal regularity in the Lp sense for the Dirichlet problem for
the non-homogeneous equation u′′ +Au = f is characterized.

In [3] it is supposed that A = −B2, where B is the generator of an exponentially
stable analytic semigroup. They prove (see Corollary 3.4) that, if there is maximal
Lp regularity for the Cauchy problem for the first order equation u′ − Bu = f ,
then there is maximal Lp regularity for the Dirichlet problem. In UMD spaces the
converse implication holds.

In [1, Theorem 6.3] the authors prove that if A is an arbitrary closed operator
in a UMD space, then there is maximal Lp regularity for the Dirichlet problem if
and only if k2 belongs to the resolvent set of A for every positive integer k and{
k2(k2I −A)−1

∣∣ k ∈ N
}

is R-bounded.
We recall also [6] and [5] where the existence of solutions of the Dirichlet problem

for particular boundary values is studied under the hypothesis that A is a positive
self-adjoint operator in a Hilbert space.

This paper is organized as follows. In Section 2 we show that the uniform
well-posedness of the Dirichlet problem is equivalent to the existence of a suitable
strongly continuous operator valued function. In Section 3 we give necessary condi-
tions for the uniform well-posedness. Section 4 contains two examples showing that
the estimate on the norm of the resolvent operator of A obtained in Theorem 3.1 is
the best possible one, but it is not sufficient to ensure the uniform well-posedness.
In Section 5 we characterize uniform well-posedness in case A is a bounded operator.

2. Well-posed problems

In what follows X will be a Banach space over the field K (real or complex
numbers) and A a closed linear operator from D(A) ⊆ X to X with dense domain;
ρ(A) will denote the resolvent set of A. We denote with L(X) the space of linear
bounded operators in X. Finally N will denote the set of positive integers and N0

the set of non-negative integers.
We study the second-order abstract differential equation

u′′(t) +Au(t) = 0 , t ∈ [0, π] , (2.1)

and the Dirichlet boundary value problem for this equation

u′′(t) +Au(t) = 0 , t ∈ [0, π] ,

u(0) = x0 ,

u(π) = xπ .

(2.2)

We call solution of equation (2.1) a function v : [0, π]→ X such that

(1) v ∈ C2
(
[0, π], X

)
∩ C

(
[0, π],D(A)

)
;

(2) for all t ∈ [0, π], v′′(t) +Av(t) = 0.

We call solution of problem (2.2) a solution v of equation (2.1) such that v(0) = x0
and v(π) = xπ.

Obviously a solution of this problem can exist only if x0, xπ ∈ D(A).
We say that problem (2.2) is uniformly well-posed if

(1) for all x0, xπ ∈ D(A), problem (2.2) has solution;
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(2) there exists C ∈ R+ such that for any solution v of equation (2.1) we have

sup
t∈[0,π]

‖v(t)‖ ≤ C
(
‖v(0)‖+ ‖v(π)‖

)
.

Condition (2) implies the uniqueness of the solution of problem (2.2).

Theorem 2.1. Let X be a Banach space and A be a linear closed densely defined
operator in X. Problem (2.2) is uniformly well-posed if and only if there exists
S : [0, π]→ L(X) such that:

(1) for all x ∈ X, the function S(·)x is continuous;
(2) for all x ∈ X, we have S(0)x = 0, S(π)x = x;
(3) for all x ∈ D(A), the function S(·)x is solution of equation (2.1);
(4) if v : [0, π]→ X is solution of equation (2.1), then

v(t) = S(t)v(π) + S(π − t)v(0) .

Proof. Suppose that problem (2.2) is uniformly well-posed. If x ∈ D(A), let v be
the unique solution of the problem

u′′(t) +Au(t) = 0 , t ∈ [0, π] ,

u(0) = 0 ,

u(π) = x ;

for t ∈ [0, π] put S̃(t)x = v(t). Then S̃(t) is a linear operator from D(A) to
X and, because of the uniform well-posedness, there exists C ∈ R+ such that∥∥S̃(t)x

∥∥ ≤ C‖x‖, for every x ∈ D(A). Since D(A) is dense in X, S̃(t) can be ex-

tended to a bounded linear operator S(t) from X to X and
∥∥S(t)

∥∥ ≤ C. Obviously
S satisfies conditions (2) and (3).

If v is solution of equation (2.1) then it is solution of the Dirichlet problem

u′′(t) +Au(t) = 0 , t ∈ [0, π] ,

u(0) = v(0) ,

u(π) = v(π) .

The function t 7→ S(t)v(π) + S(π − t)v(0) is solution of the same problem, hence,
by the uniqueness of the solution, we have

v(t) = S(t)v(π) + S(π − t)v(0) .

Therefore (4) is satisfied.
If x ∈ D(A) the function S(·)x is solution of equation (2.1), hence it is continuous.

