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SHORT TERM UNPREDICTABILITY OF HIGH REYNOLDS

NUMBER TURBULENCE – ROUGH DEPENDENCE ON INITIAL

DATA

ZAICHUN FENG, Y. CHARLES LI

Abstract. Short term unpredictability is discovered numerically for high

Reynolds number fluid flows under periodic boundary conditions. Further-

more, the abundance of the short term unpredictability is also discovered.
These discoveries support our theory that fully developed turbulence is con-

stantly driven by such short term unpredictability.

1. Introduction

Turbulence as an open problem has two aspects: turbulence engineering and
turbulence physics [11]. Turbulence engineering deals with how to describe tur-
bulence in engineering. Turbulence physics deals with the physical mechanism of
turbulence. In pursuit of understanding of turbulence physics, recently we proposed
the theory that fully developed turbulence is caused by short term unpredictability
due to rough dependence upon initial data, while (often) transient turbulence at
moderate Reynolds number is caused by chaos (long term unpredictability) [12].
The main goal of this article is to demonstrate the short term unpredictability via
numerical simulations. According to our analytical theory [12], perturbations in

turbulence can amplify in time according to exp(σ
√
Re
√
t + σ1t) where Re is the

Reynolds number, σ1 = σ
√

2e/2, and σ depends only on the base solutions on
which the perturbations are introduced, the spatial domain, and n of the Sobolev
space Hn. When the time is small, the first term in the exponent dominates, and
this term can cause the amplification to be super fast when the Reynolds number
is large. By the time t ∼ Re, the two terms in the exponent are about equal. After
the time t ∼ Re, the second term dominates, and this term is the classical Liapunov
exponent that causes chaos (long term unpredictability). Thus the time t ∼ Re is
the temporal separation point between short term unpredictability and long term
unpredictability. When the Reynolds number is large, long before the separation
point t ∼ Re, the first term in the exponent already amplifies the perturbation to
substantial size so that the nonlinear effect takes over, and the second term does
not get a chance to dominate. Thus fully developed turbulence is dominated by
such short term unpredictability. When the Reynolds number is moderate, both
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terms in the exponent have a chance to dominate, and the corresponding (often)
transient turbulence is dominated by chaos in long term.

Long term unpredictability has been well understood. The main feature of chaos
is long term unpredictability led by sensitive dependence on initial data. On the
other hand, short term unpredictability is led by rough dependence on initial data.
If the solutions are non-differentiable in their initial data, as in the case of Euler
equations of fluids [3], then any small initial perturbation will be amplified to or-
der O(1) instantly. Such a short term unpredictability is very different from the
long term unpredictability of chaos. Such a short term unpredictability is closer to
total randomness than the long term unpredictability of chaos. Nevertheless, such
a short term unpredictability is still not total randomness, for instance the solu-
tions of Euler equations of fluids are still continuous in their initial data, and the
conserved quantities do not vary too much under perturbations. Such a short term
unpredictability leads to a peculiar process that is very close to a random process
but still constrained. When the Reynolds number is moderate, dynamics of Navier-
Stokes equations is quite far away from that of Euler equations. Turbulence at such
a stage is often transient, and bears clear resemblance to finite dimensional chaos
[1, 2, 6, 7, 8, 16, 17, 18] . One can name such turbulence as chaos in Navier-stokes
equations. Such turbulent solutions are differentiable in their initial data (at least
during the known time interval of existence), and the derivatives of the solutions
in initial data have moderate norms. When the Reynolds number is very high, dy-
namics of Navier-Stokes equations is getting closer to that of Euler equations. High
Reynolds number turbulence is fully developed, and has no resemblance to finite
dimensional chaos. Such turbulent solutions are still differentiable in their initial
data (at least during the known time interval of existence), but the derivatives of

the solutions in initial data have huge norms in the order of exp(σ
√
Re
√
t + σ1t)

mentioned above which represent the growth rate of the perturbations. Thus ini-
tial perturbations are amplified super fast even in short time. We believe that this
causes the abrupt nature in the development of high Reynolds number turbulence.
Since perturbations constantly exist, there are constantly such super fast amplifica-
tions of perturbations which lead to the persistence nature of high Reynolds number
turbulence (so-called fully developed turbulence) in contrast to the transient nature
of moderate Reynolds number turbulence.

