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NONLINEAR DEGENERATE ELLIPTIC EQUATIONS IN
WEIGHTED SOBOLEV SPACES

AHARROUCH BENALI, BENNOUNA JAOUAD

ABSTRACT. We study the existence of solutions for the nonlinear degenerated
elliptic problem

—diva(z,u,Vu) = f in Q,
u=0 on 0%,
where € is a bounded open set in RN, N > 2, a is a Carathéodory function

having degenerate coercivity a(z,u, Vu)Vu > v(z)b(|u|)|VulP, 1 < p < N,
v(-) is the weight function, b is continuous and f € L"(Q).

1. INTRODUCTION

In this article we prove the existence of solutions for some nonlinear elliptic
equations with principal part having degenerate coercivity. The model case is

. v()|VulP2Vauy .
—div (—(1 e ) =f inQ, (1.1)
=0 on 01,

with Q a bounded open subset of RV, N > 2 p > 1, a > 0, v(-) is weight
function defined on 2 and f a measurable function on whose summability we will
make different assumptions. It is clear from the above example that the differential
operator is defined on Wol’p(Q, v), but that it may not be coercive on the same
space as u near to 1. Because of this lack of coercivity, standard existence theorems
for solutions of nonlinear elliptic equations cannot be applied. We consider the
nonlinear degenerate elliptic problem

A(u) = —div(a(z,u, Vu)) = f in Q,
u=0 on 01,

where, (2 is a bounded open subset of RV, N >2, 1 <p < N,anda: QxRxRY —
RY is a Carathéodory function, such that the following assumption holds

a(z,5,£).& > v(z)b(|s)) ",

for almost every z in €, for every (s,£) € R x RY | with
b(ls[) = 1/(1 —[s)*, (1.2)
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under various assumptions on f. As stated before, due to assumption (L.2)), the
operator A may not be coercive on WO1 P(Q,v), when the solutions approach the
critical values +1. To overcome this difficulties, we will reason by approximation,
cutting by means of truncatures the nonlinearity a(z, s, &) in order to get coercive
differential operator on WO1 P(Q,v), and give a sense to the equation when the
solutions near to =1 and to manage the set {x € Q: |u(z)| = 1}. For the case v(+)
being a constant, the existence of solutions to problem is proved in [I1], when
f a measurable function on whose summability have make different assumptions,
the analogous problems was treated by many other authors. See, for example,
[3, 4, @, 10, [8] where problems such as

1
—di p—2 _
div ((1 e [Vul Vu) fs

are considered.

This article is organized as follows: In section 2, we recall some preliminaries on
Weighted Sobolev spaces and properties of rearrangement. In section 3, we first
prove the propositions that we will use to prove some a priori estimates of the
solutions, then we prove the existence of weak and entropy solution with respect to
the summability of f.

2. PRELIMINARIES

Assumptions. Let b : [0,![— (0,00), with I > 0, be a continuous function such
that
lim b(s) = +0. (2.1)

s—l—

We define
s):/ bt)FTdt, for s € [0,1),
0

A(I7) = lim [ b(t)7Tdt=
s—l— 0
We study Dirichlet problems of the form
—diva(z,u, Vu) = f in Q,
=0 on 0,
where € is a bounded open set n RY, N > 2,1 <p < N,and a: Qx (—1,1) xRN —
RY | is a Carathéodory function and v : Q — R, satisfies the following assumptions:

a(z,s,§) - & = b(|s)v(z)[¢]",

(2.2)

vel'(Q), r>1, v 'eL(Q), t>N, 1+%<p<N(1+%). 23)
for a.e. x € Q, for all s € (—[,1) and all £ € RY;
la(@, 5, €)| < v(@)[h(x) + b(|s)IE~"], (2.4)
for a.e. z € Q, for all s € (] )forallfG]RN and h € L¥ (Q, v);
(a(z,s,8) —a(x,5,£)) - (- &) >0, (2.5)

for a.e. x € Q, for all s € (—I,1) and all £ € RV, £ £ ¢’. Moreover, f is a measurable
function on whose summability we will make several assumptions.
For stating existence results in the next section, we need some classes of solutions.
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Definition 2.1. We say that u € W, ?(Q,v) is a weak solution to problem (2.2) if
/ a(z,u, Vu) - Vodr = / fodz, Yoe WP (Q,v). (2.6)

Q Q

Definition 2.2. A measurable function u € Wol’p(Q, v) is an entropy solution to

problem ({2.2) if
lu] <1 a.e. in Q (2.7)

and for all 0 < k < [,
/ a(x,u, Vu) - VI (u — ) de < / fTi(u— p)dz, (2.8)
Q Q

for any ¢ € Wy P(€2, ) N L>=(Q) such that ol L) <1 —k.