If x ∈ X there is a sequence (xn)n∈N in D(A) converging to x. The functions S(·)xn
are continuous and

sup
t∈[0,π]

∥∥S(t)xn − S(t)x
∥∥ ≤ C‖xn − x‖ −−−−→

n→∞
0 .

Since it is the uniform limit of continuous functions S(·)x is continuous. Therefore
condition (1) is satisfied.

Conversely suppose that there exists S satisfying conditions (1)–(4). Since, for
all x ∈ X, the function S(·)x is continuous, it is bounded, hence by the uniform
boundedness principle

{
S(t)

∣∣ t ∈ [0, π]
}

is bounded, therefore there exists C ∈ R+

such that
∥∥S(t)

∥∥ ≤ C, for all t ∈ [0, π].
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If x0, xπ ∈ D(A), let

v : [0, π]→ X , v(t) = S(t)xπ + S(π − t)x0 .

By (3) v ∈ C2
(
[0, π], X

)
∩ C

(
[0, π],D(A)

)
, and for all t ∈ [0, π] we have

v′′(t) +Av(t) = S′′(t)xπ + S′′(π − t)x0 +AS(t)xπ +AS(π − t)x0 = 0 ;

moreover, by (2)

v(0) = S(0)xπ + S(π)x0 = x0 , v(π) = S(π)xπ + S(0)x0 = xπ .

Hence problem (2.2) has solution.
From (4) and the estimate

∥∥S(t)
∥∥ ≤ C it follows that if v is solution of equation

(2.1) then

‖v(t)‖ =
∥∥S(t)v(0) + S(π − t)v(0)

∥∥
≤
∥∥S(t)

∥∥ ‖v(0)‖+
∥∥S(π − t)

∥∥ ‖v(π)‖
≤ C

(
‖v(0)‖+ ‖v(π)‖

)
.

Hence problem (2.2) is uniformly well-posed. �

Theorem 2.2. Let X be a Banach space and A be a linear closed densely defined
operator in X. If problem (2.2) is uniformly well-posed, then, for all m ∈ N \ {1},
the same problem is uniformly well-posed for the operator m−2A.

Proof. Let S be the strongly continuous operator valued function whose existence
is guaranteed by Theorem 2.1. Let T : [0, π] → L(X) defined as follows. If m is
even

T (t) =

m/2∑
j=1

(
S
( (2j − 1)π + t

m

)
− S

( (2j − 1)π − t
m

))
, (2.3)

if m is odd

T (t) =

(m−1)/2∑
j=1

(
S
(2jπ + t

m

)
− S

(2jπ − t
m

))
+ S

( t
m

)
. (2.4)

It is easy to verify that T satisfies conditions (1)–(3) of Theorem 2.1 with respect
to the operator m−2A.

To prove that also condition (4) is satisfied it is sufficient to show that the unique
solution of the problem

u′′(t) +
1

m2
Au(t) = 0 , t ∈ [0, π] ,

u(0) = 0 ,

u(π) = 0 ,

is the identically zero function.
Suppose that v ∈ C2

(
[0, π], X

)
∩ C

(
[0, π],D(A)

)
is solution of this problem.

Let w : R → X be the 2π-periodic repetition of the odd extension of v. Since
v(0) = v(π) = 0, w ∈ C1(R, X) ∩ C(R,D(A)). Moreover w is twice continuously
differentiable in R \ {jπ | j ∈ Z}, with second derivative equal to −m−2Aw. In
the points jπ the second derivative from the left and the second derivative from
the right are both equal to −m−2Aw(jπ) = 0, hence w is twice differentiable also
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at these points and w ∈ C2(R, X) ∩ C(R,D(A)). Let z : [0, π] → X be defined by
z(t) = w(mt). Then z is solution of the problem

u′′(t) +Au(t) = 0 , t ∈ [0, π] ,

u(0) = 0 ,

u(π) = 0 ;

hence it is identically zero. Therefore v = 0. �

3. Necessary conditions

In this section we give necessary conditions for the uniform well-posedness of
problem (2.2) in terms of the resolvent operator of A. First of all we have a
condition on the resolvent set and an estimate of the resolvent operator of A.

Theorem 3.1. Let X be a Banach space and A be a linear closed densely defined
operator in X such that problem (2.2) is uniformly well-posed. Then for all k ∈ N,
k2 ∈ ρ(A) and there exists C ∈ R+ such that, for all k ∈ N,∥∥(k2I −A)−1

∥∥ ≤ C

k
. (3.1)

The fact that k2 does not belongs to the point spectrum of A is a particular case
of [4, Theorem 1].

Proof. Let S be the operator valued function whose existence is guaranteed by
Theorem 2.1 and C = supt∈[0,π]

∥∥S(t)
∥∥.

