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DIRICHLET PROBLEM FOR SECOND-ORDER ABSTRACT
DIFFERENTIAL EQUATIONS

GIOVANNI DORE

ABSTRACT. We study the well-posedness in the space of continuous functions
of the Dirichlet boundary value problem for a homogeneous linear second-
order differential equation u/’ + Au = 0, where A is a linear closed densely
defined operator in a Banach space. We give necessary conditions for the well-
posedness, in terms of the resolvent operator of A. In particular we obtain an
estimate on the norm of the resolvent at the points k2, where k is a positive
integer, and we show that this estimate is the best possible one, but it is not
sufficient for the well-posedness of the problem. Moreover we characterize the
bounded operators for which the problem is well-posed.

1. INTRODUCTION

We consider the Dirichlet boundary value problem
u'(t)+ Au(t) =0, te€l0,7],
u(0) =z,
u(m) =g

where A is a linear closed densely defined operator in a (real or complex) Banach
space. We are interested in the uniform well-posedness of the problem in the sense
of continuous functions, that is we ask that for every zg,z, in the domain of A
there exists a unique solution u such that Au and u” are continuous; moreover we
require that the solution depends continuously on the boundary values.

Unlike most of the articles about abstract Dirichlet problems, we do not suppose
that —A is a positive operator. We give some necessary conditions for the uniform
well-posedness in terms of the resolvent operator of A, in particular we prove that
if the problem is uniformly well-posed then k2 belongs to the resolvent set of A for
every positive integer k and (k?I — A)~! has norm bounded by C/k for a suitable
C € R*. We give examples showing that this is the best possible estimate of the
resolvent, but it is not sufficient for the well-posedness.

Finally we show that if A is bounded then there is uniform well-posedness if and
only if k2 belongs to the resolvent set of A for every positive integer .

The Dirichlet problem for an abstract second order equation (homogeneous or
non-homogeneous) has been studied in various papers. Usually it is supposed that

2010 Mathematics Subject Classification. 34G10.

Key words and phrases. Boundary value problem; differential equations in Banach spaces.
(©2020 Texas State University.

Submitted August 19, 2018. Published October 29, 2020.

1



2 G. DORE EJDE-2020/107

—A is a positive operator, we refer to Section 4 of the review paper [2], and the
articles quoted therein.

In [I] and [3] maximal regularity in the L? sense for the Dirichlet problem for
the non-homogeneous equation u” + Au = f is characterized.

In [3] it is supposed that A = —B?, where B is the generator of an exponentially
stable analytic semigroup. They prove (see Corollary 3.4) that, if there is maximal
LP regularity for the Cauchy problem for the first order equation v’ — Bu = f,
then there is maximal LP regularity for the Dirichlet problem. In UMD spaces the
converse implication holds.

In [I, Theorem 6.3] the authors prove that if A is an arbitrary closed operator
in a UMD space, then there is maximal LP regularity for the Dirichlet problem if
and only if k2 belongs to the resolvent set of A for every positive integer k and
{k*(k*I — A)~' | k € N} is R-bounded.

We recall also [6] and [5] where the existence of solutions of the Dirichlet problem
for particular boundary values is studied under the hypothesis that A is a positive
self-adjoint operator in a Hilbert space.

This paper is organized as follows. In Section 2 we show that the uniform
well-posedness of the Dirichlet problem is equivalent to the existence of a suitable
strongly continuous operator valued function. In Section 3 we give necessary condi-
tions for the uniform well-posedness. Section 4 contains two examples showing that
the estimate on the norm of the resolvent operator of A obtained in Theorem [3.1]is
the best possible one, but it is not sufficient to ensure the uniform well-posedness.
In Section 5 we characterize uniform well-posedness in case A is a bounded operator.

2. WELL-POSED PROBLEMS

In what follows X will be a Banach space over the field K (real or complex
numbers) and A a closed linear operator from D(A) C X to X with dense domain;
p(A) will denote the resolvent set of A. We denote with £(X) the space of linear
bounded operators in X. Finally N will denote the set of positive integers and Ny
the set of non-negative integers.