Weighted Sobolev spaces. Let 1 < p < N, and v : 2 — R be a weight function,
i.e. a function which is measurable and positive almost everywhere in . The
weighted Lebesgue spaces LP(Q),v) is defined as

LP(Q,v) = {u : measurable, real-valued function,/ v(z)|u(z)P dz < oo}
Q

which is a Banach space (uniformly convex and hence reflexive if p > 1) equipped
with the norm

o = ([ valup )"

By W1P(Q,v) we denote the completion of the space C!(Q) with respect to the
norm

[ullwrr@.u) = el Lo @) + VUl Lo @)
Moreover we denote by W,"*(€,v) the closure of C*(€) in W'P(Q, ) which is
normed by

||u||W01’p(Q,u) = [[[VulllLr(,0)-
We denote by W~1#'(Q,1/v) the dual space of Wol’p(Q,u); for more details see
I16).

Rearrangement properties. We recall some definitions about decreasing re-
arrangement of functions. Let © be a bounded open set of RY and u : Q@ — R
a measurable function.

Definition 2.3. The distribution function of u is defined as
pu(t) = o € Qs fu(x)] > 1}, t=0.
The function u, is decreasing and right continuous.
Definition 2.4. The decreasing rearrangement of u is defined as
ux(8) :=sup{t > 0: p,(t) > s}, s > 0.

The function u, is the generalized inverse of u,. We recall that

+oo
/Q |u|P dx = p/o P, ()dt,  forp > 1. (2.9)

Then the LP-norm, for 1 < p < 400, is invariant with respect to rearrangement,
that is,

ulle @) = lluxllLeo, 10
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Moreover, if u € L% (), by definition u,(0) = esssupg, |u|. For more details about
rearrangements we refer the reader to [0 I3 18]. We recall that a measurable
function u : © — R belongs to the Marcinkiewicz space MP () (or weak-LP) if the
distribution function u,, satisfies

c
for some constant c¢. We observe that the above condition is equivalent to

C
u*(S)S Slﬁ7 V8>0,

and we define

w|| arr () = sup sy (s)s*/".

s>0

We observe that the Marcinkiewicz spaces are “intermediate” between Lebesgue
spaces. Indeed, it is not difficult to show that

LP(Q)) c MP(Q) Cc LY(Q),
for 1 < ¢ < p. Now, we give a sense to the gradient of a function u € L'(Q) such
that the truncates of u are Sobolev functions.

Lemma 2.5 ([7]). For each measurable function u : @ — R such that for every k >
0 the truncated function Ty (u) belong to W&)Cl(Q), there exists a unique measurable
function v : Q — RN such that

VTi(u) = vXjuj<  a-e. in Q. (2.10)
Furthermore, u € Wol’ () if and only if v € L, (), and then v = Vu in the usual
weak sense.

Now we recall some Sobolev-type inequalities which will be used later.

Lemma 2.6 ([I6]). Let v be a nonnegative function on Q such that v € L™(£2),
r>1, v € LYQ), t > N. And let p,p* be two real number that satisfy t > N/p,
1+l <p<NQA+1), 1/pP=1/p(1+3)— %. Then

ullp: < collVullprwy, Vu€ WoP(Q,v).

Lemma 2.7. Suppose that A > 0 and 1 < v < +oo. Let 1 a non-negative measur-
able function on (0,+00). Then the

/+°° a /w )ds) 7< /Om(tl‘W(t))”dt (2.11)

?77
+oo \ +oo ’Yﬂ +oo 1 Wﬁ
/U (t t ¢(s)ds) - §C/O ()T (2.12)

Also we shall need the following proposition of weak approximation (see [5]). Let
u e WyP(Q), and for s € [0, |Q]], let G(s) be a measurable subset of Q such that

G(s)| = s
§1 < S9 = G(Sl) C G(Sg)
G(s) ={x € Q:|u(x)| >t} if s=pu(t).