In terms of phase space dynamics of dynamical systems, when the Reynolds num-
ber is very high, fully developed turbulence is not the result of a strange attractor,
rather a result of super fast amplifications of ever present perturbations. Strange
attractor is a long time object, while the development of such violent turbulence is
of short time. Such fully developed turbulence is maintained by constantly super
fast perturbation amplifications. When the Reynolds number is set to infinity, the
perturbation amplification rate is infinity. So the dynamics of Euler equations is
very close to a random process. In contrast, chaos in finite dimensional conservative
systems often manifests itself as the so-called stochastic layers. Dynamics inside the
stochastic layers has the long term sensitive dependence on initial data. When the
Reynolds number is moderate, viscous diffusive term in Navier-Stokes equations is
stronger, perturbation amplification rate is moderate. At this stage, turbulence is
basically chaos in Navier-Stokes equations [1, 2, 6, 7, 8, 16, 17, 18]. In some cases,
strange attractor can be observed [17].
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The article is organized as follows: In section 2, we briefly review Liapunov
exponent and chaos. In section 3, we briefly review analytical results on rough de-
pendence. In section 4, we are going to shed new light on the classical hydrodynamic
instability theory from a new perspective. In section 5, 2D numerical demonstra-
tion on rough dependence is presented. In section 6, 3D numerical demonstration
on rough dependence is presented.

2. Chaos – sensitive dependence on initial data

There are many ways to characterize chaos, and one necessary ingredient of
every characterization is “sensitive dependence on initial data”. For solutions that
exhibit sensitive dependence on initial data, their initial small perturbations are
usually amplified exponentially (with an exponent named Liapunov exponent), and
it takes time for the perturbations to amplify to substantial size (say order O(1)
relative to the small initial perturbations). If ε is the initial small perturbation size,
and σ is the Liapunov exponent, then the time for the perturbation to reach order
O(1) is about

1

σ
ln

1

ε
.

The Liapunov exponent σ is a long term object defined by

σ = lim
t→+∞

lim
du0→0

1

t
ln
‖du(t)‖
‖du0‖

,

where du0 is the initial perturbation, and ‖ · ‖ is certain norm. Positive Liapunov
exponent usually is a good indicator of chaos (even though the matter can be tricky
sometimes [9]). In the phase space of the dynamics, when the Liapunov exponent
is positive, initially nearby orbits diverge exponentially with the exponential rate
being the Liapunov exponent. If these orbits are bounded in the phase space, then
it is intuitively natural to expect the dynamics being chaotic.

There are of course other ways for solutions of deterministic systems to be “ir-
regular” than that of chaotic solutions. Next we will describe another way: rough
dependence on initial data.

3. High Reynolds number turbulence – rough dependence on initial
data

Turbulent motion of fluids is modeled by the so-called Navier-Stokes equations.
The phase space of the dynamics of Navier-Stokes equations is infinite dimensional.
The well known such a phase space is the Sobolev space of divergence free fields,
Hn(Rd) (d = 2, 3) which contains functions that are square-integrable and so are
their derivatives up to n-th order. When n > d

2 + 1 (d = 2, 3), for any initial
condition in such a phase space, it is known [4] [5] that there is a (short) time
T > 0 depending on the norm of the initial condition, such that the corresponding
solution (orbit) of Navier-Stokes equations (and Euler equations) exists on [0, T ].
Such an orbit is continuous in time t and its initial condition. As the Reynolds
number Re→∞, the solution of Navier-Stokes equations converges to that of the
Euler equation. In two dimensions (d = 2), the existence time T is infinite, while
in three dimensions (d = 3), global existence is still an open problem. The above
claims apply also to spatially periodic domain Td in stead of Rd.
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One can define a solution map in the phase space by mapping the initial condition
to the solution’s value at time t. The solution map for Euler equations (d = 2, 3)
is continuous, but nowhere uniformly continuous, and more importantly nowhere
differentiable [3]. Then it is natural to expect that the norm of the derivative of
the solution map for Navier-Stokes equations approaches infinity as the Reynolds
number approaches infinity. Under Euler dynamics, any small perturbation of the
initial condition can potentially reach substantial amount instantly. It is natural to
expect that under high Reynolds number Navier-Stokes dynamics, small perturba-
tion of the initial condition can potentially reach substantial amount in a very short
time (the larger Reynolds number, the shorter). We call this phenomenon “rough
dependence on initial data”. Such rough dependence on initial data naturally leads
to the violent fully developed turbulence as observed in experiments. One can try to
estimate the size of the derivative of the solution map for Navier-Stokes equations.
The Navier-Stokes equations are

ut −
1

Re
∆u = −∇p− u · ∇u,

∇ · u = 0,
(3.1)

where u is the d-dimensional fluid velocity (d = 2, 3), p is the fluid pressure, and
Re is the Reynolds number. Setting the Reynolds number to infinity Re =∞, the
Navier-Stokes equations (3.1) reduces to the Euler equations

ut = −∇p− u · ∇u,
∇ · u = 0.