We study the second-order abstract differential equation

u’(t) + Au(t) =0, telo,n], (2.1)
and the Dirichlet boundary value problem for this equation
u’(t) + Au(t) =0, te€0,n],
u(0) = o , (2.2)
u(m) =g .
We call solution of equation (2.1)) a function v : [0, 7] — X such that
1) ve CQ([O,W],X) N C([OﬂrLD(A));
(2) for all t € [0, 7], v"(t) + Av(t) = 0.
We call solution of problem (2.2 a solution v of equation (2.1)) such that v(0) = x
and v(7) = .
Obviously a solution of this problem can exist only if zg, z, € D(A).
We say that problem (2.2)) is uniformly well-posed if

(1) for all zg,zr € D(A), problem (2.2) has solution;
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(2) there exists C € R such that for any solution v of equation (2.1)) we have
Sup lo@)I < C(Ilv(O)] + [lv(m)]l) -
€[0,m

Condition (2) implies the uniqueness of the solution of problem ([2.2)).

Theorem 2.1. Let X be a Banach space and A be a linear closed densely defined
operator in X. Problem 1s uniformly well-posed if and only if there exists
S :[0,7] = L(X) such that:

(1) for all x € X, the function S(-)x is continuous;

(2) for all x € X, we have S(0)x =0, S(m)x = x;

(3) for all x € D(A), the function S(-)z is solution of equation ([2.1));

(4) ifv: [0,7] > X is solution of equation (2.1)), then

v(t) = S(t)v(m) + S(m —t)v(0).

Proof. Suppose that problem (2.2)) is uniformly well-posed. If 2z € D(A), let v be
the unique solution of the problem

for t € [0,7] put S(t)z = v(t). Then S(t) is a linear operator from D(A) to
X and, because of the uniform well-posedness, there exists C E~R+ such that
|St)z|| < Cllz|, for every x € D(A). Since D(A) is dense in X, S(t) can be ex-
tended to a bounded linear operator S(t) from X to X and ||S(t)|| < C. Obviously
S satisfies conditions (2) and (3).
If v is solution of equation ([2.1)) then it is solution of the Dirichlet problem
u’(t) + Au(t) =0, telo,n],
u(0) = 0(0).
u(m) = v(m).

The function t — S(t)v(w) + S(m — t)v(0) is solution of the same problem, hence,
by the uniqueness of the solution, we have

v(t) = St)v(m) + S(m — t)v(0).

Therefore (4) is satisfied.

If 2 € D(A) the function S(-)x is solution of equation (2I]), hence it is continuous.
If x € X there is a sequence (2, )nen in D(A) converging to xz. The functions S(-)zy,
are continuous and

sup ||S(t)x, — S(t)z|| < Cllan — af| —— 0.
te[0,7) n—00
Since it is the uniform limit of continuous functions S(-)x is continuous. Therefore
condition (1) is satisfied.

Conversely suppose that there exists S satisfying conditions (1)—(4). Since, for
all z € X, the function S(-)x is continuous, it is bounded, hence by the uniform
boundedness principle {S (t) { t €0, 7r]} is bounded, therefore there exists C € R™
such that ||S(t)|| < C, for all t € [0, 7).
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If 2,2, € D(A), let
v: [0,7] = X, o(t)=St)z, + ST —t)xo.
By (3) v e 02([0,7],X) n C’([O,W],D(A))7 and for all ¢ € [0, 7] we have
V() + Av(t) = S"(t)zr + S (7 — )zo + AS(t)zr + AS(T — t)xo = 0;
moreover, by (2)
v(0) = S(0)z; + S(m)zo =20, v(7) =8(T)xr +S(0)20 = 21 .

Hence problem ([2.2)) has solution.
From (4) and the estimate HS(t)H < C'it follows that if v is solution of equation

then
lo(@)Il = [|S()v(0) + S(m — t)u(0)
< [[S@O[ o) + [ = )| llv(m)]
< C(loO) + llo(m)ll) -
Hence problem is uniformly well-posed. O
Theorem 2.2. Let X be a Banach space and A be a linear closed densely defined

operator in X. If problem (2.2)) is uniformly well-posed, then, for all m € N\ {1},
the same problem is uniformly well-posed for the operator m2A.