For k ∈ N the operator k2I − A is injective. Indeed if x ∈ D(A) is such that
k2x = Ax, it is easy to check that the function t 7→ sin(kt)x is solution of the
problem

u′′(t) +Au(t) = 0 , t ∈ [0, π] ,

u(0) = 0 ,

u(π) = 0 .

The unique solution of this problem is the identically zero function, hence x = 0.
For k ∈ N and x ∈ X let

Rkx =
(−1)k+1

k

∫ π

0

sin(ks)S(s)x ds .

In this way an operator Rk ∈ L(X) is defined; moreover

‖Rkx‖ ≤
1

k

∫ π

0

| sin(ks)|
∥∥S(s)x

∥∥ ds ≤ 1

k

∫ π

0

| sin(ks)|C‖x‖ ds =
2C

k
‖x‖ ,

hence ‖Rk‖ ≤ 2C/k. For all x ∈ D(A) we have

ARkx =
(−1)k+1

k

∫ π

0

sin(ks)AS(s)x ds =
(−1)k

k

∫ π

0

sin(ks)S′′(s)x ds

=
(−1)k

k

[
sin(ks)S′(s)x

]π
0
− (−1)k

∫ π

0

cos(ks)S′(s)x ds

= −(−1)k
[
cos(ks)S(s)x

]π
0
− (−1)kk

∫ π

0

sin(ks)S(s)x ds

= −x+ k2Rkx .
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If x ∈ X let (xn)n∈N be a sequence in D(A) converging to x. Then Rkxn → Rkx
and ARkxn → −x + k2Rkx. Since A is closed this proves that Rkx ∈ D(A) and
ARkx = −x+ k2Rkx. Hence, for all x ∈ X, we have (k2I −A)Rkx = x. Therefore
Rk is a right inverse of k2I −A.

To prove that it is also a left inverse, observe that if x ∈ D(A) then

(k2I −A)Rk(k2 −A)x = (k2I −A)x ,

hence Rk(k2 −A)x = x since k2I −A is injective.
Therefore k2I −A is invertible and (k2I −A)−1 = Rk. This proves the theorem.

�

To prove another necessary condition, we need a result about Fourier series.

Lemma 3.2. The series of functions
∑∞
k=1

(
(−1)k+1/k

)
sin(kt) converges pointwise

for t ∈ [0, π], the sequence of partial sums is uniformly bounded and

∞∑
k=1

(−1)k+1

k
sin(kt) =


1
2 t , if 0 ≤ t < π ,

0 if t = π .

Proof. We have
∞∑
k=1

(−1)k+1

k
sin(kt) =

∞∑
k=1

1

k
sin
(
k(π − t)

)
and the convergence of this series is proved in [9, Chapter I, (2.8)]; the uniform
boundedness of the partial sums of this series is proved in [9, Chapter II, Section 9].

�

Theorem 3.3. Let X be a Banach space and A be a linear closed densely defined
operator in X such that problem (2.2) is uniformly well-posed. Then for all m ∈ N
the series

∑∞
k=1

(
(mk)2I −A

)−1
converges in operator norm.

Moreover, if S is the operator valued function introduced in Theorem 2.1, then
∞∑
k=1

(
k2I −A

)−1
x =

1

2

∫ π

0

tS(t)x dt

and, for m ∈ N \ {1},
∞∑
k=1

(
(mk)2I−A

)−1
x =

1

2

∫ π

0

tS(t)x dt− (m− 2j + 1)π

2m

[m/2]∑
j=1

∫ (m−2j+2)π/m

(m−2j)π/m
S(t)x dt

Proof. From the proof of Theorem 3.1 we know that for all k ∈ N and for all x ∈ X

(k2I −A)−1x =
(−1)k+1

k

∫ π

0

sin(kt)S(t)x dt ,

Then ∥∥∥ k∑
j=1

(
j2I −A

)−1
x− 1

2

∫ π

0

tS(t)x dt
∥∥∥

=
∥∥∥∫ π

0

k∑
j=1

(−1)j+1

j
sin(jt)S(t)x dt− 1

2

∫ π

0

tS(t)x dt
∥∥∥
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≤
∫ π

0

∥∥∥( k∑
j=1

(−1)j+1

j
sin(jt)− 1

2
t
)
S(t)x

∥∥∥ dt
≤
∫ π

0

∣∣∣ k∑
j=1

(−1)j+1

j
sin(jt)− 1

2
t
∣∣∣ dt C‖x‖.

By Lemma 3.2 the series
∑∞
j=1

(
(−1)j+1/j

)
sin(jt) converges pointwise to t/2 and

the partial sums are uniformly bounded. Therefore, by the dominated convergence
theorem, the integral tends to 0 as k tends to∞. This proves the theorem if m = 1.

