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EXPONENTIAL DECAY AND BLOW-UP FOR NONLINEAR

HEAT EQUATIONS WITH VISCOELASTIC TERMS AND

ROBIN-DIRICHLET CONDITIONS

LE THI PHUONG NGOC, NGUYEN THANH LONG

Abstract. In this article, we consider a system of nonlinear heat equations

with viscoelastic terms and Robin-Dirichlet conditions. First, we prove exis-
tence and uniqueness of a weak solution. Next, we prove a blow up result of

weak solutions with negative initial energy. Also, we give a sufficient condition

that guarantees the existence and exponential decay of global weak solutions.
The main tools are the Faedo-Galerkin method, a Lyapunov functional, and a

suitable energy functional.

1. Introduction

In this article, we consider the system of nonlinear heat equations containing
viscoelastic terms

∂ui
∂t
− ∂

∂x

(
µi(x, t)

∂ui
∂x

)
+

∫ t

0

gi(t− s)
∂

∂x

(
µ̄i(x, s)

∂ui
∂x

(x, s)
)
ds

= fi(u1, . . . , uN ) + Fi(x, t),

(1.1)

where 0 < x < 1, t > 0, 1 ≤ i ≤ N , with N ∈ N and N ≥ 2, associated with
boundary conditions

∂u1

∂x
(0, t)− h0u1(0, t) = u1(1, t) = 0,

u2(0, t) =
∂u2

∂x
(1, t) + h1u2(1, t) = 0,

ui(0, t) = ui(1, t) = 0, 3 ≤ i ≤ N,

(1.2)

and initial conditions

ui(x, 0) = ũi(x), 1 ≤ i ≤ N, (1.3)

where h0 ≥ 0, h1 ≥ 0 are real numbers and µi, gi, µi, fi, Fi, ũi for all i ∈ 1, N are
given functions satisfying conditions specified later.

System (1.1) arises naturally within frameworks of mathematical models in engi-
neering and physical sciences, which have been studied by many authors and several
results concerning existence, nonexistence, regularity, exponential decay, blow-up
in finite time and asymptotic behavior have been established, see [4, 5, 6] and
references therein.
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Messaoudi [5] considered an initial boundary value problem related to equation

ut −∆u−
∫ t

0

g(t− s)∆u(x, s)ds = |u|p−2u,

and proved a blow-up result for certain solutions with positive initial energy, under
suitable conditions on g and p. In [6], the authors considered a quasilinear parabolic
system of the form

A(t)|ut|p−2ut −∆u−
∫ t

0

g(t− s)∆u(x, s)ds = 0,

for m ≥ 2, p ≥ 2, A(t) a bounded and positive definite matrix, and g a continuously
differentiable decaying function, and proved that, under suitable conditions on g
and p, a general decay of the energy function for the global solution and a blow-up
result for the solution with both positive and negative initial energy.

Long, Y, and Ngoc [4] considered a nonlinear heat equation with a viscoelastic
term

ut −
∂

∂x
(µ1(x, t)ux) +

∫ t

0

g(t− s) ∂
∂x

(µ2(x, s)ux(x, s))ds = f(u) + F (x, t),

where (x, t) ∈ (0, 1)× (0, T ), with Robin boundary conditions

ux(0, t)− h0u(0, t) = g0(t), ux(1, t) + h1u(1, t) = g1(t),

and the initial condition

u(x, 0) = u0(x),

where h0 ≥ 0, h1 ≥ 0 are real numbers with h0 + h1 > 0, and µ1, g, µ2, f , F , g0,
g1, u0 are given functions, under suitable conditions on µ1, g, µ2, f , F , g0, g1, u0,
a exponential decay of the energy function for the global solution and a blow-up
result for the solution have been established.

Motivated by the above mentioned works, we study the blow-up and exponen-
tial decay estimates for problem (1.1)-(1.3). This article is organized as follows. In
Section 2, we present some preliminaries and notations. In Section 3, by applying
the Faedo-Galerkin method and the weak compact method, we establish the ex-
istence of a unique weak solution u of (1.1)-(1.3) on (0, T ), for every T > 0. In
Sections 4 and 5, problem (1.1)-(1.3) is considered with µi(x, t) ≡ µi(x), for all
i ∈ 1, N . In the case of Fi ≡ 0, for all i ∈ 1, N , when some auxiliary conditions
are satisfied, we prove that the weak solution u blows up in finite time. In the case
of ‖Fi(t)‖ small enough, for all i ∈ 1, N , we verify that if the initial energy is also
small enough, then the energy of the solution decays exponentially as t → +∞.
For the proof of the blow up result, we divide it into two steps. First, we show
that the weak solution obtained here is not a global solution in R+. Second, we
prove that this solution blows up at finite time T∞, where [0, T∞) is a maximal
interval on which the solution of (1.1)-(1.3) exists. For the proof of exponential
decay result, a Lyapunov functional is constructed via defining a suitable energy
functional. The results obtained here is a relative generalization of [4, 7, 8], by
improving and developing these previous works, essentially.
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2. Preliminary results and notation

First, we put Ω = (0, 1), QT = Ω× (0, T ), T > 0, and denote the usual function
spaces used throughout the paper by the notation

Lp = Lp(Ω), W k,p = W k,p(Ω), Hk = W k,2, ∀k ∈ Z+, 1 ≤ p ≤ ∞.

We denote the usual norm in L2 by ‖ · ‖ and we denote ‖ · ‖X for the norm in the
Banach space X. We will use the notation 〈·, ·〉 for either the scalar product in L2

or the dual pairing of a continuous linear functional and an element of a function
space. We call X ′ the dual space of X. We denote Lp(0, T ;X), 1 ≤ p ≤ ∞,
the Banach space of measurable functions u : (0, T ) → X measurable such that
‖u‖Lp(0,T ;X) < +∞, with

‖u‖Lp(0,T ;X) =


(∫ T

0
‖u(t)‖pXdt

)1/p
< +∞, if 1 ≤ p <∞,

ess sup ‖u(t)‖X , if p =∞.

On H1, we use the norm

‖v‖H1 =

√
‖v‖2 + ‖vx‖2, ∀v ∈ H1.

We define

V1 = {v ∈ H1 : v(1) = 0},
V2 = {v ∈ H1 : v(0) = 0},

Vi = H1
0 = {v ∈ H1 : v(0) = v(1) = 0}, i = 3, N,

it is clear that V1, . . . , VN are closed subspaces of H1. Moreover, we have the
following standard lemmas concerning the imbeddings of H1 into C0(Ω) and of Vi
into C0(Ω), and the equivalence between two norms, v 7→ ‖vx‖, v 7→ ‖v‖H1 , on Vi
for all i ∈ 1, N .

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact, and

‖v‖C0(Ω) ≤
√

2‖v‖H1 , ∀v ∈ H1.

Lemma 2.2. For all i ∈ 1, N , the imbedding Vi ↪→ C0(Ω) is compact. Moreover,
we have

‖v‖C0(Ω) ≤ ‖v‖Vi
, ∀v ∈ Vi,

1√
2
‖v‖H1 ≤ ‖vx‖ ≤ ‖v‖H1 ∀v ∈ Vi.

Let µi, µi ∈ C0(Ω× [0, T ]) with µi(x, t) ≥ µi∗ > 0 and µi(x, t) ≥ µi∗ > 0 for
all (x, t) ∈ Ω × [0, T ] and for all i ∈ 1, N . We consider the families of symmetric
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bilinear forms {ai(t; ·, ·)}t∈[0,T ], {a′i(t; ·, ·)}t∈[0,T ], {ai(t; ·, ·)}t∈[0,T ] defined by

a1(t;u, v) = 〈µ1(t)ux, vx〉+ h0µ1(0, t)u(0)v(0),

a′1(t;u, v) = 〈µ′1(t)ux, vx〉+ h0µ
′
1(0, t)u(0)v(0),

a1(t;u, v) = 〈µ1(t)ux, vx〉+ h0µ1(0, t)u(0)v(0), ∀u, v ∈ V1, t ∈ [0, T ];

a2(t;u, v) = 〈µ2(t)ux, vx〉+ h1µ2(1, t)u(1)v(1),

a′2(t;u, v) = 〈µ′2(t)ux, vx〉+ h1µ
′
2(1, t)u(1)v(1),

a2(t;u, v) = 〈µ2(t)ux, vx〉+ h1µ2(1, t)u(1)v(1), ∀u, v ∈ V2, t ∈ [0, T ];

ai(t;u, v) = 〈µi(t)ux, vx〉,
a′i(t;u, v) = 〈µ′i(t)ux, vx〉,

ai(t;u, v) = 〈µi(t)ux, vx〉, ∀u, v ∈ Vi, t ∈ [0, T ], i = 3, N.