For a given a function ¢ € L*(9), we set

¢(s) = -

o(x) de.
ds G(s) (
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Lemma 2.8 ([5]). If ¢ € LP(Q) with p > 1, then there exists a sequence (¢(s))n,
such that ¢ (s) = ¢*(s) and v, — ¢ weakly in LP(0,|€]).

3. MAIN RESULT

The following Proposition gives a sufficient condition for the gradient of a func-
tion to belong to some Marcinkiewicz space, These are the generalized results of [7]
in the Weighted Sobolev spaces Wol’p(Q, V).

Proposition 3.1. Let 1 <p < N, and u € Ty "?(Q,v) be such that
/ |VulPv(z) de < Mk
{lul<k}

for every k > 0. Then u € MP(Q) where p; = p*(1 — \/p). More precisely, there
exists a ¢ such that meas{|u| > k} = meas{z € Q : |u(x)| > k} < ck™P.
Proof. For k > 0, from ({2.3)), we have
Tl < 1V Ty < 1k,
For 0 < e <k, we have {x € Q: |u| > e} = {x € Q: |Tk(u)| > e}. Hence
T
meas{|u| > e} < (@)pn < e PPt
Setting ¢ = k, we obtain meas{|u| > ¢} < ¢;k7P1, where p; = p*(1 — \/p). O
Proposition 3.2. Let 1 <p < N, and u € Ty ?(Q,v) be such that

/ |Vu|Pv(x) de < Mk
{lul<k}

for every k > 0. Then v'/PVu € MP?(Q) where py = pp1 /(A +p1). More precisely,
there exists a ¢ such that meas{v'/?|Vu| > h} < ch=P2.

Proof. For k,h > 0. Set ¢(k, ) = meas{v(z)|Vul|’ > «, |u| > k}. From Proposi-
tion B0l we have

¢(k 0) < e k7P,
Using that the function o — ¢(k, @) is non-increasing, for k, A > 0 we obtain

/qSOs

:E/o $(0,5) + p(k,0) — ¢(k,0)ds

+1 /a (0, 5) — 6k, 0)ds

<o(k,0) + /¢Os o(k, s)ds.
Since ¢(0, s) ¢(k, s) = meas{v(z)|VulP > s, |u| < k} we have

1 kA
qb (0, s) ,8)ds = — v(z)|VulP de < e—,
lul<k «

which by (3.1)) gives
A

k
?(0,a) < k7P 4 CQ; . (3.2)
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By minimizing (3.2) in k¥ and setting @ = h? we obtain
meas{z/l/p|vu| >k} < ch—Pp1/(A+p1)
(I

3.1. A priori estimate. Let € be positive and sufficiently small. We consider the

problem
—divac(z,us, Vue) = fe  in Q,

u: =0 on 09,

where a.(z,s,¢) = a(z,Ti_.(s),£), with 2 € Q,5s € R and ¢ € RY and f. €
L*>(€)). We use some classical results (see, for example [I}[2]) to assure that problem
has at least one solution u. € Wy ?(Q,v) N L>=(Q). Then, we define b.(t) =
b(T)_.(t)) for all ¢ € [0, 4+00), and

Acls) = / be(r)V/ @ dr.
0
First, we prove an integral inequality for weak solutions of problem (3.3)).
Proposition 3.3. Let u: be a weak solution of (3.3)). Then

(3.3)

1] P , r p'/p
A:(uZ(s)) < CN/ r PN D () ”’(/O fs*(ff)dff) Par, se [0, 1€], (3.4)

where D : [0,]Q] — R is a measurable function such that

/|u5>y vt (z) dz = /O “ ) dr

Proof. Let ¢ = Tp(ue — Ty(ue)) be a test function in (3.3). Then we have

1
1 / b(Jue ) (@) Vel dex < / flda
h Jo<iu|<o+h e |>0

Applying Hardy-Littlewood inequality and passing to the limit on A to 0, we obtain

o)~ /IMM9 (&) Vel da) < /O " sy, (3.5)