Proof. Let S be the strongly continuous operator valued function whose existence
is guaranteed by Theorem Let T: [0,7] — L(X) defined as follows. If m is

even

Tt = %(4%) Cs(Bimbrty) 2.9
j=1
if m is odd
(m—1)/2

= 3 (s(C) s +s(R) e

It is easy to verify that T satisfies conditions (1)—(3) of Theorem with respect
to the operator m—2A.

To prove that also condition (4) is satisfied it is sufficient to show that the unique
solution of the problem

is the identically zero function.

Suppose that v € C%([0,7],X) N C([0,7],D(A)) is solution of this problem.
Let w: R — X be the 2w-periodic repetition of the odd extension of v. Since
v(0) = v(r) = 0, w € CHR, X) N C(R,D(A)). Moreover w is twice continuously
differentiable in R \ {j=|j € Z}, with second derivative equal to —m 2Aw. In
the points jm the second derivative from the left and the second derivative from
the right are both equal to —m~2Aw(jn) = 0, hence w is twice differentiable also
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at these points and w € C?(R, X) N C(R,D(A)). Let z: [0,7] — X be defined by
z(t) = w(mt). Then z is solution of the problem

u'(t)+ Au(t) =0, te€l0,7],

u(0) =0,
u(m) =0;
hence it is identically zero. Therefore v = 0. g

3. NECESSARY CONDITIONS

In this section we give necessary conditions for the uniform well-posedness of
problem (2.2)) in terms of the resolvent operator of A. First of all we have a
condition on the resolvent set and an estimate of the resolvent operator of A.

Theorem 3.1. Let X be a Banach space and A be a linear closed densely defined
operator in X such that problem (2.2)) is uniformly well-posed. Then for all k € N,
k% € p(A) and there exists C € RY such that, for all k € N,

2= < 3 .1

The fact that k2 does not belongs to the point spectrum of A is a particular case
of [4, Theorem 1].

Proof. Let S be the operator valued function whose existence is guaranteed by
Theorem and C' = sup;¢(o,x] |S5@)]-

For k € N the operator k2I — A is injective. Indeed if z € D(A) is such that
k?x = Az, it is easy to check that the function ¢ + sin(kt)z is solution of the
problem

u'(t)+ Au(t) =0, te€l0,7],
u(0) =0,
u(m) =0

The unique solution of this problem is the identically zero function, hence z = 0.
For k € Nand z € X let
DM
— / sin(ks)S(s)x ds.
0

In this way an operator Ry € L(X) is defined; moreover

1 /. 1 /" . 2C
Real < ¢ [ Jsin(es) |S(s)al|ds < 1 [ Jsin(ks)] Clel ds = 2 ]
0 0

hence ||Ri|| < 2C/k. For all x € D(A) we have
<_1)k+1 " (_1)k " "
ARz = % sin(ks)AS(s)xds = . sin(ks)S" (s)x ds
0 0
(=D*
k

ka =

[sin(ks)S'(s)a]; — (—1) /07T cos(ks)S'(s)x ds

= (-1 [COS(]CS)S(S)LL‘}‘IOT — (—1)kk:/07r sin(ks)S(s)z ds

= 2+ k’Rx.



6 G. DORE EJDE-2020/107

If £ € X let (z,)nen be a sequence in D(A) converging to . Then Ryx, — Rix
and ARpx, — —x + k?Rpx. Since A is closed this proves that Riz € D(A) and
ARpx = —x + k*Ryx. Hence, for all 2 € X, we have (kI — A)Ryx = . Therefore
Ry, is a right inverse of k21 — A.

To prove that it is also a left inverse, observe that if x € D(A) then

(K*I — ARy (k* — A)x = (K*1 — A)z

hence Ry (k* — A)z = x since k?I — A is injective.
Therefore kI — A is invertible and (k*I — A)~! = Ry. This proves the theorem.
]

To prove another necessary condition, we need a result about Fourier series.