(2.1)

Then we have the following lemma, whose proof is straightforward so we omit.

Lemma 2.3. Let µi, µi ∈ C0(Ω× [0, T ]) with µi(x, t) ≥ µi∗ > 0 and µi(x, t) ≥
µi∗ > 0 for all (x, t) ∈ Ω× [0, T ], i ∈ 1, N ; and h0 ≥ 0, h1 ≥ 0. Then, the families
of symmetric bilinear forms {ai(t; ·, ·)}t∈[0,T ], {ai(t; ·, ·)}t∈[0,T ] defined by (2.1) are

continuous on Vi × Vi and coercive in Vi for all i ∈ 1, N .

Moreover, there exist aT > 0, a0 > 0 such that

|ai(t;u, v)| ≤ aT ‖ux‖‖vx‖, ai(t;u, v)| ≤ aT ‖ux‖‖vx‖,

for all u, v ∈ Vi, t ∈ [0, T ], i ∈ 1, N ; and

ai(t; v, v) ≥ a0‖vx‖2, ai(t; v, v) ≥ a0‖vx‖2, ∀v ∈ Vi, t ∈ [0, T ], i ∈ 1, N.

We also have two important lemmas.

Lemma 2.4. Let f ∈ C0(RN ;R), if we set

Φf (r) =

{
sup|x|2≤r |f(x)|, if r > 0,

|f(0)|, if r = 0,

then Φf ∈ C0(R+;R+) is nondecreasing and

|f(x)| ≤ Φf (|x|2), ∀x ∈ RN ,

where |x|2 =
√
x2

1 + · · ·+ x2
N for all x ∈ RN .

Proof. With r > 0, we denote

Br = {x ∈ RN : |x|2 < r}, B̄r = {x ∈ RN : |x|2 ≤ r}.
Let g ∈ C0(RN ;R+), we set

ϕg(r) =

{
sup|x|2≤r g(x), if r > 0,

g(0), if r = 0.

We claim that ϕg ∈ C0(R+;R+). It is clear that ϕg(r) ≥ 0 for all r ∈ R+ and ϕg
is nondecreasing in R+.

(i) We prove that ϕg is continuous from right at 0. For all ε > 0, by g ∈
C0(RN ;R+), there exists δ > 0 such that

|g(x)− g(0)| < ε, ∀x ∈ B̄δ. (2.2)
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From (2.2), we have

g(x) < g(0) + ε = ϕg(0) + ε, ∀x ∈ B̄δ. (2.3)

By the definition of ϕg and (2.3), it follows that

ϕg(0) ≤ ϕg(r) ≤ ϕg(δ) ≤ ϕg(0) + ε, ∀r ∈ [0, δ].

Therefore ϕg is continuous from right at 0.
(ii) For all r0 > 0. We will prove that ϕg is continuous at r0.
(ii-1) We prove that ϕg is continuous from left at r0. At first, we define a function

ϕg, with ϕg(r) = sup|x|2<r g(x) for all r > 0. Easily to see that ϕg(r) ≤ ϕg(r) for

all r > 0. We prove that ϕg(r) ≥ ϕg(r) for all r > 0.
Fixed r > 0, by the definition of ϕg, we can assume that

ϕg(r) = sup
|x|2<r

g(x) = max
|x|2<r

g(x) = g(x0),

where x0 ∈ B̄r. We define the sequence {xn} by xn = (1− 1
n )x0. We will have

{xn} ⊂ Br and xn → x0. By the definition of ϕg and continuity of g, we obtain

ϕg(r) ≥ lim
n→+∞

g(xn) = g(x0) = ϕg(r).

It is clear that ϕg is nondecreasing in R+. For all ε > 0, by the definition of ϕg,
there exists x0 ∈ Br0 such that

ϕg(r0)− ε < g(x0) ≤ ϕg(r0). (2.4)

Put δ = r0 − |x0|2 > 0, for all r ∈ (r0 − δ, r0], we have

ϕg(r0)− ε < g(x0) ≤ ϕg(|x0|2) = ϕg(|x0|2) ≤ ϕg(r) ≤ ϕg(r0). (2.5)

From (2.5), it follows that

ϕg(r0)− ε < ϕg(r) ≤ ϕg(r0), ∀r ∈ (r0 − δ, r0]. (2.6)

Therefore ϕg is continuous from left at r0.
(ii-2) We prove that ϕg is continuous from right at r0. By g ∈ C0(RN ;R+), we

have g is uniform continuous on B̄2r0 . For all ε > 0, there exists δ ∈ (0, r02 ) such
that

|g(x)− g(y)| < ε, ∀x, y ∈ B̄2r0 , |x− y|2 < δ. (2.7)

For all r ∈ [r0, r0 + δ), by the definition of ϕg, there exists xr ∈ B̄r, yr = r0
r xr ∈ B̄r0

such that ϕg(r) = g(xr) and

|g(xr)− g(yr)| < ε. (2.8)

From (2.8), we have

ϕg(r0) ≤ ϕg(r) = g(xr) < g(yr) + ε ≤ ϕg(|yr|2) + ε ≤ ϕg(r0) + ε, (2.9)

for all r ∈ [r0, r0 + δ). Therefore ϕg is continuous from right at r0. Finally, with
f ∈ C0(RN ;R), we have

Φf (r) = ϕ|f |(r), ∀r ∈ R+.

The fact |f | ∈ C0(RN ;R+) leads to Φf ∈ C0(R+;R+). For all x ∈ RN , we have

|f(x)| ≤ ϕ|f |(|x|2) = Φf (|x|2).

Obviously, Φf is nondecreasing. The proof is complete. �

Lemma 2.4 is a slight improvement of a result used in [7, Appendix 1, pp. 2734],
with N = 1 and f ∈ C0(R;R).
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Lemma 2.5. Let x : [0, T ]→ R+ be a continuous function satisfying the inequality

x(t) ≤M +

∫ t

0

k(s)ω(x(s))ds, ∀t ∈ [0, T ],

where M ≥ 0, k : [0, T ] → R+ is continuous and ω : R+ → (0,+∞) is continuous
and nondecreasing. Set

Ψ(u) =

∫ u

0

dy

ω(y)
, u ≥ 0.

(i) If
∫ +∞

0
dy
ω(y) = +∞, then

x(t) ≤ Ψ−1
(

Ψ(M) +

∫ t

0

k(s)ds
)
, ∀t ∈ [0, T ].

(ii) If
∫ +∞

0
dy
ω(y) < +∞, then there exists T∗ ∈ (0, T ] such that∫ T∗

0

k(s)ds ≤
∫ +∞

0

dy

ω(y)
,

x(t) ≤ Ψ−1
(

Ψ(M) +

∫ t

0

k(s)ds
)
, ∀t ∈ [0, T∗].

For a proof of the above lemma, see [1].

3. Existence and uniqueness of a weak solution to (1.1)-(1.3)

Definition 3.1. A weak solution to (1.1)-(1.3) is a function ~u = (u1, . . . , uN )
belonging to the functional space

W (T ) = {~u ∈ L∞(0, T ;V ) :
∂~u

∂t
∈ L2(0, T ;H)}, (3.1)

satisfying the variational problem

〈u′i(t), vi〉+ ai(t;ui(t), vi)−
∫ t

0

gi(t− s)ai(s;ui(s), vi)ds

= 〈fi(~u(t)), vi〉+ 〈Fi(t), vi〉, ∀vi ∈ Vi, i ∈ 1, N,

(3.2)

and the initial condition

ui(0) = ũi, ∀i ∈ 1, N, (3.3)

where

V = V1 × · · · × VN , H = (L2)N . (3.4)

We make the following assumptions:

(A1) h0, h1 ≥ 0;
(A2) ũi ∈ Vi for all i ∈ 1, N ;
(A3) µi ∈ C1(Ω× [0, T ]) such that µi(x, t) ≥ µi∗ > 0 for all (x, t) ∈ Ω × [0, T ],

i ∈ 1, N ;
(A4) µi ∈ C0(Ω× [0, T ]) such that µi(x, t) ≥ µi∗ > 0 for all (x, t) ∈ Ω × [0, T ],

i ∈ 1, N ;
(A5) fi ∈ C0(RN ) for all i ∈ 1, N ;
(A6) gi ∈ H1(0, T ) for all i ∈ 1, N ;
(A7) Fi ∈ L2(QT ) for i = 1, N .