On the other hand by Holder inequality, we obtain

d d 1/p
- [Vue|de < [ — — v(z)|Vue|P dz
d0 Jyu.|>0 ( do Jyu. >0 )

/ 1/p

x(—i V_p/p(m)dac) ’

do |ue|>0 (3 6)
d 1/p ’
< | = = p

< ( 7 v(x)|Vue| dm)

d ¢ 1/T’1p/ ’ 1/'7“21)/
(=g [ wae) " oy

where 1/r1 +1/ro = 1 and p'r1/p = ¢. By Lemma since v € L}Y(Q),t > 1
there exists D € L!([0, |2|]) such that

d . -, )
@ St @ A= O O
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Then inequality (3.6)), becomes

4
do [ue|>0

d
da |ue|>0

% (=41, ()7 D (g, (O]

From isoperimetric inequality and Fleming-Rishel formula (see [I5]), it follows that

/ d
CnblO) " )Y < (=35 [
Ue | >

% (=41, (007 1D (O] b(0)/7)

1/
[Vu|de < ( v(x)|Vue|P dm) ’

(3.7)

1/p
v(x)|Vue|P dm)
(3.8)
which by (3.5)) gives

b(O) 7)< Coaa. (0) " (it (B)ID . 0N [

0

Hue ()

fras) "

integrating between 0 and u.(s) we obtain

U () , ,
) < O [ [0 )7 (i, O) DG O]

< ( / e fs*(s)ds)pl/p} do,
0

which gives the results. O

(3.9)

Remark 3.4. Since 1 + % <p< N(l+ %), and t > N/p, we have ¢gp’/p > 1 and
q/ry > 1, where ry = t(p — 1), which allows us to apply the Proposition and

Proposmon “ 2.12| to prove estimation ) and (| - below.

Proposition 3.5. Let u. be a solution of .
(a) If1<r <tN/(tp— N), then
(A (D)o ey < 710 (3.10)

where ¢ =1tN(p —1)/(t(N — rp) + rN).
(b) If r =1, then

| Ac (Dl agweo-v v < ell Il o IDIEAE o - (3:11)

Proof. Case 1 < r < tN/(tp — N). Let us observe that A. being monotone, by
Proposition properties of rearrangements, and -, we obtain

ch/+oo /er‘?ﬁ( rﬂ(a)da) " ar] s
0 s 0
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400 ri+a  p'r] ap’
(7 =5 ) A+l ds
S CN/ |:S q 'N Jplrh f*(S):| P22
0 S

ap’

toor (de iy e 1oz, ;
SCN/ |:S q NTTplry qp f*(S):| d87
0

where qgl > 1, p'% = t, and Cy a constant that vary from line to line. Since

fe € M™(Q) we conclude that

1

+o0 4
-r ( " _L/ o D
A Doy < O [ () 77 B o
< ONN el o100
where
_ 1 p o @  rtN(p-1)
"= rq(r’l N’ + p)+ p’ 1= t(N —rp) +rN’
Case r = 1. By Proposition [3.3] and Hélder inequality, we have
IQ‘ ’ ’ ’ r p//p
Ac(us(s)) < CN/ 2 /N[ D(r)]P /p(/ f*(a)da) dr
s 0
12 pm) N Bt
< CNHDHU[O,IQH(/ r_Nl/)(tp‘itﬂ)) t(p—1)
1_k Il’lf(l’*l)
< CONIID|lLep,jops  NCr==D
which implies the result. O
Remark 3.6. Since p/N <1+ %, (see (2.3)), we have
Nt
P >1
Nt(p—1)— N +tp
Proposition 3.7. Let u. be a solution of (3.3)).
Nt N
(a) If Nt(p*1)€N+tp <r< t}ffN’ then
IV A ()l oo < o1 (3.13)
(b) If
tNp tNp
1
max ( " Nt(p — 1)p+pt—N) TS Nip-DA4p—N
then
IVA:(Jue )l s uerey < 2, (3.14)
rNt(p—1
where B = M,
(c) If
tNp
1<r< 1
< r s max( 7Nt(p—1)p+pt—N)7
then
[PV Ac(Jue )| ars () < 3, (3.15)
where B = —Ntp—1lp

rN+Ntp—ptr
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Proof. Let u. is a solution of (3.3), by the definition of A. we can use as test
function v = [T}, (Ac(Jue|) — To(Ac(|ue|)] sign(ue) and obtain