For any u ∈ Hn(Rd), there is a neighborhood B and a short time T > 0, such that
for any v ∈ B there exists a unique solution to the Navier-Stokes equations (3.1)
in C0([0, T ];Hn(Rd)). As Re → ∞, this solution converges to that of the Euler
equations (3) in the same space. For any t ∈ [0, T ], let St be the solution map

St : B 7→ Hn(Rd), St(u(0)) = u(t), (3.2)

i.e. the solution map maps the initial condition to the solution’s value at time t.
The solution map is continuous for both Navier-Stokes equations (3.1) and Euler
equations (3) [4, 5]. A recent result of Inci [3] shows that for Euler equations (3) the
solution map is nowhere differentiable. Even though the derivative of the solution
map for Navier-Stokes equations (3.1) exists, it is natural to conjecture that the
norm of the derivative of the solution map approaches infinity as the Reynolds
number approaches infinity. The following upper bound was obtained in [12].

‖DSt(u(0))‖ = sup
du(0)

‖du(t)‖
‖du(0)‖

≤ eσ
√
Re
√
t + σ1t, (3.3)

where du(0) is any initial perturbation of u(0), and

σ =
8c√
2e

max
τ∈[0,T ]

‖u(τ)‖n , σ1 =

√
2e

2
σ ,

where c is a constant that only depends on the spatial domain and n. The above
bound also applies to spatially periodic domain Td in stead of Rd. The main aim
of this article is to numerically demonstrate that in fully developed turbulence,
perturbations amplify according to the growth rate given by the right hand side of
(3.3).
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4. Classical hydrodynamic instability – directional derivative

Classical hydrodynamic instability theory mainly focuses on the so-called linear
instability of steady fluid flows. We can think that the linear instability theory is
based on Taylor expansion of the solution map for Navier-Stokes equations (3.1).
Let u∗ be the steady flow (a fixed point in the phase space), v0 be its initial
perturbation, and u∗ + v(t) be the solution to the Navier-Stokes equations (3.1)
with the initial condition u∗ + v0. According to Taylor expansion,

v(t) = dv(t) + d2v(t) + · · · ,

where dv(t) is the first differential in u∗ + v0 of the solution map at the steady
flow u∗, similarly for d2v(t) etc.. Under the Euler dynamics, this expansion fails
since the first differential does not exist [3]. Under the Navier-Stokes dynamics,
this expansion is valid, and the first differential satisfies the differential form

dvt −
1

Re
∆dv = −∇dp− dv · ∇u∗ − u∗ · ∇dv,

∇ · dv = 0,
(4.1)

where dp is the pressure differential. The linear instability refers to the instability
of the differential form (4.1). In most cases studied, the steady flow u∗ depends on
only one spatial variable y (the so-called channel flow). This permits the following
type solutions to the differential form,

dv(t) = exp{i(σt+ k1x+ k3z)}V (y), (4.2)

where (x, y, z) are the spatial coordinates, σ is a complex parameter, and (k1, k3)
are real parameters. One can view (4.2) as a single Fourier mode out of the Fourier
transform of dv(t). In the phase space of the dynamics, (4.2) is a directional dif-
ferential with the specific direction specified by the (k1, k3) Fourier mode. V (y)
satisfies the well-known Orr-Sommerfeld equation (Rayleigh equation in the invis-
cid case Re = ∞). Even though the first differential dv(t) does not exist in the
inviscid case ((4.1) with Re = ∞), the directional differential (4.2) can exist with
V (y) solving the Rayleigh equation. Thus, the linear stability/instability predicted
by the Rayleigh equation only represents a directional linear stability/instability of
the Euler dynamics while the full first differential of the Euler dynamics does not
exist. The classical hydrodynamic instability theory heavily focuses on the studies
of the Rayleigh equation. The directional linear instability derived from Rayleigh
equation often imply linear instability in Orr-Sommerfeld equation [15]. Never-
theless, linear instability due to unstable eigenvalues cannot capture the dominant
linear instability of super fast growth. For a detailed evaluation on the rigorous
mathematical foundation of linear hydrodynamic stability theory, see [14].