Theorem 3.2. Let T > 0 and (A1)–(A7) hold.
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(i) If ∫ +∞

0

dy

1 + y +
∑N
i=1 Φ2

fi
(
√
y)
,= +∞

then (1.1)-(1.3) has a global weak solution ~u ∈W (T ) satisfying (3.2)-(3.3).
(ii) If ∫ +∞

0

dy

1 + y +
∑N
i=1 Φ2

fi
(
√
y)

< +∞

then (1.1)-(1.3) has a local weak solution ~u ∈W (T∗) satisfying (3.2))-(3.3)
with a certain T∗ small enough.

In addition if

(A5*) For all M > 0, there exists LM > 0 such that

|fi(x)− fi(y)| ≤ LM |x− y|2, ∀x, y ∈ RN , i ∈ 1, N,

then the solution is unique.

Proof. It consists of four steps.

Step 1: Faedo-Galerkin approximation (introduced by Lions [3]). Let {w(j)
i }j∈N

be a denumerable base of Vi for i = 1, N . We find an approximate solution of
(1.1)-(1.3) in the form

u
(m)
i (t) =

m∑
j=1

c
(mj)
i (t)w

(j)
i , ∀i ∈ 1, N, (3.5)

where the coefficient functions c
(mj)
i , 1 ≤ j ≤ m, i ∈ 1, N , satisfy the system of

ordinary differential equations

〈u̇(m)
i (t), w

(j)
i 〉+ ai(t;u

(m)
i (t), w

(j)
i )−

∫ t

0

gi(t− s)ai(s;u(m)
i (s), w

(j)
i )ds

= 〈fi(~u(m)(t)), w
(j)
i 〉+ 〈Fi(t), w(j)

i 〉, j = 1,m, i ∈ 1, N,

(3.6)

and the initial conditions

u
(m)
i (0) = ũ

(0m)
i , ∀i ∈ 1, N, (3.7)

with

ũ
(0m)
i =

m∑
j=1

α
(mj)
i w

(j)
i → ũi strongly in Vi for i ∈ 1, N. (3.8)

By the above assumptions, we can prove the existence of a solution ~u(m) =

(u
(m)
1 , . . . , u

(m)
N ) for the system (3.6)-(3.8) on the interval [0, Tm], for some Tm ∈

(0, T ]. The proofs are straightforward, so we omit the details.
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Step 2: A priori estimates. Taking (w
(j)
1 , . . . , w

(j)
N ) = (u̇

(m)
1 (t), . . . , u̇

(m)
N (t)) in

(3.6), and summing over i from 1 to N , we obtain

N∑
i=1

‖u̇(m)
i (t)‖

2
+

N∑
i=1

ai(t;u
(m)
i (t), u̇

(m)
i (t))

−
N∑
i=1

∫ t

0

gi(t− s)ai(s;u(m)
i (s), u̇

(m)
i (t))ds

=

N∑
i=1

〈fi(~u(m)(t)), u̇
(m)
i (t)〉+

N∑
i=1

〈Fi(t), u̇(m)
i (t)〉.

(3.9)

First, through a direct calculation, we have

d

dt
ai(t, u

(m)
i (t), u

(m)
i (t))

= 2ai(t;u
(m)
i (t), u

(m)
i (t)) + a′i(t;u

(m)
i (t), u

(m)
i (t)),

(3.10)

d

dt

∫ t

0

gi(t− s)ai(s;u(m)
i (s), u

(m)
i (t))ds

= gi(0)ai(t;u
(m)
i (t), u

(m)
i (t)) +

∫ t

0

g′i(t− s)ai(s;u
(m)
i (s), u

(m)
i (t))ds

+

∫ t

0

gi(t− s)ai(s;u(m)
i (s), u̇

(m)
i (t))ds,

(3.11)

∀i ∈ 1, N .
Hence, (3.9) can be rewritten as

2

N∑
i=1

‖u̇(m)
i (t)‖

2
+
d

dt

N∑
i=1

ai(t;u
(m)
i (t), u

(m)
i (t))

=

N∑
i=1

[a′i(t;u
(m)
i (t), u

(m)
i (t)) + 2

d

dt

∫ t

0

gi(t− s)ai(s;u(m)
i (s), u

(m)
i (t))ds]

− 2

N∑
i=1

gi(0)ai(t;u
(m)
i (t), u

(m)
i (t))

− 2

N∑
i=1

∫ t

0

g′i(t− s)ai(s;u
(m)
i (s), u

(m)
i (t))ds

+ 2

N∑
i=1

〈fi(~u(m)(t)), u̇
(m)
i (t)〉+ 2

N∑
i=1

〈Fi(t), u̇(m)
i (t)〉.

(3.12)
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Next, integrating (3.12), we obtain

Sm(t) = Sm(0) +

N∑
i=1

∫ t

0

a′i(s;u
(m)
i (s), u

(m)
i (s))ds

+ 2

N∑
i=1

∫ t

0

gi(t− s)ai(s;u(m)
i (s), u

(m)
i (s))ds

− 2

N∑
i=1

gi(0)

∫ t

0

ai(s;u
(m)
i (s), u

(m)
i (s))ds

− 2

N∑
i=1

∫ t

0

ds

∫ s

0

g′i(s− τ)ai(τ ;u
(m)
i (τ), u

(m)
i (s))dτ

+ 2

N∑
i=1

∫ t

0

〈fi(~u(m)(s)), u̇
(m)
i (s)〉ds+ 2

N∑
i=1

∫ t

0

〈Fi(s), u̇(m)
i (s)〉ds

= Sm(0) +

6∑
k=1

Jk,

(3.13)

where

Sm(t) =

N∑
i=1

(
2

∫ t

0

‖u̇(m)
i (s)‖

2
ds+ ai(t;u

(m)
i (t), u

(m)
i (t))

)
. (3.14)

By (A1)–(A7), and using Lemmas 2.3 and 2.4, we estimate the terms on both
sides of (3.13) as follows. At first, we note that

Sm(t) ≥
N∑
i=1

ai(t;u
(m)
i (t), u

(m)
i (t)) ≥ a0

N∑
i=1

‖u(m)
ix (t)‖

2
. (3.15)

Now we estimate the terms Jk on the right-hand side of (3.13) as follows. First
term, J1:

J1 = h0

∫ t

0

µ′1(0, s)|u(m)
1 (0, s)|

2
ds+ h1

∫ t

0

µ′2(1, s)|u(m)
2 (1, s)|

2
ds

+

N∑
i=1

∫ t

0

〈µ′i(s)u
(m)
ix (s), u

(m)
ix (s)〉ds

= J
(1)
1 + J

(2)
1 + J

(3)
1 ,

(3.16)

in which

J
(1)
1 = h0

∫ t

0

µ′1(0, s)|u(m)
1 (0, s)|

2
ds

≤ h0‖µ′1‖C0(Ω×[0,T ])

∫ t

0

‖u(m)
1x (s)‖

2
ds

≤ h0

a0
‖µ′1‖C0(Ω×[0,T ])

∫ t

0

Sm(s)ds.

(3.17)

Using the same techniques, with appropriate modifications, leads to

J
(2)
1 ≤ h1

a0
‖µ′2‖C0(Ω×[0,T ])

∫ t

0

Sm(s)ds. (3.18)
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Using the Cauchy-Schwarz inequality gives

J
(3)
1 =

N∑
i=1

∫ t

0

〈µ′i(s)u
(m)
ix (s), u

(m)
ix (s)〉ds

≤ max
1≤i≤N

‖µ′i‖C0(Ω×[0,T ])

∫ t

0

N∑
i=1

‖u(m)
ix (s)‖

2
ds

≤ 1

a0
max

1≤i≤N
‖µ′i‖C0(Ω×[0,T ])

∫ t

0

Sm(s)ds.

(3.19)

From (3.16)–(3.19), we have

J1 ≤ C1

∫ t

0

Sm(s)ds, (3.20)

where

C1 =
1

a0

(
h0‖µ′1‖C0(Ω×[0,T ]) + h1‖µ′2‖C0(Ω×[0,T ]) + max

1≤i≤N
‖µ′i‖C0(Ω×[0,T ])

)
. (3.21)

Second term, J2. By the Cauchy-Schwarz inequality, we obtain

J2 = 2

N∑
i=1

∫ t

0

gi(t− s)ai(s;u(m)
i (s), u

(m)
i (t))ds

≤ 2

N∑
i=1

∫ t

0

|gi(t− s)||ai(s;u(m)
i (s), u

(m)
i (t))|ds

≤ 2

N∑
i=1

‖u(m)
ix (t)‖aT ‖gi‖L∞(0,T )

∫ t

0

‖u(m)
ix (s)‖ds

≤
N∑
i=1

[1

6
a0‖u(m)

ix (t)‖
2

+
a2
T ‖gi‖

2
L∞(0,T )

6a0

(∫ t

0

‖u(m)
ix (s)‖ds

)2]
≤ 1

6
Sm(t) +

1

6a2
0

Ta2
T max

1≤i≤N
‖gi‖2L∞(0,T )

∫ t

0

Sm(s)ds.