/ (@) VA (Jue )P da g/ .| de, (3.16)
0<A5(|u5\)§0+h AE(‘“E|)>9
Case 1: m <r< t;iVN' Passing to the limit in (3.16)), we obtain
d .Ufz(e)
€ V@|VA ()P de < [ 2 (s)ds, (3.17)
40 J 4. (u.)y<0 0

where we have denoted with p. () the distribution functions of A, (Juc|). Integrating
(3.17) between 0 and +oo and using a Holder inequality, we have

0o <(0)
/Ql/(x)|VA5(|us|)|de < /0+ dﬂ/ou fi(s)ds

0] ,
- [ Ao (3.18)

< fllzr@)- 1A (ue DIl L -

We observe that if r is such that m <r< tptiVN, by (3.10) the right-
hand side of the above inequality is controlled by a constant depending on the norm
of fe in L"(2); so by (3.18) inequality (3.13|) follows.
. tN
Case 2: max (1’W]£‘,—pt—1\/) <r < m
inequality in (3.16)) and reasoning as before, we obtain

| IV AL @) da
Q

+oo ue(0) B/p 8
< s2()as) " (L (0))Fa
o Cf ) e o

Applying the Holder

< ([Tt opcunonm)

y </O+00(1+9)q(1_§ (/OHE(O) f;(,g)ds>d9)6/p.

By the properties of rearrangements, we can write the first integral on the right-

hand side of (3.19)) as
+o00 1]
| arorcuend = [ o auas, (3.20)
0 0

and by (3.10]) this quantity is bounded by a constant depending on the norm of
fe in L™(2). On the other hand, integrating by parts the second integral on the
right-hand side of (3.19)) we have

/O+°°(1 + 0)(}(1_%)(/0“5(9) f;(s)ds)de

o
<c | f29)+ Ac(up) @B ]ds (3.21)
0

< | fel

Sl

L"(Q)[/Olﬂ[(l +AE(U§))q]d8T— :
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Applying again (3.10), by (3.19) it follows the estimate (3.14)).
Case 3: 1 <r < max (1, Nt(p_i])\]%). Integrating inequality (3.17)) between
0 and k, we obtain

k pe(0)
/ ()| VA (Juc )P da < / da/ £ (s)ds. (3.22)
Ac(Juc])<k 0 0
If r = 1, from (3.22) we obtain
[ v@IVAu P do < o
Ac(lue )<k

by (3.11)) and (2.3) we obtain the assertion.

If 1 S T S max(l,m), then by " it follows that A5(|u5|) S

M4(Q), with ¢ = %; so we obtain

/ v(@)|VA(Juc|)P de < k'~
AE(‘“EDS’C

by Proposition [3.:2] we conclude the result. O

Replacing VA, (Jue|) by Vu, the above estimates also hold; furthermore it follows
that

/ v(z)|Vue|” de < c,
Q

with v < %ipj\;i)t, where ¢ is a constant depending on the L!(Q) norm of f.. Using

(3.5)), the Ty (u.) are uniformly bounded in Wol’p(Q, v) for any k > 0. Hence, there
exists a function u € W, 7 (€, v) such that

Ue = u  a.e. in £, (3.23)
and, for any k£ > 0,
Ti(ue) = Ti(u) weakly in WyP(Q,v). (3.24)
Remark 3.8. Choosing k > [, we have
u. — u  weakly in W, P(Q,v). (3.25)

Indeed, let us suppose f € LY(Q). Using To(Jue|) — Ti(Jue|) as test function in

(3.3), by (2.3) we obtain
#
b(l —¢) / (Tor(|ue]) — Ti(|ue|)P" da < 1| fel|l L2 (0)-
Q

Letting ¢ — 0, from condition (2.1)), we conclude that, for almost all  in Q, |u| <,
which give the result by (3.24]).

Next we prove a lemma needed for proving the existence result.