By Theorem 2.2 the same is true for the operator m−2A. Since(
k2I −m−2A

)−1
= m2

(
(mk)2I −A

)−1
,

the series
∑∞
k=1

(
(mk)2I − A

)−1
converges in operator norm. The expression of

the sum of the series can easily be obtained from what we have just proved and
equalities (2.3) and (2.4). �

4. Examples

In this section we see two examples showing that the estimate of the resolvent
stated in Theorem 3.1 cannot be improved but it is not sufficient to guarantee the
uniform well-posedness. For the first example we need two lemmas.

Lemma 4.1. Let K : [0, π]2 → R be such that

K(t, s) =

{
(t−π)s
π , if s ≤ t,

t(s−π)
π , if s > t.

(1) If f ∈ C
(
[0, π], X

)
then the function z : [0, π]→ X such that

z(t) =

∫ π

0

K(t, s)f(s) ds

belongs to C2
(
[0, π], X

)
, with z′′ = f and z(0) = z(π) = 0.

(2) If z ∈ C2
(
[0, π], X

)
, with z(0) = z(π) = 0 then, for all t ∈ [0, π], we have

z(t) =

∫ π

0

K(t, s)z′′(s) ds .

The proof of the above lemma is an easy consequence of the fundamental theorem
of calculus.

Lemma 4.2. Let (vk)k∈N be a sequence in C2
(
[0, π], X) such that

(1) (vk)k∈N converges pointwise to v ∈ C
(
[0, π], X);

(2) (v′′k )k∈N converges uniformly to w ∈ C
(
[0, π], X).

Then v ∈ C2
(
[0, π], X) and v′′ = w.

Proof. Let

zk : [0, π]→ X , zk(t) = vk(t)− π − t
π

vk(0)− t

π
vk(π) .

We have zk(0) = zk(π) = 0 and z′′k = v′′k . Hence, by Lemma 4.1, for all t ∈ [0, π],
we have

vk(t) = zk(t) +
π − t
π

vk(0) +
t

π
vk(π)



8 G. DORE EJDE-2020/107

=

∫ π

0

K(t, s)v′′k (s) ds+
π − t
π

vk(0) +
t

π
vk(π) .

By (2) we can pass to the limit under the integral sign, hence

v(t) =

∫ π

0

K(t, s)w(s) ds+
π − t
π

v(0) +
t

π
v(π) .

Therefore, by Lemma 4.1, v is twice differentiable and v′′ = w. �

Example 4.3. Let X = `p(N,K), with 1 ≤ p <∞. Choose α such that 0 < α < 1
and let A be the operator in X defined by

D(A) =
{
x ∈ X

∣∣ (n2xn)n∈N ∈ X
}
, (Ax)n = (n− α)2xn .

The operator A is linear, it is easy to prove that it is closed and has dense domain,
since the domain contains the eventually zero sequences.

For t ∈ [0, π] let

S(t) : X → X ,
(
S(t)x

)
n

=
sin
(
(n− α)t

)
sin
(
(n− α)π

) xn .
We prove that S satisfies conditions (1)–(4) of Theorem 2.1, hence the Dirichlet
problem for the operator A is uniformly well-posed. Since

∞∑
n=1

∣∣∣ sin
(
(n− α)t

)
sin
(
(n− α)π

) xn∣∣∣p ≤ ∞∑
n=1

1(
sin(απ)

)p |xn|p ,
S(t) ∈ L(X) with ∥∥S(t)

∥∥ ≤ (sin(απ)
)−1

. (4.1)

A similar argument shows that if x ∈ D(A) then S(t)x ∈ D(A). Moreover we have
AS(t)x = S(t)Ax.

The function
(
S(·)x

)
n

is continuous, for every x ∈ X and n ∈ N; therefore if x is

an eventually zero sequence then S(·)x is continuous. If x ∈ X then it is the limit
of a sequence of eventually zero elements of X, hence, by estimate (4.1), S(·)x is
the uniform limit of a sequence of continuous functions, therefore it is continuous.
This proves (1).

Property (2) is obvious.
The function

(
S(·)x

)
n

is of class C2, for every x ∈ X and n ∈ N, and

d2

dt2
(
S(t)x

)
n

=
d2

dt2

( sin
(
(n− α)t

)
sin
(
(n− α)π

) xn) = −(n− α)2
sin
(
(n− α)t

)
sin
(
(n− α)π

) xn .
Therefore if x ∈ D(A) then

d2

dt2
(
S(t)x

)
n

= −
(
AS(t)x

)
n
.

Hence if x is eventually zero then S(·)x is solution of equation (2.1). Now let
x ∈ D(A) and, for m ∈ N, let x(m) ∈ X such that(

x(m)
)
n

=

{
xn , for n ≤ m,

0 , for n > m .