5. 2D numerical simulations on rough dependence on initial data

In this section, we will demonstrate numerically the super fast amplification of
perturbations to the solutions of 2D Navier-Stokes equations. In particular, we
shall demonstrate that such super fast amplification of perturbations is ubiquitous.
Microscopically, Navier-Stokes equations model fluid flows well. Thus, the super
fast amplification phenomenon in Navier-Stokes equations also reflects the same
phenomenon in physical fluid flows.
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5.1. A fundamental problem in the numerical simulations. First we numer-
ically simulate an explicit example [13] to test the numerical performance. Consider
the 2D Navier-Stokes equation

∂tu+ u · ∇u = −∇p+
1

Re
∆u, ∇ · u = 0, (5.1)

under periodic boundary condition with period domain [0, 2π]× [0, 2π], where u =
(u1, u2) is the velocity, p is pressure, and the spatial coordinate is denoted by
x = (x1, x2). A simple solution to the 2D Navier-Stokes equations (5.1) is

u1 =

∞∑
n=1

1

n3+γ
e−

n2

Re t sin[n(x2 − σt)], u2 = σ, (5.2)

where 1/2 < γ ≤ 1, and σ is a real parameter. By varying σ, we get a variation
direction of the initial condition,

du1(0) = 0, du2(0) = dσ,

which leads to the variation of the solution (du1(t), du2(t)). Let

Λ = ‖(du1(t), du2(t))‖H3 , Λ0 = ‖(du1(0), du2(0))‖H3 ,

then one has the analytical result [13]:

Λ

Λ0
≥
(

1 +
[ 1√

2e
tγ
(√t√Re

2
√

2

)1−γ]2)1/2

. (5.3)

This lower bound is obtained by keeping only the fastest growing mode given by

n =
[√Re

2t

]
,
(
the integer part of

√
Re

2t

)
. (5.4)

Note that as t → 0+, the time derivative of the lower bound approaches positive
infinity due to the fractional power of t. That is, the lower bound curve is tangent
to the vertical axis at t = 0. As t → 0+, the fastest growing mode (5.4) n →
+∞. Thus a numerical simulation will never capture the fastest growing mode as
t → 0+ no matter how many Fourier modes are kept in the numerical simulation.
This demonstrates a fundamental problem in numerical simulations. When we
numerically simulate the quantity Λ

Λ0
(5.3), we obtained the solid curve in Figure

1. Notice that as t → 0+, the numerical solid curve gets below the dash lower
bound curve (violating the lower bound nature). The numerical solid curve has a
finite time derivation at t = 0, and does not capture the infinite derivative nature
at t = 0.

5.2. Fixed base solution and different perturbations. We will numerically
simulate the 2D Navier-Stokes equations under periodic boundary condition (5.1).
We have two goals here: First, we want to realize the super fast amplification
of perturbations. Second, we want to show that such super fast amplification of
perturbations is abundant among perturbations. For the two goals, we shall choose
the initial conditions of the base solution and the perturbations, to be of the form
of single Fourier modes. Since the perturbation equations are linear, perturbation
solutions generated from such single Fourier modes form a base of superposition.
For the base solution, we choose the initial condition

u1(0) = −8 sin(9x1) sin(8x2), u2(0) = −9 cos(9x1) cos(8x2), (5.5)
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Figure 1. Fundamental obstacle in numerical simulation on the
norm of the solution map’s derivative as t → 0+. The dash curve
represents the analytically obtained lower bound (5.3) on the norm
of the directional derivative of a family of explicit solutions, where
γ = 0.6 and σ = 27.5 are chosen. The solid curve represents the
numerical simulation on the norm of the directional derivative of
the same family of explicit solutions. One can see clearly that near
t = 0, the rigorous lower bound is violated. In particular, the dash
curve has infinite derivative at t = 0, while the solid curve has
finite derivative.