(3.22)

Third term, J3. It is clear that

J3 = −2

N∑
i=1

gi(0)

∫ t

0

ai(s;u
(m)
i (s), u

(m)
i (s))ds

≤ 2aT

N∑
i=1

|gi(0)|
∫ t

0

‖u(m)
ix (s)‖

2
ds ≤2aT

a0
max

1≤i≤N
|gi(0)|

∫ t

0

Sm(s)ds;

(3.23)

Fourth term, J4.

J4 = −2

N∑
i=1

∫ t

0

ds

∫ s

0

g′i(s− τ)ai(τ ;u
(m)
i (τ), u

(m)
i (s))dτ

≤ 2aT

N∑
i=1

∫ t

0

‖u(m)
ix (s)‖ds

∫ s

0

|g′i(s− τ)|‖u(m)
ix (τ)‖dτ

= 2aT
√
T

N∑
i=1

‖g′i‖L2(0,T )

∫ t

0

‖u(m)
ix (s)‖

2
ds
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≤ 2aT
a0

√
T max

1≤i≤N
‖g′i‖L2(0,T )

∫ t

0

Sm(s)ds.

Fifth term, J5. It is known that

|~u(m)(x, t)|2 =

√√√√ N∑
i=1

|u(m)
i (x, t)|

2
≤

√√√√ N∑
i=1

‖u(m)
ix (t)‖2 ≤

√
Sm(t)
√
a0

.

By Lemma 2.4, we have

|fi(~u(m)(x, t))| ≤ Φfi

(
|~u(m)(x, t)|2

)
≤ Φfi(

1
√
a0

√
Sm(t)), ∀i ∈ 1, N,

so

‖fi(~u(m)(t))‖ ≤ Φfi

( 1
√
a0

√
Sm(t)

)
, ∀i ∈ 1, N ;

therefore,

J5 = 2

N∑
i=1

∫ t

0

〈fi(~u(m)(s)), u̇
(m)
i (s)〉ds

≤
N∑
i=1

∫ t

0

[3‖fi(~u(m)(s))‖
2

+
1

3
‖u̇(m)

i (s)‖
2
]ds

≤ 3

N∑
i=1

∫ t

0

Φ2
fi(

1
√
a0

√
Sm(s))ds+

1

3

N∑
i=1

∫ t

0

‖u̇(m)
i (s)‖

2
ds

≤ 1

6
Sm(t) + 3

N∑
i=1

∫ t

0

Φ2
fi(

1
√
a0

√
Sm(s))ds.

(3.24)

Sixth term, J6. We have

J6 = 2

N∑
i=1

∫ t

0

〈Fi(s), u̇(m)
i (s)〉ds ≤ 1

6
Sm(t) + 3

N∑
i=1

‖Fi‖2L2(QT ). (3.25)

Now we estimate the term Sm(0). From the convergence in (3.8), we can deduce
the existence of a constant C0 > 0 such that

Sm(0) =

N∑
i=1

ai
(
0; ũ

(0m)
i , ũ

(0m)
i

)
≤ C0, ∀m ∈ N. (3.26)

From (3.13), (3.20), (3.22)-(3.26), there exist MT > 0, NT > 0 constants indepen-
dent of m such that

Sm(t) ≤MT +NT

∫ t

0

ω(Sm(s))ds, ∀t ∈ [0, T ], (3.27)

with

ω(S) = 1 + S +

N∑
i=1

Φ2
fi

( 1
√
a0

√
S
)
. (3.28)

By the same convergence of
∫ +∞

0
dy
ω(y) and

∫ +∞
0

dy

1+y+
∑N

i=1 Φ2
fi

(
√
y)

, apply Lemma

2.5 with x(t) ≡ Sm(t), M = MT , k(s) ≡ NT , ω(S) = 1 + S +
∑N
i=1 Φ2

fi
( 1√

a0

√
S),

we obtain the estimate of Sm(t) in two cases as follows.
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Case 1. If ∫ +∞

0

dy

1 + y +
∑N
i=1 Φ2

fi
(
√
y)

= +∞

then
Sm(t) ≤ Ψ−1(Ψ(MT ) +NT t)

≤ Ψ−1(Ψ(MT ) +NTT ) ≡ CT , ∀t ∈ [0, T ], m ∈ N.
(3.29)

Case 2. If ∫ +∞

0

dy

1 + y +
∑N
i=1 Φ2

fi
(
√
y)

< +∞

then
Sm(t) ≤ Ψ−1(Ψ(MT ) +NT t)

≤ Ψ−1(Ψ(MT ) +NTT ) ≡ CT , ∀t ∈ [0, T∗], m ∈ N,
(3.30)

where T∗ ∈ (0, T ] chosen such that T∗NT ≤
∫ +∞

0
dy
ω(y) .

This allows one to take the constant Tm = T or Tm = T∗ for all m ∈ N. In what
follows, we will write T∗ for both T and T∗.

Step 3: Limiting process. It follows from (3.14), (3.15) and (3.29) (or (3.30)), that

‖u(m)
i ‖L∞(0,T∗;Vi) ≤

√
CT
a0

, ‖u̇(m)
i ‖L2(QT ) ≤

√
CT , ∀m ∈ N, ∀i ∈ 1, N. (3.31)

Applying the Banach-Alaoglu theorem and Kakuntani theorem, the above uniform
bounds with respect to m imply that one can extract a subsequence (which we
relabel with the index m if necessary) such that

~u(m) → ~u weak* in L∞(0, T∗;V ), (3.32)

∂~u(m)

∂t
→ ∂~u

∂t
weakly in L2(0, T∗;H). (3.33)

By Aubin-Lions compactness theorem and Riesz-Fisher theorem, it is straight-
forward to go on extracting, from weak convergence results (3.32) and (3.33), a
subsequence (which we relabel with the index m if necessary) such that

~u(m) → ~u strongly in L2(0, T∗;H),

~u(m)(x, t)→ ~u(x, t) a.e. (x, t) ∈ QT∗ .
(3.34)

It remains to show the convergence of the nonlinear terms. Using the continuity
argument of fi for all i ∈ 1, N and (3.34), one deduces that

fi(~u
(m)(x, t))→ fi(~u(x, t)) a.e. (x, t) ∈ QT∗ , ∀i ∈ 1, N. (3.35)

On the other hand,

‖fi(~u(m))‖L2(QT∗ ) ≤
√
T sup
|z|≤

√
CT
a0

|fi(z)|, ∀i ∈ 1, N.

From [3, Lemma 1.3] we obtain

fi(~u
(m))→ fi(~u) weakly in L2(QT∗), ∀i ∈ 1, N. (3.36)

Combining (3.32), (3.33), (3.36) and (3.8), it is enough to pass to the limit in (3.6)
and (3.7) to show that ~u satisfies (3.2) and (3.3). In addition, from (3.32) and
(3.33), we have ~u ∈ W (T∗) and the proof of the existence of a weak solution is
complete.
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Step 4: Uniqueness of the solution. Suppose ~u(1) and ~u(2) are two solutions of
(1.1)-(1.3) on the interval [0, T∗] such that

~u(i) ∈W (T∗), i = 1, 2. (3.37)

Then ~u = ~u(1) − ~u(2) = (u1, . . . , uN ) ∈W (T∗) satisfies

〈u′i(t), vi〉+ ai(t;ui(t), vi)−
∫ t

0

gi(t− s)ai(s;ui(s), vi)ds

= 〈fi(~u(1)(t))− fi(~u(2)(t)), vi〉, ∀v ∈ Vi, i ∈ 1, N,

(3.38)

ui(0) = 0, ∀i ∈ 1, N. (3.39)

Taking vi = 2ui(t) in (3.38) and integrating with respect to t, and summing over i
from 1 to N , we obtain

N∑
i=1

‖ui(t)‖2 + 2

∫ t

0

N∑
i=1

ai(s;ui(s), ui(s))ds

= 2

N∑
i=1

∫ t

0

ds

∫ s

0

ai(τ ;ui(τ), ui(s))dτ

+ 2

N∑
i=1

∫ t

0

〈fi(~u(1)(s))− fi(~u(2)(s)), ui(s)〉ds.