We have

sup
t∈[0,π]

∥∥S(t)x(m) − S(t)x
∥∥ ≤ sup

t∈[0,π]

∥∥S(t)
∥∥∥∥x(m) − x

∥∥
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≤ 1

sin(απ)

( ∞∑
n=m+1

|xn|p
)1/p

−−−−→
m→∞

0 ,

and

sup
t∈[0,π]

∥∥S(t)Ax(m) − S(t)Ax
∥∥ ≤ sup

t∈[0,π]

∥∥S(t)
∥∥ ∥∥Ax(m) −Ax

∥∥
≤ 1

sin(απ)

( ∞∑
n=m+1

(n− α)2p|xn|p
)1/p

−−−−→
m→∞

0 .

Hence the sequence of functions S(·)x(m) converges uniformly to S(·)x and the se-
quence S′′(·)x(m) = −AS(·)x(m) = −S(·)Ax(m) converges uniformly to the function
−S(·)Ax = −AS(·)x. By Lemma 4.2 S(·)x ∈ C2

(
[0, π], X

)
and S′′(·)x = −AS(·)x.

Therefore (3) is satisfied.
If v : [0, π]→ X is solution of equation (2.1), then for all n ∈ N we have

v′′n(t) + (n− α)2vn(t) = 0 .

The functions t 7→ sin
(
(n − α)t

)
and t 7→ sin

(
(n − α)(π − t)

)
are two linearly

independent solutions of this equation, therefore there exist c1, c2 ∈ K such that

vn(t) = c1 sin
(
(n− α)t

)
+ c2 sin

(
(n− α)(π − t)

)
.

By putting t = π or t = 0 in this equality we get

c1 =
vn(π)

sin
(
(n− α)π

) , c2 =
vn(0)

sin((n− α)π
) ,

hence

vn(t) =
sin
(
(n− α)(π − t)

)
sin
(
(n− α)π

) vn(0) +
sin
(
(n− α)t

)
sin
(
(n− α)π

) vn(π) ,

that is

v(t) = S(π − t)v(0) + S(t)v(π) .

Therefore (4) is satisfied.
If k ∈ N it is easy to check that k2I − A is invertible and, for all x ∈ X, for all

n ∈ N, (
(k2 −A)−1x

)
n

=
1

k2 − (n− α)2
xn .

If we denote with ek the k-th element of the canonical basis of X, we have∥∥(k2 −A)−1
∥∥ ≥ ∥∥(k2 −A)−1ek

∥∥ =
1

k2 − (k − α)2
=

1

2kα− α2
≥ 1

2kα
.

Therefore estimate (3.1) is the best possible one with respect to the dependence
on k. Moreover the best constant C can be arbitrarily large.

The next example is based on the results of [8]. We recall some facts from that
article.

Let X be a Banach space and (yn)n∈N be a basis of X. We denote with Pn the
n-th projection operator associated with this basis, i.e. Pn ∈ L(X) is such that,
for all x ∈ X, we have x =

∑∞
n=1 Pn(x)yn. By the uniform boundedness principle

M0 = supn∈N
∥∥∑n

k=1 Pn
∥∥ <∞.
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We associate with every scalar valued sequence a = (an)n∈N a linear operator A
in X defined by

D(A) =
{
x ∈ X

∣∣ ∞∑
n=1

anPn(x)yn is convergent
}
,

Ax =

∞∑
n=1

anPn(x)yn .

Let a be a scalar valued bounded sequence; we set ‖a‖∞ = supn∈N |an| and
V (a) =

∑∞
n=1 |an+1 − an|. We denote with BV the space of the sequences of

bounded variation, i.e. such that V (a) <∞.

Lemma 4.4 ([8, Lemma 2.4]). Let a be a scalar valued sequence. Then the operator
A associated with a is densely defined and closed. Moreover if a ∈ BV , then
A ∈ L(X), with ‖A‖ ≤M0

(
‖a‖∞ + V (a)

)
.

Lemma 4.5 ([8, Lemma 2.5]). Let a be a scalar valued sequence, A be the oper-
ator associated with a and λ ∈ K \ {an |n ∈ N}. Then λI − A is one-to-one and
(λI −A)−1 is the operator associated with the sequence

(
(λ− an)−1

)
n∈N. In par-

ticular λ ∈ ρ(A) if and only if for all x ∈ X the series
∑∞
n=1(λ− an)−1Pn(x)yn is

convergent.

We say that the basis (yn)n∈N of the Banach space X is unconditional if, for all
x ∈ X, the series

∑∞
n=1 Pn(x)yn is unconditionally convergent. Otherwise we say

that the basis is conditional (see [7, Chapter II, Definition 14.1]).
Every Banach space with a basis has an unconditional basis (see [7, Chapter II,

Theorem 23.2]).

Lemma 4.6 ([7, Chapter II, Theorem 16.1, 1⇔ 8]). Let (yn)n∈N be a conditional
basis of the space X. Then there exists x ∈ X and a sequence (εn)n∈N in {−1, 1}
such that

sup
n∈N

∥∥∥ n∑
j=1

εjPj(x)
∥∥∥ =∞ .