Lemma 3.9. Let u. be a weak solution to problem (3.3). Suppose f € L*(S2), and
let f. € L>(Q) be such that f. — f in L'(Q). Then

Vue = Vu a.e. in {Ju| <}
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Proof. We adapt the proof[presented in [II]. By Remark we have u. — u in
measure. We will prove that u. — u in measure on {|u| < m}. Let A > 0 and n > 0
for 0 < k <l,and M > 0, we set

Ey ={Jul <} n({|Vue| > M} U{[Vu| > M} U {Jue| > k} U {|u] > k}),

Ey ={Jul <1} n{luc —u| > n},

B3 ={[ue —ul <, |Vue| < M, [Vu| < M, |ue| <k, |u] <k, |V(ue —u)| > A}
A {|ul < 1}

Observe that {|u| <} N{|Vus| > A} C E; U E3y U Ej.

Since u. and Vu. are bounded in L'(2), for any o > 0 we can fix M and k <[
such that |E;| < 0/3 independently of e. By the monotonicity Assumption (2.5)),
there exists a real valued function v such that

meas({z € Q:y(z) =0}) =0,
(a(l'v S, 5) - (Z(il’, S, EI))(g - fl) > ’Y(x)a

for any s € (—1,1),&,& € RN |s| < k, [€],|€| < M, and |€ — &'| > A\. Denoting by
X» the characteristic function of [0, 7], we obtain

/ y(z)dx < / [ac (2, ue, Vue) — ae(z,ue, V)| (Vue — u) dz
E3

E3

<o (s ¥ — o, V7))
x (Ve = Te(w)xn(Jue = Tr(w)]) | da
gljckuw@v%yﬂkuw@vn@m)

X (wg — T (u)) X (e — Tk(u)|)] dx
SL%@%NMW%—HMMN%—HMWM

- / ac(x, ue, VT (u)) - (Ve = Ty (u))xn(Jue = Ti(u)]) dx
=J1 Q— Js.
For the term Jq, using T (u. — Ti(u)), we have
5l =] [ Tyl = T do] < e
Choosing 1 > 0 such that k + n < [, there exists €9 > 0 such that for all € < o,
ac(x,ue, VI (1)) = a(z, ue, VI (w)) in{z € Q: |luc — Ti(u)| < n};

and since {z € Q: |uc — Ti(u)| < n} C{z € Q: |uc| < k+ n} we obtain

o = / a(, ue, VT (w)) - VT (e — Ty(w)) da
Q

= /Qa(x,Tkm(us), VT (u)) - (VT (ue = Ti(w))xn(Jue — Ti(u)]) da.
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By (3.24)), it follows that
Titn(ue) = Tiyy(u) weakly in WyP(Q,v),
on the other hand
|a(@, Ty (ue), VI ()| < b(|Tiegn (e )0 (@) [V Ty () P
using Vitali’s theorem we have
a(, Tiqn(ue), VI (w)) = a(z, Tiqn(u), VI (u)) strongly in LY (Q, v~ V(=1

Letting € and 7 tend to 0 respectively in J,, we obtain

lim [ a(z,us, VIk(w)) - VI, (ue — Ti(u)) dz
e=0 Jo

= /Qa(x, T (w), VTg(u) - (VT (u = T (w))) xn (Jue = Ti(w)]) de,

and

limy [ e iy (), V(0) - (V0= Ti)) g = Til) o = .
For n small enough n||f||z1 ) < 0/2, by Kolmogorov theorem, we have |E3| < o
independently of €. Fix 7, by the fact that u. — u» in measure, we choose £; such
that |Es| < n for € < g;. This implies that Vu. — Vu in measure in {|u| < I},
consequently

Vu. = Vu a.e. in {Ju| <I}.

(]
We observe that since u. — u a.e. in  (see (3.23))), we have
lue ()] l
freQ:ju@)|=1) = {re: lm bo(t) > / brydth  (3:26)
e—0 Jo 0

Theorem 3.10. Let f be a function in L™ (), with r > tN/(tp— N). Assume that

21)-[@2:5) hold. Then there exists a weak solution u € W, *(2,v) of problem (2.2)
such that |[u| Loy < I.