Lemma 3.2. The series of functions Y-, ((—1)"™ /k) sin(kt) converges pointwise
fort € [0, 7], the sequence of partial sums is uniformly bounded and

X (—1)kH it, ifo<t<m,
Z sin(kt) =
k=1 0 ift=m.
Proof. We have
L (—1)kH 1
Z%smk‘t ZE (k(m —1))
k=1 k=1

and the convergence of this series is proved in [9 Chapter I, (2.8)]; the uniform
boundedness of the partial sums of this series is proved in [9, Chapter II, Section 9].
O

Theorem 3.3. Let X be a Banach space and A be a linear closed densely defined
operator in X such that problem (2.2) is uniformly well-posed. Then for all m € N
. oo 2 -1 .
the series Zk:l((mk) I- A) converges in operator norm.
Moreover, if S is the operator valued function introduced in Theorem [2.]], then

oo

_ 1 (7

STk - A) = 5/ tS(t)x dt

k=1 0
and, for m € N\ {1},
o0 ™ . (m/2] (m—2j+2)7/m

_ 1 -2 1
SO (k) 1-A4) e =1 / 15 () di— T2 T DTG / S(t)z dt
k=1 2 0 2m j=1 (m—2j5)m/m
Proof. From the proof of Theorem [3.1] we know that for all k¥ € N and for all z € X
(_1)k+1 ™
(K*T — A) e = T/ sin(kt)S(t)z dt,
0

Then

Hi(f{ —A) e - ;/Ow tS(t)z dtH

= H/ Dl sin(yt)S(t)z dt — ;/077 tS(t)x dtH
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LT 1J+1 1
/ (Z sin jt)—§t> (t)x”dt
j=1
™ kK (~1+! 1J+1
/ S DT ingin —ft‘dtCHxH
j=1

By Lemma [3.2 the series Zj’;l ((—=1)7%1/j) sin(jt) converges pointwise to /2 and

the partial sums are uniformly bounded. Therefore, by the dominated convergence

theorem, the integral tends to 0 as k tends to co. This proves the theorem if m = 1.
By Theorem the same is true for the operator m~2A. Since

(K21 —m=24) " = m?((mk)*1 — A) ",

the series Y oo ((mk)%I — A)f1 converges in operator norm. The expression of
the sum of the series can easily be obtained from what we have just proved and

equalities (2.3)) and ( . (I

4. EXAMPLES

In this section we see two examples showing that the estimate of the resolvent
stated in Theorem cannot be improved but it is not sufficient to guarantee the
uniform well-posedness. For the first example we need two lemmas.

Lemma 4.1. Let K: [0,7]?> — R be such that

(t—m)s .
-, ifs <t
K(t,s) = {t(s—w) ifs>t

T )

(1) If f € C([0,7],X) then the function z: [0,7] — X such that

A(t) = /OW K(t, 5)f(s) ds

belongs to C2([0, 7], X), with 2" = f and 2(0) = z(7) = 0.
(2) If z € C*([0,7], X), with 2(0) = 2(m) = 0 then, for all t € [0, 7], we have

/Kts” )ds

The proof of the above lemma is an easy consequence of the fundamental theorem
of calculus.
Lemma 4.2. Let (vg)ken be a sequence in CQ([O,W],X) such that
(1) (ve)ken converges pointwise to v € C([0, 7], X);
(2) (v} ken converges uniformly to w € C([0, ], X).
Then v € C*([0,7], X) and v" = w.
Proof. Let

Tl (0) — %vk(ﬂ) .

We have z(0) = zx(7) = 0 and 2} = v}/. Hence, by Lemma [4.1] for all ¢ € [0, 7],

we have

2k - [O,W}%X, zk(t):vk(t)f

Uk(t) = Zk(t) + Tt

Vi (O) +

4
7 7 )
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/ K(t, s)vp (s ds—|— tvk(O)—l—%vk(w).

By (2) we can pass to the limit under the integral sign, hence

v(t) = OW K(t,s)w(s)ds + ﬂ-; ! v(0) + % v(m) .

Therefore, by Lemma v is twice differentiable and v” = w. ([l

Example 4.3. Let X = ¢P(N,K), with 1 <p < co. Choose a such that 0 < a < 1
and let A be the operator in X defined by

D(A) = {sc eX ’ (nzxn)neN € X} , (Az), =(n— a)an.

The operator A is linear, it is easy to prove that it is closed and has dense domain,
since the domain contains the eventually zero sequences.