Example 4.7. Let X be a Banach space with a conditional basis (yn)n∈N and let
Pn be the n-th projection operator associated with this basis.

Let (`n)n∈N be a sequence of non-negative integers, unbounded and such that
`1 = 0 and `n+1 − `n ∈ {0, 1}. Set

an =
(

2`n +
1

2

)2
and let A be the operator associated with the sequence (an)n∈N. By Lemma 4.4,
A is closed and densely defined.

We prove that A satisfies the conditions of Theorem 3.1. Let k ∈ N. For every
n ∈ N we have an 6= k2, hence, by Lemma 4.5, (k2I − A) is one-to-one and, if we
set bn = 1/(k2−an), then (k2I−A)−1 is the operator associated with the sequence
(bn)n∈N. For every ` ∈ N we have∣∣∣k2 − (2`+

1

2

)2∣∣∣ ≥ ∣∣∣k2 − (k − 1

2

)2∣∣∣ = k − 1

4
,

hence

‖b‖∞ =
1

infn∈N |k2 − an|
≤ 1

k − (1/4)
.
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Let n = max{n ∈ N | 2`n < k}; the sequence bn is positive and non-decreasing for
1 ≤ n ≤ n while is negative and non-decreasing for n ≥ n+ 1. Hence

V (b) =

∞∑
n=1

|bn+1 − bn|

=

n−1∑
n=1

(bn+1 − bn) + bn − bn+1 +

∞∑
n=n+1

(bn+1 − bn)

= bn − b1 + bn − bn+1 + lim
n→∞

bn − bn+1

≤ 2bn − 2bn+1 ≤
4

k − (1/4)
.

Therefore, by Lemmas 4.4 and 4.5, k ∈ ρ(A) and there exists C ∈ R+ such that∥∥(k2I −A)−1
∥∥ ≤ C/k.

Now we prove that A satisfies the condition of Theorem 3.3 with m = 1, that is
the series

∑∞
k=1(k2I −A)−1 converges in operator norm.

First of all for all k ∈ N and all n ∈ N0 we have

∞∑
j=k

1

j2 −
(
n+ (1/2)

)2 = lim
p→∞

p∑
j=k

1

j2 −
(
n+ (1/2)

)2
=

1

2n+ 1
lim
p→∞

p∑
j=k

( 1

j − n− (1/2)
− 1

j + n+ (1/2)

)

=
1

2n+ 1
lim
p→∞

( p−n∑
`=k−n

1

`− (1/2)
−

p+n+1∑
`=k+n+1

1

`− (1/2)

)

=
1

2n+ 1
lim
p→∞

( k+n∑
`=k−n

1

`− (1/2)
−

p+n+1∑
`=p−n+1

1

`− (1/2)

)

=
1

2n+ 1

k+n∑
`=k−n

1

`− (1/2)
.

Hence
∞∑
j=k

1

j2 −
(
n+ (1/2)

)2 =
1

2n+ 1

k+n∑
`=k−n

1

`− (1/2)
; (4.2)

in particular

∞∑
j=1

1

j2 −
(
n+ (1/2)

)2 =
1

2n+ 1

1+n∑
`=1−n

1

`− (1/2)
=

2

(2n+ 1)2
,

where the last equality can be easily proved by induction on n. Therefore, for all
n ∈ N, we have

∞∑
j=1

1

j2 −
(
2`n + (1/2)

)2 =
2

(4`n + 1)2
.

Let B be the operator in X associated with the sequence
(
2/
(
4`n + 1

)2)
n∈N.

This sequence is non-negative and decreasing, hence it is bounded and has bounded
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variation, therefore, by Lemma 4.4, B is bounded. We prove that
∞∑
k=1

(k2I −A)−1 = B .

The operator B −
∑k−1
j=1 (j2I − A)−1 is associated with the sequence whose n-th

term, taking into account (4.2), is

2(
4`n + 1

)2 − k−1∑
j=1

1

j2 −
(
2`n + (1/2)

)2 =

∞∑
j=k

1

j2 −
(
2`n + (1/2)

)2
=

1

4`n + 1

k+2`n∑
j=k−2`n

1

j − (1/2)
,

If we put

Ck,` =
1

2`+ 1

k+∑̀
j=k−`

1

j − (1/2)
,

we have to prove that the sequence (Ck,2`n)n∈N has least upper bound and variation
converging to 0 as k → 0. Obviously

sup
n∈N
|Ck,2`n | ≤ sup

`∈N0

|Ck,`| .

Moreover, since `n+1− `n ∈ {0, 1} each difference Ck,2`n+1
−Ck,2`n either is null or

is equal to Ck,2`+2 − Ck,2` for a suitable ` ∈ N0. Hence

∞∑
n=1

|Ck,2`n+1
− Ck,2`n | ≤

∞∑
`=0

|Ck,2`+2 − Ck,2`| ≤
∞∑
`=0

|Ck,`+1 − Ck,`| .