(3.40)

Set %(t) =
∑N
i=1

(
‖ui(t)‖2 +

∫ t
0
‖uix(s)‖2ds

)
. As in Step 2, we can estimate all

terms on the right hand side of (3.40) to obtain

%(t) ≤ DT

∫ t

0

%(s)ds, ∀t ∈ [0, T∗], (3.41)

where DT > 0. Applying Gronwall’s lemma, (3.41) leads to %(t) ≡ 0; i.e., ~u(1) =
~u(2). Theorem 3.2 is proved. �

Lemma 2.4 is a powerful and efficient tool for estimate the nonlinear terms.
By Lemma 2.4, we can relax assumptions for fi ∈ C0(RN ) for all i ∈ 1, N , that
is, fi can be bounded by the polynomial of |~u|2 for all i ∈ 1, N or not. It is an
improvement of the assumptions in [8], here the authors had to suppose that f is
bounded by the polynomial of |u| for the initial boundary problem for a nonlinear
heat equation ut− ∂

∂x (µ(x, t)ux)+f(u) = f1(x, t), 0 < x < 1, 0 < t < T , associated
with Robin boundary conditions.

4. Blow-up of solutions

In this section we study the blow up in finite time of the solution of (1.1)-(1.3)
corresponding to µi(x, t) ≡ µi(x) and Fi(x, t) ≡ 0 for all i ∈ 1, N ,

∂ui
∂t
− ∂

∂x

(
µi(x, t)

∂ui
∂x

)
+

∫ t

0

gi(t− s)
∂

∂x

(
µi(x)

∂ui
∂x

(x, s)
)
ds

= fi(u1, . . . , uN ), (x, t) ∈ QT , ∀i ∈ 1, N,

(4.1)
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with boundary conditions

∂u1

∂x
(0, t)− h0u1(0, t) = u1(1, t) = 0,

u2(0, t) =
∂u2

∂x
(1, t) + h1u2(1, t) = 0,

ui(0, t) = ui(1, t) = 0, 3 ≤ i ≤ N,

(4.2)

and initial conditions

ui(x, 0) = ũi(x), ∀i ∈ 1, N. (4.3)

We make the following assumptions:

(A3’) µi ∈ C1(Ω× R+) such that µi(x, t) ≥ µi∗ > 0, ∂µi

∂t (x, t) ≤ 0 for all (x, t) ∈
Ω× R+, i ∈ 1, N ;

(A4’) µi ∈ C0(Ω) such that µi(x) ≥ µi∗ > 0 for all x ∈ Ω, i = 1, N ;
(A5’) fi ∈ C0(RN ) for all i ∈ 1, N . Furthermore, there exists F ∈ C1(RN ) such

that
(i) ∂F

∂ui
= fi for all i ∈ 1, N ,

(i) There exists constant d1 > 2 such that d1F(~u) ≤
∑N
i=1 uifi(~u), for all

~u = (u1, . . . , uN ) ∈ RN ,
(iii) There exist constants d1 > 0, pi > 2 for all i ∈ 1, N , such that F(~u) ≥

d1

∑N
i=1 |ui|

pi , for all ~u = (u1, . . . , uN ) ∈ RN ;
(A6’) gi ∈ C1(R+;R+) ∩ L1(R+) such that 0 < gi(t) ≤ gi(0) and g′i(t) ≤ 0 for all

t ≥ 0, i ∈ 1, N .

Example 4.1. For ~u = (u1, . . . , uN ) ∈ RN , we define a function that satisfies
(A5’).

F(~u) = F(u1, . . . , uN ) =

N∑
i=1

αi|ui|pi + β|u1|q1 . . . |uN |qN ln
k
(e+|~u|22),

where β > 0, k > 1 and αi > 0, pi > 2, qi > 2 for all i ∈ 1, N are constants. By
direct calculations, we have

fi(~u) =
∂F
∂ui

(~u)

= piαi|ui|pi−2ui + βqi|u1|q1 . . . |uN |qNu−1
i ln

k
(e+|~u|22)

+ 2kβ|u1|q1 . . . |uN |qN
ui

e+|~u|22
lnk−1(e+|~u|22), ∀i ∈ 1, N.

It is obvious that (A5’) holds, since

N∑
i=1

uifi(~u) =

N∑
i=1

piαi|ui|pi + β(

N∑
i=1

qi)|u1|q1 . . . |uN |qN ln
k
(e+|~u|22)

+ 2kβ|u1|q1 . . . |uN |qN
|~u|22
e+|~u|22

lnk−1(e+|~u|22)

≥
N∑
i=1

piαi|ui|pi + β(

N∑
i=1

qi)|u1|q1 . . . |uN |qN ln
k
(e+|~u|22)

≥ d1F(~u),
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with d1 = min{p1, . . . , pN ,
∑N
i=1 qi} and

F(~u) ≥
N∑
i=1

αi|ui|pi ≥ d1

N∑
i=1

|ui|pi , d1 = min
1≤i≤N

αi.

Now, on Vi × Vi, we consider the following symmetric bilinear forms:

A1(u, v) =

∫ 1

0

ux(x)vx(x)dx+ h0u(0)v(0),

a1(u, v) =

∫ 1

0

µ1(x)ux(x)vx(x)dx+ h0µ1(0)u(0)v(0), ∀u, v ∈ V1;

A2(u, v) =

∫ 1

0

ux(x)vx(x) + h1u(1)v(1),

a2(u, v) =

∫ 1

0

µ2(x)ux(x)vx(x)dx+ h1µ2(1)u(1)v(1), ∀u, v ∈ V2;

Ai(u, v) =

∫ 1

0

ux(v)vx(x)dx,

ai(u, v) =

∫ 1

0

µi(x)ux(x)vx(x)dx, ∀u, v ∈ Vi, i = 3, N.

It is easy to show that the forms Ai(·, ·), ai(·, ·) are continuous on Vi × Vi and
coercive on Vi for all i ∈ 1, N . On the other hand, the norm v 7→ ‖vx‖ and the

norms v 7→ ‖v‖Ai =
√
Ai(v, v) and v 7→ ‖v‖ai =

√
ai(v, v) are equivalent.

Lemma 4.2. There exist positive constants µ∗, µ
∗, µ∗, µ

∗ such that:

(i) Ai(v, v) ≥ ‖vx‖2, for all v ∈ Vi, i ∈ 1, N ,
(ii) |Ai(u, v)| ≤ (1 + max{h0, h1})‖ux‖‖vx‖, for all u, v ∈ Vi, i = 1, N ,

(iii) ai(v, v) ≥ µ∗‖v‖2Ai
, for all v ∈ Vi, i ∈ 1, N ,

(iv) |ai(u, v)| ≤ µ∗‖u‖Ai
‖v‖Ai

, for all v ∈ Vi, i = 1, N ,
(v) ai(t; v, v) ≥ µ∗‖v‖2Ai

, for all v ∈ Vi, i ∈ 1, N ,

(vi) |ai(t;u, v)| ≤ µ∗‖u‖Ai‖v‖Ai , for all v ∈ Vi, i ∈ 1, N ,
(vii) a′i(t, v, v) ≤ 0, for all u, v ∈ Vi, t ≥ 0, i ∈ 1, N .

Lemma 4.3. For i ∈ 1, N , on Vi, the norms v 7→ ‖v‖Ai
=
√
Ai(v, v) and v 7→

‖v‖ai =
√
ai(v, v) are equivalent and√

µ∗‖v‖Ai ≤ ‖v‖ai ≤
√
µ∗‖v‖Ai

, ∀v ∈ Vi.

Now we define the modified energy functional related to (4.1)-(4.3),

E(t) =
1

2

N∑
i=1

[(gi ? ui)(t) +ai(t;ui(t), ui(t))− g̃i(t)‖ui‖2ai ]−
∫ 1

0

F(~u(x, t))dx, (4.4)

where

(gi ? ui)(t) =

∫ t

0

gi(t− s)‖ui(s)− ui(t)‖2aids, g̃i(t) =

∫ t

0

gi(s)ds, (4.5)
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for all i ∈ 1, N . By multiplying (4.1) by u′i(t), and integrating over Ω, and summing
over i from 1 to N , we obtain

E′(t) =

N∑
i=1

[−‖u′i(t)‖
2
+

1

2
a′i(t;ui(t), ui(t))−

1

2
gi(t)‖ui‖2ai +

1

2
(g′i ? ui)(t)] ≤ 0, (4.6)

for any regular solution. The same result can be established for weak solutions and
for almost every t, by a denseness argument.