For ¢ € [0, 7] let
sin((n — a)t)
sin((n — a)7r) "
We prove that S satisfies conditions (1)—(4) of Theorem [2.1} hence the Dirichlet
problem for the operator A is uniformly Well-posed Since

i Z |wn|

Sll'l Oéﬂ'
n=1

S(t) € £(X) with

St)y: X =X, (Stx), =

sin((n — a)t

sin((n — ) —

HS H (sm am ) b (4.1)
A similar argument shows that if © € D(A) then S(t)xr € D(A). Moreover we have
AS(t)x = S(t)Ax.

The function (S ()x)n is continuous, for every x € X and n € N; therefore if z is
an eventually zero sequence then S(-)z is continuous. If € X then it is the limit
of a sequence of eventually zero elements of X, hence, by estimate , Sz is
the uniform limit of a sequence of continuous functions, therefore it is continuous.
This proves (1).

Property (2) is obvious.

The function (S().T)n is of class C2, for every z € X and n € N, and

d? P sin((n — a)t) B , sin((n — a)t)
dt? (S(t)x)” T at? <sin((n —a)m) xn) =-(n-a) sin((n —a)m) "
Therefore if © € D(A) then

d2
& (st)s), = (as(0)),

Hence if z is eventually zero then S(-)x is solution of equation (2.1). Now let
x € D(A) and, for m € N, let (™) € X such that

(x(m)) _ {xn, forn <m,
n 0, forn>m.
‘We have
sup 5012 50 < sup 5] ")~

telo,m t€[0,]
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oo

1 1/p
< P) 50
- Sin(om) <n§n: |33n‘ m—00 ’

and

sup HS(t)Ax(m) - S(t)A:rH < sup HS(t)H HAx(m) - Ax“
] )

tel0,m
1 > % p)l/p
B Sin(Oé’ﬂ') (n—zﬁ;-i-l(n Oé) ‘Zn| m—o0 0.

Hence the sequence of functions S(-)("™) converges uniformly to S(-)x and the se-
quence " (-)z(™) = —AS(-)z(™ = —S(-) Az(™ converges uniformly to the function
—S()Az = —AS(-)z. By Lemma|4.2| S(-)z € C2([0,7], X) and S”(-)x = —AS(")z.
Therefore (3) is satisfied.

If v: [0, 7] — X is solution of equation (2.1)), then for all n € N we have

V() + (n— a)?v,(t) = 0.

The functions ¢ — sin((n — a)t) and t — sin((n — a)(7 — t)) are two linearly
independent solutions of this equation, therefore there exist ¢, co € K such that

vy (t) = ey sin((n — a)t) + casin((n — @) (7 — 1)) .

By putting ¢ = 7 or t = 0 in this equality we get

¢ = Un () y = v, (0)
sin((n — a)m)’ sin((n — a)m)’
hence
; B sin((n — o) (7 —t)) ; sin((n — a)t) o (r
nlt) = sin((n — a)m) n(0) + sin((n — a)m) n(m)
that is

v(t) = S(m — t)v(0) + S(t)v(rw) .

Therefore (4) is satisfied.

If k£ € N it is easy to check that kI — A is invertible and, for all € X, for all
n €N,

1
2 -1 _
((k* — A) x)n— iy p—— T -
If we denote with e the k-th element of the canonical basis of X, we have
N B

k2 —(k—a)2  2ka—a? = 2ka’

Therefore estimate (3.1)) is the best possible one with respect to the dependence
on k. Moreover the best constant C' can be arbitrarily large.

10 = )M = (8% = A) e =

The next example is based on the results of [§]. We recall some facts from that
article.

Let X be a Banach space and (y,)nen be a basis of X. We denote with P, the
n-th projection operator associated with this basis, i.e. P, € £(X) is such that,
for all z € X, we have z = 7| P,(x)y,. By the uniform boundedness principle

My = SuPneNHZZ=1 P”” < oo
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We associate with every scalar valued sequence a = (ay,)nen a linear operator A
in X defined by

o0
D(A)={zeX| Z an P (2)yn is convergent } ,
n=1

Az = Z an P ()Y, -
n=1

Let a be a scalar valued bounded sequence; we set ||al/c = sup,,cy |an| and
V(a) = Y07 lant1 — an|. We denote with BV the space of the sequences of
bounded variation, i.e. such that V(a) < oo.