For all k ∈ N and ` ∈ N0 we have Ck,` > 0. Indeed, if ` < k then Ck,` > 0, since
each term in the sum is positive. If ` ≥ k then

k+∑̀
j=k−`

1

j − (1/2)
=

`−k+1∑
j=k−`

1

j − (1/2)
+

k+∑̀
j=`−k+2

1

j − (1/2)
=

k+∑̀
j=`−k+2

1

j − (1/2)
> 0 .

If we put ck,j = 1/
(
k + j − (1/2)

)
, we have

ck,−j + ck,j =
2k − 1(

k − (1/2)
)2 − j2

Hence it is easy to prove that

2ck,0 < ck,−1 + ck,1 < ck,−2 + ck,2 < · · · < ck,−k+1 + ck,k−1

and, if k ≤ j, ck,−j + ck,j < 0.
We observe that Ck,` is the mean of ck,−`, ck,−`+1, . . . , ck,`−−, ck,` and Ck,`+1 is

the mean of the same numbers plus ck,−`−1 and ck,`+1. If ` + 1 < k the mean of
ck,−`−1 and ck,`+1 is greater then the mean of ck,−`, . . . , ck,`, hence Ck,`+1 > Ck,`. If
`+1 ≥ k the mean of ck,−`−1 and ck,`+1 is negative, while the mean of ck,−`, . . . , ck,`
is positive, hence Ck,`+1 < Ck,`. Therefore sup{Ck,` | ` ∈ N0} = Ck,k−1.

Moreover
∞∑
`=0

|Ck,`+1 − Ck,`| =
k−2∑
`=0

(Ck,`+1 − Ck,`) +

∞∑
`=k−1

(Ck,` − Ck,`+1)
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= Ck,k−1 − Ck,0 + Ck,k−1 − lim
`→∞

Ck,`+1

< 2Ck,k−1 .

Since

Ck,k−1 =
1

2k − 1

2k−1∑
j=1

1

j − (1/2)

≤ 1

2k − 1

(
2 +

∫ 2k−1

1

1

x− (1/2)
dx
)

=
1

2k − 1

(
2 + log(4k − 3)

)
−−−−→
k→∞

0 ,

the statement about the sequence (Ck,`n)n∈N is proved.
Let v : [0, π]→ X be a solution of equation (2.1). Then for all n ∈ N we have

d2

dt2
Pn
(
v(t)

)
= Pn

(
v′′(t)

)
= −Pn

(
Av(t)

)
= −anPn

(
v(t)

)
.

Hence the function Pn ◦ v is solution of the equation u′′(t) + anu(t) = 0, that is

u′′(t) +
(
2`n + (1/2)

)2
u(t) = 0. Hence there exist c1, c2 ∈ K such that

Pn
(
v(t)

)
= c1 sin

((
2`n +

1

2

)
(π − t)

)
+ c2 sin

((
2`n +

1

2

)
t
)
.

Obviously we have c1 = Pn
(
v(0)

)
, c2 = Pn

(
v(π)

)
.

Now we choose a particular sequence (`n)n∈N. By Lemma 4.6, there exist x ∈ X
and a sequence (εn)n∈N, in {−1, 1} such that

sup
n∈N

∥∥∥ n∑
k=1

εkPk(x)
∥∥∥ =∞ .

The sequence (εn)n∈N can be chosen such that ε1 = 1. We put ε0 = 1 and, for n ∈ N,
`n = (1/2)

∑n
k=1 |εk−εk−1|. In this way we have defined a non-decreasing sequence

of integer numbers, with `1 = 0 and `n+1− `n ∈ {0, 1}. Since the sequence (εn)n∈N
must have an infinite number of changes of sign, the sequence `n is unbounded.
Moreover it is easy to show, by induction, that, for all n ∈ N, we have (−1)`n = εn.

If v is solution of the problem

u′′(t) +Au(t) = 0 ,

u(0) = 0 ,

u(π) = x ,

(4.3)

then

Pn
(
v(t)

)
= sin

((
2`n +

1

2

)
t
)
Pn(x) ,

hence

Pn

(
v
(π

2

))
= sin

(
`nπ +

π

4

)
Pn(x) =

(−1)`n√
2

Pn(x) =
εn√

2
Pn(x) .

Since the series
∑∞
k=1 εkPk(x) doesn’t converge, problem (4.3) doesn’t have solu-

tion.
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5. Bounded operators

If the operator A is bounded there is a simple characterization of uniform well-
posedness of the Dirichlet problem. For the proof of the theorem we need a result
about Fourier series.