Theorem 4.4. Let assumptions (A1), (A3’)–(A6’), (A5*) hold. If

max
1≤i≤N

‖gi‖L1(R+) <
µ∗
µ∗

(
1− 1

(d1 − 1)
2

)
,

then for all (ũ1, . . . , ũN ) ∈ V such that E(0) < 0, we have:

(i) If p1 = · · · = pN , then the weak solution u of (4.1)-(4.3) blows up in finite
time.

(ii) If there exist i, j = 1, N , i 6= j such that pi 6= pj and
∑N
i=1 ‖ũi‖

2 ≥
41+1/pN , with p = min1≤i≤N pi, then the weak solution u of (4.1)-(4.3)
blows up in finite time.

Proof. It consists of two steps.
Step1. First, we prove that

Problem (4.1)-(4.3) has no global weak solution. (4.7)

Indeed, by contradiction we assume that

~u ∈W (R+) = {~u ∈ L∞loc(R+;V ) ∩ C(R+;H) :
∂~u

∂t
∈ L2

loc(R+;H)},

is a global weak solution of (4.1)-(4.3). We define

H(t) = −E(t), t ≥ 0. (4.8)

Then it follows from (4.6) that H′(t) ≥ 0 for all t ≥ 0. This implies that

H(t) ≥ H(0) = −E(0) > 0, ∀t ≥ 0. (4.9)

Set

L1(t) =
1

2

N∑
i=1

‖ui(t)‖2. (4.10)

By taking the time derivative of (4.10) and using (4.1), we obtain

L′1(t) =

N∑
i=1

(〈fi(~u(t)), ui(t)〉 − ai(t;ui(t), ui(t)) +

∫ t

0

gi(t− s)ai(ui(s), ui(t))ds).

Hence

L′1(t) ≥
N∑
i=1

(〈fi(~u(t)), ui(t)〉 − ai(t;ui(t), ui(t))) +

N∑
i=1

g̃i(t)‖ui(t)‖2ai

−
N∑
i=1

∫ t

0

gi(t− s)|ai(ui(s)− ui(t), ui(t))|ds.

(4.11)
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By using the Schwarz inequality and Young inequality, for all δ1 > 0, we obtain

N∑
i=1

∫ t

0

gi(t− s)|ai(ui(s)− ui(t), ui(t))|ds

≤
N∑
i=1

[
1

2δ1
g̃i(t)‖ui(t)‖2ai +

δ1
2

(gi ? ui)(t)].

(4.12)

From (4.4) and (4.9), we obtain∫ 1

0

F(~u(x, t))dx ≥ 1

2

N∑
i=1

[(gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai ]. (4.13)

Since ϕ(x) = µ∗
µ∗ (1− 1

(x−1)2
) is continuous and nondecreasing on (2, d1), it follows

that

0 = ϕ(2) < max
1≤i≤N

‖gi‖L1(R+) <
µ∗
µ∗

(
1− 1

(d1 − 1)
2

)
= ϕ(d1).

Then there exists a unique constant p̂ ∈ (2, d1) such that

max
1≤i≤N

‖gi‖L1(R+) = ϕ(p̂). (4.14)

Set δ1 = p̂ and δ2 = δ1
d1

. From (4.11)-(4.14) we deduce that

L′1(t) ≥ (1− δ2)

N∑
i=1

〈fi(~u(t)), ui(t)〉+ δ2

N∑
i=1

〈fi(~u(t)), ui(t)〉

−
N∑
i=1

ai(t;ui(t), ui(t)) +
(
1− 1

2δ1

) N∑
i=1

g̃i(t)‖ui(t)‖2ai −
δ1
2

N∑
i=1

(gi ? ui)(t)

≥ (1− δ2)

N∑
i=1

〈fi(~u(t)), ui(t)〉+
δ2d1

2

N∑
i=1

(gi ? ui)(t)

+
δ2d1

2

N∑
i=1

ai(t;ui(t), ui(t))

− δ2d1

2

N∑
i=1

g̃i(t)‖ui(t)‖2ai −
N∑
i=1

ai(t;ui(t), ui(t))

+
(
1− 1

2δ1

) N∑
i=1

g̃i(t)‖ui(t)‖2ai −
δ1
2

N∑
i=1

(gi ? ui)(t)

=
(
1− p̂

d1

) N∑
i=1

〈fi(~u(t)), ui(t)〉+
( p̂

2
− 1
) N∑
i=1

ai(t;ui(t), ui(t))

− (p̂− 1)2

2p̂

N∑
i=1

g̃i(t)‖ui(t)‖2ai

≥
(
1− p̂

d1

) N∑
i=1

〈fi(~u(t)), ui(t)〉+
( p̂

2
− 1
)µ∗
µ∗

N∑
i=1

‖ui(t)‖2ai
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− (p̂− 1)2

2p̂
max

1≤i≤N
‖gi‖L1(R+)

N∑
i=1

‖ui(t)‖2ai

=
(
1− p̂

d1

) N∑
i=1

〈fi(~u(t)), ui(t)〉

+
(p̂− 1)2

2p̂
(ϕ(p̂)− max

1≤i≤N
‖gi‖L1(R+))

N∑
i=1

‖ui(t)‖2ai

=
(
1− p̂

d1

) N∑
i=1

〈fi(~u(t)), ui(t)〉

≥ (1− δ1
d1

)d1

N∑
i=1

‖ui(t)‖piLpi

≥ (1− δ1
d1

)d1

N∑
i=1

‖ui(t)‖pi ≡ θ
N∑
i=1

‖ui(t)‖pi .

We consider the following cases:

(i) If p1 = · · · = pN = p, then from the inequality (
∑N
i=1 yi)

α≤ Nα−1∑N
i=1 y

α
i ,

for all α ≥ 1, y1, . . . , yN ≥ 0, we obtain

L′1(t) ≥ θ
N∑
i=1

‖ui(t)‖p ≥ N1− p
2 θ
( N∑
i=1

‖ui(t)‖2
)p/2

≥ Nθ

(
√

2N)p
Lp/21 (t) ≡ θ1Lp/21 (t).

(4.15)

A direct integration of (4.15) yields

L
p
2−1
1 (t) ≥ 2

(p− 2)θ1(T∗ − t)
, ∀t ∈ [0, T∗),

with T∗ = 2
(p−2)θ1

L1− p
2

1 (0). Therefore, limt→T−∗ L1(t) = +∞. This is a contradic-

tion with ~u ∈ C([0, T∗];H). Thus, (4.7) holds.
(ii) If there exist i, j ∈ 1, N , i 6= j such that pi 6= pj . We put p = min1≤i≤N pi,

using the inequality xp ≤ xpi + 1, for all x ≥ 0, i ∈ 1, N , we obtain

L′1(t) ≥ θ
N∑
i=1

‖ui(t)‖pi ≥θ(
N∑
i=1

‖ui(t)‖p −N)

≥ θ[N1− p
2 (

N∑
i=1

‖ui(t)‖2)
p
2 −N ] =

Nθ

(
√

2N)p
(Lp/21 (t)− (

√
2N)p).

(4.16)

From L′1(t) ≥ 0, for all t ≥ 0, we have L1(t) ≥ L1(0) = 1
2

∑N
i=1 ‖ũi‖

2
, for all t ≥ 0.

It follows from
∑N
i=1 ‖ũi‖

2 ≥ 41+1/pN , that 1
2L

p/2
1 (t) ≥ 1

2L
p/2
1 (0) ≥ (

√
2N)p, for

all t ≥ 0. Therefore, from (4.16) we deduce that

L′1(t) ≥ Nθ

(
√

2N)p
(
1

2
Lp/21 (t) +

1

2
Lp/21 (t)− (

√
2N)p)

≥ Nθ

2(
√

2N)p
L

p
2
1 (t) ≡ θ2L

p
2
1 (t), ∀t ≥ 0.

(4.17)
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A direct integration of (4.17) gives

L
p
2−1
1 (t) ≥ 2

(p− 2)θ2(T∗ − t)
, ∀t ∈ [0, T∗),

with T∗ = 2
(p−2)θ2

L1− p
2

1 (0).

Therefore limt→T−∗ L1(t) = +∞. This is a contradiction with ~u ∈ C([0, T∗];H).

Thus, (4.7) holds.

Step 2. Next, we put

T∞ = sup{T > 0 : (4.1)-(4.3) has a unique solution ~u ∈W (T )}.
By (4.7), we have T∞ < +∞. We now prove that

lim
t→T−∞

‖~ux(t)‖ = +∞. (4.18)

Indeed, assume that (4.18) is not true, then there exists a constant M > 0 and a
sequence {tm} with {tm} ⊂ (0, T∞), tm → T∞ such that

‖~ux(tm)‖2 ≤M, ∀m ∈ N.