Lemma 4.4 ([8 Lemma 2.4]). Let a be a scalar valued sequence. Then the operator
A associated with a is densely defined and closed. Moreover if a € BV, then
A€ L(X), with [|A]| < Mo([lalloo + V(a)).

Lemma 4.5 ([8, Lemma 2.5]). Let a be a scalar valued sequence, A be the oper-
ator associated with a and A € K\ {ay, |n € N}. Then A\I — A is one-to-one and
(M — A)~! is the operator associated with the sequence (X — an)*l)neN. In par-
ticular X € p(A) if and only if for all x € X the series Y oo (A — ay) ' Pp(2)yn is
convergent.

We say that the basis (y,)nen of the Banach space X is unconditional if, for all
z € X, the series Y 2 | P, (z)y, is unconditionally convergent. Otherwise we say
that the basis is conditional (see [7, Chapter II, Definition 14.1]).

Every Banach space with a basis has an unconditional basis (see [7, Chapter 11,
Theorem 23.2]).

Lemma 4.6 ([7, Chapter II, Theorem 16.1, 1 < 8]). Let (yn)nen be a conditional
basis of the space X. Then there exists T € X and a sequence (ep)nen in {—1,1}
such that

Example 4.7. Let X be a Banach space with a conditional basis (y,)nen and let
P,, be the n-th projection operator associated with this basis.
Let (£,)nen be a sequence of non-negative integers, unbounded and such that
/1 =0 and En-{-l -, € {0, 1}. Set
15 2
ap = (%n + 2)
and let A be the operator associated with the sequence (a,)nen. By Lemma
A is closed and densely defined.
We prove that A satisfies the conditions of Theorem [3.1] Let & € N. For every
n € N we have a,, # k2, hence, by Lemma (k2T — A) is one-to-one and, if we
set b, = 1/(k® —a,), then (kI — A)~! is the operator associated with the sequence
(bn)nen- For every £ € N we have
9 142 9 1\2 1
‘k (2€+2) ‘Z‘k (k 2) ’_k 4’

hence
1

1
< .
infpen k2 —an] — k—(1/4)

1Bl =
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Let m = max{n € N|2{, < k}; the sequence b,, is positive and non-decreasing for
1 <n <7 while is negative and non-decreasing for n > n + 1. Hence

= Z ‘bn-&-l - bnl

n=1

n—1

= (b7z+1 b) b7+1+ Z n—i—l
n=1 n=n-+1

= bﬁ b +ZF bﬁ+1 + lim b IF+1

< b — 2y < L

=SS S

Therefore, by Lemmas and . k € p(A) and there exists C' € R such that
| (k2T — A)~Y| < C/k.

Now we prove that A satisfies the condition of Theorem with m = 1, that is
the series Y 7o | (k*I — A)~! converges in operator norm.

First of all for all £ € N and all n € Ny we have

o0

Z L = lim Z L 5
ey —(n—l—(1/2 pooo i —(n+(1/2))
- 1 1
— 1 —
2n+1piw§(j—n—(1/2) j+n+(1/2))
1 p—n 1 p+n+1 1
= lim _— — _—
2n+1 IHOO(@:k—n ¢—(1/2) EZ;LH l— (1/2))
k+n pt+n+1
1 1 1
= lim _— — —_—
2n+1p—>oo(£_zk;n€—(1/2) Z_;ﬂﬁ—(l/?))
1 ’gf 1
2n—|—1£ — nE—(l/Z)
Hence
o 1 k+n
> Z (4.2)
j:kj2—(n+(1/2)) 2n+1 E— 1/2
in particular
iz (n+ (1/2)) T o+ 1, 5= = 1/2) (2n +1)2

where the last equality can be easily proved by induction on n. Therefore, for all

n € N, we have
i 1 2
=2 - (20, +(1/2))7 W+ 1)

Let B be the operator in X associated with the sequence (2/(4€n + 1)2)n€N.
This sequence is non-negative and decreasing, hence it is bounded and has bounded




12 G. DORE EJDE-2020/107

variation, therefore, by Lemma [.4] B is bounded. We prove that

o0

> (KP1— A

k=1

B.