Proof. For f. = f with € > 0. By classical results see for example [2] [I]) there
exists a solution u. € WyP(Q,v) of the approximated problem (2.2). Estimate
(3.4) implies

12 L , T P /p
Adluclz=) < c() =0x [N ( [ o) i @)

Since A is bijective in [0,1), we can take B = A~}(C(f)) and then we choose g9 > 0
such that b(s) < b(l — ¢) for any s € [0, B]. By definition of b, and A, we have, for
any € < gg,

Ac(s) = A(s), s€]0,B].
Moreover, being A, increasing, it follows that, for any € < ¢,

A(s) < C(f) & s € [0, B,

so by (3.27) we obtain
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By and Lemma [3.9] we have
ac(z, ue, (x), Vue, () — a(z,u, Vu)  strongly in LP (Q, v~/ ®=1),
fe = f strongly in L=(9).
Passing to the limit in the weak formulation of problem , we conclude that u

is a weak solution of ([2.2)), which satisfies |u|| ) <. O
Theorem 3.11. Let f € L™(Q), with Nt(p_JY)th+tp <r< tptiVN. Under hypothesis

-, there exists a weak solution u € Wol’p(Q7 v) of problem , such that
meas({z € Q : |u(x)| =1}) =0.

Proof. Let u. € T/VO1 P(Q,v) be a weak solution to the approximated problem (3.3)).
By Remark (3.8]), we have u. — u a.e. in Q, since A(I”) = 400, (3.26) implies that

Ac(Juecl) = A(Jul)  a.e. in Q. (3.28)
By (3.13) and ([3.28]), we obtain
A (Juc|) = A(Ju|)  weakly in W, (2, v), (3.29)

Since A(|u|) is bounded in L!(Q2) and meas({z € Q : |u(z)| =}) =0, by (2.3)) we
have
aes(x, ue, Vue) — a(z,u, Vu) a.e. Q.

On the other hand by (2.3)) and (3.13])
|ac (2, ue, V)| is bounded in L (Q, v~/ (P=D),
passing to the limit in the weak formulation (3.3]), we obtain

/ a(z,u,Vu) - Vodr = / fodx, forall p€ Wol’p(Q,I/).
Q Q
O

Theorem 3.12. Let f € L"(Q), with 1 < r < m. Under hypothesis

21) — @3), there exists a solution u € Wy P (Q,v) of problem ([2.2)), in the sense
of Definition (2.2) such that meas({x € Q : |u(z)| =1}) =0.

Proof. Let u. be a weak solution of the approximate problem (3.3]), by passing
to the limit we can show that |u| < [ a.e. in Q. Take Ti(us — ¢), with ¢ €
WyP(Q,v) N L=(Q) as test function in (3:3) we obtain

/ a(x, Ti—c(ue), Vue) - Vu, dz

[ue —p|<k

- / a(x, Ti—c(ue), Vue) - Vo dx (3.30)
|u£7§9|§k

:/ngk(uE—ga)dx.
Q

Since {|ue — @[} € {Juc| <k +[l@llpe) = M}, for 1 < k <1 and ||| =) <
I — k, we obtain M < [ and consequently |a(x, Tas(ue), VIar(ue))| is bounded in
LY (Q, v/ ®=1) and

lim a(x, Tj—e(ue), Vu,) - Vo dx = / a(x,u, Vu) - Vodx. (3.31)

e20 Jjuc—p|<k lu—p|<k
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Moreover since f. strongly convergent to f in L'(Q), and Tjy(u. — @) weakly*
convergent to Tx(u — ¢) in L°(£2), we have

lim [ feTi(ue — @) de = / fTi(u — @) du. (3.32)
e—=0 Jo Q

On the other hand a(z, Tj—.(uc), Vue) - Vue being non-negative, and almost every-
where convergent to a(x,u, Vu) - Vu, by Fatou’s lemma we conclude that

liminf/ a(x, Ti—c(ue), Vue)-Vu, d:vg/ a(x,u, Vu)-Vudzr. (3.33)
‘us*‘plgk

e=0 lu—p| <k

Combining (3.31]), (3.32)) and (3.33|) we obtain

/a(x,u,Vu)-VTk(u—go)dmg/fT;g(u—go)dx, for all ¢ € Wy P (Q,v).
Q Q

O
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