Following the argument as above, for each m ∈ N, there exists a unique weak
solution

~u∗ ∈ {~u ∈ L∞(tm, tm + η;V ) ∩ C([tm, tm + η];H) :
∂~u

∂t
∈ L2(tm, tm + η;H)}

of (4.1)-(4.3) with the initial data

~u∗(tm) = ~u(tm),

with η > 0 independent of m ∈ N. By tm → T∞, we can get tm + η > T∞ for
m ∈ N sufficiently large. It is clear that the function

~U(t) =

{
~u(t), 0 ≤ t ≤ tm,
~u∗(t), tm ≤ t ≤ tm + η,

is a weak solution of (4.1)-(4.3) on [0, tm+η], tm+η > T∞, we obtain a contradiction
to the maximality of T∞. Thus, (4.18) holds. Theorem 4.4 is proved . �

5. Exponential decay of solutions

In this section, we study the global solution of (1.1)-(1.3), corresponding to
µi(x, t) ≡ µi(x) as in Section 4. We shall make suitable and necessary assumptions,
for which the solution obtained here decays exponentially, these assumptions are
as follows.

(A5”) fi ∈ C0(RN ) for all i ∈ 1, N . Furthermore, there exists F ∈ C1(RN ;R)
such that

(i) ∂F
∂ui

= fi for all i ∈ 1, N ,

(ii) There exists a nondecreasing function G : R+ → R+ such that

lim
z→0+

G(z) = 0, F(~u) ≤ G(|~u|2)|~u|22, ∀~u ∈ RN ,

(iii) There exists a constant d2 > 2 such that d2F(~u) ≥
∑N
i=1 uifi(~u), for

all ~u ∈ RN ;
(A6”) gi ∈ C1(R+,R+) ∩ L1(R+) such that

(i) 0 < gi(t) ≤ gi(0), g′i(t) ≤ 0 for all t ≥ 0, i ∈ 1, N ,
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(ii) L ≡ µ∗ − µ∗ max
1≤i≤N

‖gi‖L1(R+) > 0,

(iii) There exist constants ξi > 0 for all i ∈ 1, N such that

g′i(t) ≤ −ξigi(t), ∀t ≥ 0, i ∈ 1, N ;

(A7”) Fi ∈ L2(R+;L2) and there exist constants Ci > 0, γi > 0 for all i ∈ 1, N
such that

‖Fi(t)‖ ≤ Ci exp(−γit), ∀t ≥ 0, i ∈ 1, N.

Example 5.1. We note that the function F given in Example 4.1 also satisfies
(A5”). Indeed, we have

F(~u) ≤
N∑
i=1

αi|~u|pi2 + β|~u|q1+···+qN
2 lnk(e+|~u|22) ≤ G(|~u|2)|~u|22, ∀~u ∈ RN ,

where G(z) =
∑N
i=1 αiz

pi−2 + βzq1+···+qN−2lnk(e+ z2) → 0 as z → 0+. From
Example 4.1, we have

N∑
i=1

uifi(~u) =

N∑
i=1

piαi|ui|pi + β
( N∑
i=1

qi

)
|u1|q1 . . . |uN |qN ln

k
(e+|~u|22)

+ 2kβ|u1|q1 . . . |uN |qN
|~u|22
e+|~u|22

lnk−1(e+|~u|22)

≤
N∑
i=1

piαi|ui|pi + β
( N∑
i=1

qi + 2k
)
|u1|q1 . . . |uN |qN ln

k
(e+|~u|22)

≤ d2F(~u),

where d2 = max{p1, . . . , pN , 2k +
∑N
i=1 qi} > 2. Hence, (A5”) holds.

Now, for δ > 0 to be chosen later, we define

L(t) = E(t) +
δ

2

N∑
i=1

‖ui(t)‖2 = E(t) + δL1(t), (5.1)

where

E(t) =
1

2

N∑
i=1

((gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai)−
∫ 1

0

F(~u(x, t))dx.

With p ∈ (2, d2), we can rewrite the energy functional E(t) as follows

E(t) = (
1

2
− 1

p
)

N∑
i=1

[(gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai ] +
1

p
I(t),

where

I(t) = I(~u(t))

=

N∑
i=1

[
(gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai

]
− p

∫ 1

0

F(~u(x, t))dx.
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Lemma 5.2. Assume that (A1), (A3’), (A4’), (A5”)–(A7”) hold. Then

E′(t) ≤ −(1− ε1

2
)

N∑
i=1

‖u′i(t)‖
2 − 1

2

N∑
i=1

ξi(gi ? ui)(t) +
1

2ε1

N∑
i=1

‖Fi(t)‖2, (5.2)

for all ε1 > 0.

.

Proof. Multiplying ith equation in (1.1) by u′i, and integrating over Ω, and summing
over i from 1 to N ; we obtain

E′(t) = −
N∑
i=1

‖u′i(t)‖
2

+
1

2

N∑
i=1

a′i(t;ui(t), ui(t))−
1

2

N∑
i=1

gi(t)‖ui(t)‖2ai

+
1

2

N∑
i=1

(g′i ? ui)(t) +

N∑
i=1

〈Fi(t), u′i(t)〉,

(5.3)

for any regular solution u. We can extend (5.3) to weak solutions by using denseness
arguments.

On the other hand, we have

N∑
i=1

〈Fi(t), u′i(t)〉 ≤
ε1

2

N∑
i=1

‖u′i(t)‖
2

+
1

2ε1

N∑
i=1

‖Fi(t)‖2,

1

2

N∑
i=1

(g′i ? ui)(t) ≤ −
1

2

N∑
i=1

ξi(gi ? ui)(t),

1

2

N∑
i=1

a′i(t;ui(t), ui(t)) ≤ 0.

(5.4)

From (5.3) and (5.4), we obtain (5.2). Lemma 5.2 is proved. �

Lemma 5.3. Assume that (A1), (A3’), (A4’), (A5”)–(A7”) hold. Suppose I(0) > 0
and

R∗ =

√√√√ 2p

(p− 2)L
(E(0) +

1

2

N∑
i=1

‖Fi‖2L2(R+;L2)) is small enough (5.5)

such that

η∗ = L− pG(R∗) >
d2 − p
d2

µ∗. (5.6)

Then I(t) > 0 for all t ≥ 0.

Proof. By the continuity of I(t) and I(0) > 0, there exists T1 > 0 such that

I(t) = I(~u(t)) > 0, ∀t ∈ [0, T1]. (5.7)

This gives

E(t) ≥
(1

2
− 1

p

) N∑
i=1

(
ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai

)
≥
(1

2
− 1

p

)(
µ∗ − µ∗ max

1≤i≤N
‖gi‖L1(R+)

) N∑
i=1

‖ui(t)‖2Ai
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=
(p− 2)L

2p

N∑
i=1

‖ui(t)‖2Ai
, ∀t ∈ [0, T1].

Hence
N∑
i=1

‖ui(t)‖2Ai
≤ 2p

(p− 2)L
E(t), ∀t ∈ [0, T1]. (5.8)

From (5.2) with ε1 = 1 and (5.8), we obtain

N∑
i=1

‖ui(t)‖2Ai
≤ 2p

(p− 2)L
E(t)

≤ 2p

(p− 2)L

(
E(0) +

1

2

N∑
i=1

‖Fi‖2L2(R+;L2)

)
≡ R2

∗,

(5.9)

for all t ∈ [0, T1]; so

|~u(x, t)|2 =

√√√√ N∑
i=1

|ui(x, t)|2 ≤

√√√√ N∑
i=1

‖uix(t)‖2 ≤

√√√√ N∑
i=1

‖ui(t)‖2Ai
≤ R∗.

By (A5”), we have∫ 1

0

F(~u(x, t))dx ≤
∫ 1

0

G(|~u(x, t)|2)|~u(x, t)|22dx ≤ G(R∗)

N∑
i=1

‖ui(t)‖2Ai
. (5.10)

Consequently

I(~u(t)) =

N∑
i=1

[(gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai ]− p
∫ 1

0

F(~u(x, t))dx

≥
N∑
i=1

(gi ? ui)(t) + (L− pG(R∗))

N∑
i=1

‖ui(t)‖2Ai

≡
N∑
i=1

((gi ? ui)(t) + η∗‖ui(t)‖2Ai
) > 0, ∀t ∈ [0, T1].