The operator B — Z;C;ll (421 — A)~! is associated with the sequence whose n-th
term, taking into account (4.2)), is
k—1 oo

2 _22 1 22.2_ 1

(40, + 1) S 52— (20 +(1/2)°  S52— (26 +(1/2))°

k424,

1 1
B 4€n +1 j:kz—%n .7 - (1/2) 7
If we put
| ke
Ch =
T oy j;zj —(1/2)°

we have to prove that the sequence (C 2¢, )nen has least upper bound and variation
converging to 0 as k — 0. Obviously

sup |Ci,2¢, | < sup |Ci -
neN £eNg
Moreover, since £,,+1 — £, € {0,1} each difference Ck,20,41 — Ck,2¢, either is null or

is equal to Cf 2042 — C 2¢ for a suitable £ € Ny. Hence

o0 oo oo
> 1Ck2tss — Cr2e,] Y |Ckiaer2 — Crzel < |Crepr — Cil
n=1 £=0 £=0

For all k € N and ¢ € Ny we have C}, o > 0. Indeed, if £ < k then Cj , > 0, since
each term in the sum is positive. If £ > k then

ket 1 —k+1 1 kett 1 ket 1
—— s = — 7 — s = —— 5 > 0.
2T X mam 2 Tam 2 T
If we put ¢ ; = 1/(k +j — (1/2)), we have
2k—1
Ck,—j + Ck,j =

2
(k—(1/2))" - 42
Hence it is easy to prove that
2c,0 < Cp,—1 + 1 < Ch—2+Cra <+ < Ch—kt+1 T Chk—1

and, if £ <3, cp—j +cp; <O.

We observe that Cj , is the mean of ¢y ¢, i, —¢+1,. .., Che——, ke and Cy o4 is
the mean of the same numbers plus ¢ _¢—1 and cg¢q1. If £+ 1 < k the mean of
Ck,—¢—1 and ¢y g4 is greater then the mean of ¢y, ..., cp ¢, hence Cy 11 > C p. If
£41 > k the mean of c;,_¢—; and cj ¢4 is negative, while the mean of ¢ ¢, ..., cr ¢
is positive, hence Cj ¢41 < C¢. Therefore sup{Cy¢|¢ € No} = Ci —1.

Moreover

) k—2 )
Z |Cro41 — Crel = Z(Ck,é-H —Cry) + Z (Crke — Cret1)
=0 £=0 t=k—1
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= Ok,k—l — Ck70 + Ck,k—l — lim Ck,g_,_l
£— 00

<2Ck,k71~
Since
2k—1
1 1
C _ =
BT ok j;jf(l/Q)
1 2k—1 1
< 2 —
_Qk—1< +/1 z—(1/2) x)
1

= %_1(2+log(4k—3)) —0,

the statement about the sequence (Cy ¢, )nen is proved.
Let v: [0,7] — X be a solution of equation (2.1). Then for all n € N we have

d2
dt?
Hence the function P, o v is solution of the equation u”(¢t) 4+ a,u(t) = 0, that is
u(t) + (20, + (1/2))2u(t) = 0. Hence there exist ¢1, c2 € K such that
1 1
P,(v(t) =1 sin((%n + 5) (m— t)) +c2 sin((%n + 5)2&)

Obviously we have ¢; = P, (v(0)), ¢ = P, (v(m)).
Now we choose a particular sequence (¢, )nen. By Lemma there exist 7 € X
and a sequence (&,)nen, in {—1,1} such that

P, (v(t)) = P, (v"(t)) = =Py (Av(t)) = —an Py (v(t)) .

The sequence (&, )nen can be chosen such that 1 = 1. We put eg = 1 and, forn € N,

b, =(1/2) 34—, ek —€k—1]. In this way we have defined a non-decreasing sequence

of integer numbers, with ¢; = 0 and £,,.1 — £, € {0,1}. Since the sequence (&, )nen

must have an infinite number of changes of sign, the sequence ¢, is unbounded.

Moreover it is easy to show, by induction, that, for all n € N, we have (—1) = ¢,,.
If v is solution of the problem

u(0) =0, (4.3)
u(m) =T,
then
P (v(t)) = sin((%n + %)t)Pn(f) :
hence

Pu(o(Z)) = sin(tur+ D) Pute) = L pa) = 2 P(o).