Lemma 5.1. The series of functions
∑∞
k=1

(
(−1)k+1/k3

)
sin(kt) converges uni-

formly for t ∈ [0, π] and

2

π

∞∑
k=1

(−1)k+1

k3
sin(kt) =

π

6
t− 1

6π
t3 .

Proof. The uniform convergence of the series is obvious, since it is uniformly esti-
mated by the harmonic series of exponent 3. Let

f : [−π, π]→ R , f(t) =
π

6
t− 1

6π
t3 .

It is easy to show that, for all k ∈ N, we have∫ π

0

f(t) sin(kt) dt =
(−1)k+1

k3
.

Hence the Fourier coefficients of the odd function f are equal to 2(−1)k+1/(πk3)
(see [9] Chapter I, (4.8)). Since f ∈ C1

(
[−π, π],R

)
and its 2π-periodic repetition

has the same regularity, by [9, Chapter II,Theorem (8.1)] its Fourier series converges
to f . �

Theorem 5.2. Let X be a Banach space and A ∈ L(X). Problem (2.2) is uniformly
well-posed if and only if {k2 | k ∈ N} ⊆ ρ(A).

Proof. The necessity of the condition is a consequence of Theorem 3.1.
We prove that, if {k2 | k ∈ N} ⊆ ρ(A), there exists S : [0, π]→ X that satisfies

conditions (1)–(4) of Theorem 2.1; hence problem (2.2) is uniformity well-posed.
It is well known that if λ ∈ K is such that |λ| > ‖A‖ then λ ∈ ρ(A) and

(λI −A)−1 =
∑∞
n=0 λ

−n−1An, hence∥∥(λI −A)−1
∥∥ ≤ ∞∑

n=0

|λ|−n−1‖A‖n =
1

|λ| − ‖A‖
.

Therefore there exists M ∈ R+ such that, for all k ∈ N, we have∥∥(k2I −A)−1
∥∥ ≤ M

k2
.

For t ∈ [0, π] and x ∈ X put

S(t)x =
2

π

∞∑
k=1

(−1)k+1

k3
sin(kt) (k2I −A)−1A2x+

(π
6
t− 1

6π
t3
)
Ax+

t

π
x .

We have∥∥S(t)x
∥∥

≤ 2

π

∞∑
k=1

1

k3
| sin(kt)|

∥∥(k2I −A)−1
∥∥ ‖A‖2‖x‖+

(π
6
t− 1

6π
t3
)
‖A‖ ‖x‖+

t

π
‖x‖

≤ 2

π

∞∑
k=1

M

k5
‖A‖ ‖x‖+

π2

6
‖A‖ ‖x‖+ ‖x‖ = C‖x‖ .
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Hence S(t) ∈ L(X). This estimate shows also that the series is uniformly conver-
gent, therefore the function S(·)x is continuous. Hence (1) is satisfied.

Obviously (2) is satisfied.
It is easy to check that the series of first and second derivatives are uniformly

convergent, hence S(·)x ∈ C2
(
[0, π], X

)
and, for all t ∈ [0, π],

S′′(t) +AS(t)

=
2

π

∞∑
k=1

(−1)k

k3
sin(kt)k2(k2I −A)−1A2x− t

π
Ax

+
2

π

∞∑
k=1

(−1)k+1

k3
sin(kt)A(k2I −A)−1A2x+

(π
6
t− 1

6π
t3
)
A2x+

t

π
Ax

=
2

π

∞∑
k=1

(−1)k

k3
sin(kt)A2x+

(π
6
t− 1

6π
t3
)
A2x = 0 ,

the last equality follows from Lemma 5.1. Therefore condition (3) is satisfied.
To prove (4) we first show the uniqueness of the solution of problem (2.2). Let

v ∈ C2
(
[0, π], X

)
be a solution of

u′′(t) +Au(t) = 0 , t ∈ [0, π] ,

u(0) = 0 ,

u(π) = 0 .

For k ∈ N let

ak =

∫ π

0

sin(kt)v(t) dt .

Then

Aak =

∫ π

0

sin(kt)Av(t) dt

= −
∫ π

0

sin(kt)v′′(t) dt

= −
[
sin(kt)v′(t)

]π
0

+

∫ π

0

k cos(kt)v′(t) dt

=
[
k cos(kt)v(t)

]π
0

+

∫ π

0

k2 sin(kt)v(t) dt = k2ak .

Hence (k2I−A)ak = 0. Since k2I−A is injective, this proves that ak = 0. Therefore
all the Fourier coefficients of the 2π-periodic repetition of the odd extension of v
are null, hence v(t) = 0 for a.e. t. Since v is continuous v(t) = 0 for all t.

If x0, xπ ∈ X, then the function t 7→ S(π − t)x0 + S(t)xπ is solution of problem
(2.2), but the solution is unique, hence every solution of problem (2.2) coincides
with that function. Therefore (4) is satisfied. �
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