Now, we set T∞ = sup{T > 0 : I(t) > 0, ∀t ∈ [0, T ]}. If T∞ < +∞, then by the
continuity of I(t), we have I(T∞) ≥ 0.

In the case I(T∞) > 0, by the same arguments as above, we can deduce that
there exists T ′∞ > T∞ such that I(t) > 0, for all t ∈ [0, T ′∞]. We obtain a
contradiction to the definition of T∞.

In the case I(T∞) = 0, it follows that

0 = I(T∞) ≥
N∑
i=1

(
(gi ? ui)(T∞) + η∗‖ui(T∞)‖2Ai

)
≥ 0.

Therefore

ui(T∞) = (gi ? ui)(T∞) = 0, ∀i ∈ 1, N.

From the fact that g(T∞ − s) > 0, for all s ∈ [0, T∞], we have

(gi ? ui)(T∞) =

∫ T∞

0

gi(T∞−s)‖ui(s)‖2aids = 0,
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it follows that ‖ui(s)‖ ≤ ‖ui(s)‖ai = 0, a.e. s ∈ [0, T∞]. By ui ∈ C([0, T∞];L2), we
deduce that ui(s) = 0, for all s ∈ [0, T∞], i.e. ui(0) = 0. This leads to I(0) = 0. We
get in contradiction with I(0) > 0. Consequently, T∞ = +∞, i.e. I(t) > 0, for all
t ≥ 0. This completes the proof. �

Lemma 5.4. Let I(0) > 0 and (5.5), (5.6) hold. Set

E1(t) =

N∑
i=1

(
(gi ? ui)(t) + ‖ui(t)‖2Ai

)
+ I(t). (5.11)

Then there exist positive constants β1, β2 such that

β1E1(t) ≤ L(t) ≤ β2E1(t), ∀t ≥ 0. (5.12)

Proof. It is not difficult to see that

L(t) =
(1

2
− 1

p

) N∑
i=1

(
(gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai

)
+
I(t)

p
+ δL1(t)

≥ p− 2

2p

N∑
i=1

(
(gi ? ui)(t) + L‖ui(t)‖2Ai

)
+
I(t)

p
≥ β1E1(t),

where β1 = min{p−2
2p ,

(p−2)L
2p , 1

p}. Similarly,

L(t) ≤ p− 2

2p

N∑
i=1

((gi ? ui)(t) + µ∗‖ui(t)‖2Ai
) +

I(t)

p
+
δ

2

N∑
i=1

‖ui(t)‖2Ai

=
p− 2

2p

N∑
i=1

(gi ? ui)(t) +
( (p− 2)µ∗

2p
+
δ

2

) N∑
i=1

‖ui(t)‖2Ai
+
I(t)

p
≤ β2E1(t),

where β2 = max{p−2
2p ,

(p−2)µ∗

2p + δ
2 ,

1
p}. The proof is complete. �

Lemma 5.5. Suppose I(0) > 0 (5.5), (5.6) hold. Then

L′1(t) ≤
( 1

2ε2
+
d2

p

) N∑
i=1

(gi ? ui)(t)−
ε3d2

p
I(t) +

1

2ε2

N∑
i=1

‖Fi(t)‖2

−
(d2

p
− 1− ε2

2

) N∑
i=1

g̃i(t)‖ui(t)‖2ai

−
[ (1− ε3)d2η∗

p
− (

d2

p
− 1)µ∗ − ε2

2

] N∑
i=1

‖ui(t)‖2Ai
,

(5.13)

for all ε2 > 0, ε3 ∈ (0, 1).



24 L. T. P. NGOC, N. T. LONG EJDE-2020/106

Proof. Multiplying the ith equation in (1.1) by u′i, and integrating over Ω, and
summing over i from 1 to N , we obtain

L′1(t) = −
N∑
i=1

ai(t;ui(t), ui(t)) +

N∑
i=1

g̃i(t)‖ui(t)‖2ai +

N∑
i=1

〈fi(~u(t)), ui(t)〉

+

N∑
i=1

〈Fi(t), ui(t)〉+

N∑
i=1

∫ t

0

gi(t− s)ai(ui(s)− ui(t), ui(t))ds.

(5.14)

For all ε2 > 0, we have∫ t

0

gi(t− s)ai(ui(s)− ui(t), ui(t))ds ≤
ε2

2
g̃i(t)‖ui(t)‖2ai +

1

2ε2
(gi ? ui)(t), (5.15)

N∑
i=1

〈Fi(t), ui(t)〉 ≤
1

2ε2

N∑
i=1

‖Fi(t)‖2 +
ε2

2

N∑
i=1

‖ui(t)‖2Ai
. (5.16)

For each ε3 ∈ (0, 1), we have

N∑
i=1

〈fi(~u(t)), ui(t)〉

≤ d2

∫ 1

0

F(~u(x, t))dx

=
d2

p

[ N∑
i=1

((gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai)− I(t)
]

=
d2

p

N∑
i=1

[
(gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai

]
− ε3d2

p
I(t)− (1− ε3)d2

p
I(t)

≤ d2

p

N∑
i=1

[
(gi ? ui)(t) + ai(t;ui(t), ui(t))− g̃i(t)‖ui(t)‖2ai

]
− ε3d2

p
I(t)− (1− ε3)d2η∗

p

N∑
i=1

‖ui(t)‖2Ai
.

(5.17)

Since d2
p − 1 > 0, we have

(d2

p
− 1
) N∑
i=1

ai(t;ui(t), ui(t)) ≤
(d2

p
− 1
)
µ∗

N∑
i=1

‖ui(t)‖2Ai
. (5.18)

From (5.14)–(5.18), we obtain (5.13). The proof is complete. �

Theorem 5.6. Assume (A1), (A3’), (A4’), (A5”)–(A7”) hold, and (ũ1, . . . , ũN ) ∈
V . If I(0) > 0 and the initial energy E(0) satisfies (5.5) and (5.6), Then there
exist positive constants C, γ such that

E1(t) ≤ C exp(−γt), ∀t ≥ 0. (5.19)
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Proof. From (5.1), (5.2) and (5.13) it follows that

L′(t) ≤ −
(
1− ε1

2

) N∑
i=1

‖u′i(t)‖
2 − 1

2

N∑
i=1

[
ξi−δ

( 1

ε2
+

2d2

p

)]
(gi ? ui)(t)

− δε3d2

p
I(t)− δ

[ (1− ε3)d2η∗
p

−
(d2

p
− 1
)
µ∗ − ε2

2

] N∑
i=1

‖ui(t)‖2Ai

− δ
(d2

p
− 1− ε2

2

) N∑
i=1

g̃i(t)‖ui(t)‖2ai + ρ(t),

(5.20)

for all δ, ε1, ε2 > 0 and ε3 ∈ (0, 1), where

ρ(t) =
1

2

( 1

ε1
+

δ

ε2

) N∑
i=1

‖Fi(t)‖2. (5.21)

As η∗ >
d2−p
d2

µ∗, we can choose ε2 > 0 and ε3 ∈ (0, 1) such that

σ1 =
d2(1−
ε

3)η∗p−
(d2

p
− 1
)
µ∗ − ε2

2
> 0, σ2 =

d2

p
− 1− ε2

2
> 0. (5.22)

We continue by choosing δ and ε1 > 0 such that

1− ε1

2
> 0, σ3 =

1

2

[
min

1≤i≤N
ξi−δ

( 1

ε2
+

2d2

p

)]
> 0. (5.23)

From (5.21), we have

ρ(t) =
1

2

( 1

ε1
+

δ

ε2

) N∑
i=1

‖Fi(t)‖2 ≤ C0 exp(−2γ0t), ∀t ≥ 0, (5.24)

where C0 = 1
2

(
1
ε1

+ δ
ε2

)
min1≤i≤N C

2
i , γ0 = max1≤i≤N γi. Then, we deduce from

(5.20) -(5.24), that there exists γ∗ > 0 such that

L′(t) ≤ −γ∗
[ N∑
i=1

((gi ? ui)(t) + ‖ui(t)‖2Ai
)+I(t)

]
+ C0 exp(−2γ0t)

≤ −γ∗
β2
L(t) + C0 exp(−2γ0t),

(5.25)

where γ∗ = min{ ε3d2δp , δσ1, σ3}, 0 < γ < min{γ∗β2
, 2γ0}. By integrating (5.25), we

deduce

E1(t) ≤ 1

β1
L(t) ≤ 1

β1

(
L(0) +

C0

2γ0 − γ

)
exp(−γt) ≡ C exp(−γt), ∀t ≥ 0.

This implies (5.19), and completes the proof. �
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