Since the series Y- | €, P,(Z) doesn’t converge, problem (4.3) doesn’t have solu-
tion.
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5. BOUNDED OPERATORS

If the operator A is bounded there is a simple characterization of uniform well-
posedness of the Dirichlet problem. For the proof of the theorem we need a result
about Fourier series.

Lemma 5.1. The series of functions >, ((—=1)**1/k3) sin(kt) converges uni-
formly fort € [0, 7] and

k+1 1 3
— kt — t - —1".
Z sin(kt) = 5 o

Proof. The uniform convergence of the series is obvious, since it is uniformly esti-

mated by the harmonic series of exponent 3. Let
T 1 .
- —R t)=—t— —1t3.
Jilma o R, )=t

It is easy to show that, for all k£ € N, we have

/f t)sin(kt) d (k)kﬂ.

Hence the Fourier coefficients of the odd function f are equal to 2(—1)*+1/(7k?)
(see [9] Chapter I, (4.8)). Since f € C!([—m, 7], R) and its 27-periodic repetition
has the same regularity, by [9, Chapter IT, Theorem (8.1)] its Fourier series converges
to f. (Il

Theorem 5.2. Let X be a Banach space and A € L(X). Problem (2.2)) is uniformly
well-posed if and only if {k* |k € N} C p(A).

Proof. The necessity of the condition is a consequence of Theorem
We prove that, if {k? |k € N} C p(A), there exists S: [0,7] — X that satisfies
conditions (1)—(4 ) of Theorem [2.1} hence problem (2.2)) is uniformity well-posed.
It is well known that if A € K is such that |)\| > ||A|| then A € p(A) and
(M —A)~t =% (A"""1A" hence

o0
— —n— n 1
H(/\I—A) 1||SZ\)\| Al Zm-
n=0
Therefore there exists M € RT such that, for all £ € N, we have
M
2 -1
o1 -y < 2L
For t € [0,7] and = € X put
2 o~ (=DF 2 —1 42 T L3 t
S(t)x = ;;Tbm(kt)(k I—-A)" Az + (gt—art )Am—i—;x.
We have
IS (@)el]
< 250 L sl 027 — ) Aol + (S ¢ = ) A ) + L )
It k3 6

2 M
< > 75 1Al ]l + fllAII || + |||l = Clz| -
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Hence S(t) € £L(X). This estimate shows also that the series is uniformly conver-
gent, therefore the function S(-)x is continuous. Hence (1) is satisfied.

Obviously (2) is satisfied.

It is easy to check that the series of first and second derivatives are uniformly
convergent, hence S(-)z € C?([0,], X) and, for all t € [0, ],

S"(t) + AS(t)

—fz sin(kt) k2 (K21 — Ay A% — L Ag
T
200(1)k+1' , ny - Lo .
—I—;;Tsm(kjt)A(kI—A) Ax+(gt—6—7rt)Agg+;Ax

2= (—1)F
== Z (=1 sin(kt) A%z + ( t— —t3)A2x =0,

T 6 6
the last equality follows from Lemma Therefore condition (3) is satisfied.

To prove (4) we first show the uniqueness of the solution of problem (2.2)). Let
v € C%([0,7], X) be a solution of

u'(t)+ Au(t) =0, te€l0,7],
u(0) =0,
u(m) =0.
For k£ € N let .
ap = / sin(kt)v(t) dt
Then "

Aay :/ sin(kt)Av(t) dt
0
=— / sin(kt)v” () dt
0
—[sin(kt)v / k cos(kt)v'(t) dt

= [k cos(kt)v / k? sin(kt)v(t) dt = k*ay, .

Hence (k21— A)ay = 0. Since k21— A is injective, this proves that aj = 0. Therefore
all the Fourier coefficients of the 27-periodic repetition of the odd extension of v
are null, hence v(t) = 0 for a.e. ¢t. Since v is continuous v(t) = 0 for all ¢.

If xg, 2, € X, then the function ¢ — S(7m — t)xo + S(t)z, is solution of problem
, but the solution is unique, hence every solution of problem coincides
with that function. Therefore (4) is satisfied. O
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