Starting from this initial condition, we solve (5.1) numerically to generate the base
solution. The perturbation du based upon a base solution u solves the linearized
2D Navier-Stokes equations,

∂tdu+ u · ∇du+ du · ∇u = −∇dp+
1

Re
∆du, ∇ · du = 0, (5.6)

under the same periodic boundary condition as in (5.1). Since (5.6) is linear, we
can choose single Fourier modes as the initial conditions of the perturbations,

du1(0) = −0.1k2 sin(k1x1) sin(k2x2), du2(0) = −0.1k1 cos(k1x1) cos(k2x2).
(5.7)

Figure 2 shows the super fast growth of the perturbation when

k1 = 1, k2 = 1, Re = 1000 and Re = 100000, (5.8)

where the time step for the numerical simulation is ∆t = 0.0005.
We use the notation

Λ(t) = ‖du(t)‖H3 . (5.9)

Then the norm of the derivative of the solution map at the base solution u(t) is
given by

‖DSt(u(0))‖ = sup
du(0)

Λ(t)

Λ(0)
. (5.10)

Note that for any fixed t, the supremum is taken with respect to all initial pertur-
bation du(0). If one initial perturbation leads to a perturbation that is near the
supremum for some t, it may not be near the supremum for other t. The norm of
the derivative ‖DSt(u(0))‖ has an upper bound given by (3.3). We anticipate that
the nature of the square root of time in the exponent of the upper bound (3.3) can
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Figure 2. The solid curve is the numerical result of the super
fast growth of perturbations with initial condition (5.7)-(5.8) where

Λ(t) = ‖du(t)‖H3 . The lower fitting dashed curve is e21.2
√
t when

Re = 1000 and e21.7
√
t when Re = 100000. The closest fitting

dashed curve is e30
√
t when Re = 1000 and Re = 100000.

be realized by an individual perturbation, while the nature of the square root of the
Reynolds number can only be realized by the supremum over a lot of perturbations.
For any particular perturbation, the viscous effect is negligible when the Reynolds
number is relatively large. On the other hand, a generic perturbation in physics
contains all “basic perturbation directions”, and the fastest growing direction will
quickly dominate the amplification. In fact, the fastest growing direction may
change in time. Due to numerical obstacles such as that demonstrated in Figure 1,
numerical simulations as t→ 0+ are not quite reliable. That is the reason that our

1
ln t ln ln Λ

Λ0
numerical simulations do not converge to a constant. Nevertheless, in

appropriate time interval, we are confident that our numerical simulations clearly
show super fast growth (faster than exponential growth) as demonstrated in Figure
2. Increasing the wave number (k1, k2), the perturbation’s growth rate decreases as
shown in Figures 3 - 4. When the wave number of the initial perturbation is larger,
the viscous effect is more significant. Our conclusion is that the super fast growth
(rough dependence) is abundant among perturbations in the sense that generic per-
turbations contain all Fourier modes, and low Fourier modes display the super fast
growth. Next we shall study the abundance of the super fast growth among base
solutions, that is, whether or not there are abundant base solutions of which the
perturbations have super fast growth.
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(a) Re = 1000, k1 = k2 = 1 (b) Re = 1000, k1 = k2 = 2

0 0.1 0.2 0.3

t

0

5

10

15

ln
(Λ

/Λ
0
)

0 0.1 0.2 0.3

t

0

5

10

15

ln
(Λ

/Λ
0
)

(c) Re = 1000, k1 = k2 = 3 (d) Re = 1000, k1 = k2 = 4

Figure 3. The solid curve is the numerical result of the super fast
growth of perturbations with initial condition (5.7) with different
(k1, k2) where Λ(t) = ‖du(t)‖H3 . The fitting dashed curve is

e21.2
√
t.

5.3. Fixed perturbation and different base solutions. Our goal here is to
show that the super fast amplification of perturbations is abundant among base
solutions. For this goal, we will again choose the initial conditions of the base
solutions and the perturbation, to be of the form of single Fourier modes. First we
fix the initial condition of the perturbation to be the case of k1 = 1 and k2 = 1
in (5.7), and the Reynolds number Re = 1000. Then we simulate different base
solutions with initial conditions of the form,

u1(0) = −k2 sin(k1x1) sin(k2x2), u2(0) = −k1 cos(k1x1) cos(k2x2). (5.11)

For several choices of (k1, k2), the super fast growths are shown in Figures 5-6.
As the wave numbers (k1, k2) of the base solutions decrease, the super fast growth
rates of the perturbation decrease. Together with the result of last subsection,
we conclude that higher wave number base solutions and lower wave number per-
turbations correspond to faster super fast growth of the perturbations. Numerical
simulations on other base solutions also show super fast growth of the perturbations.
Thus super fast growth of the perturbations (rough dependence) is also abundant
among base solutions. One can then envision that when the Reynolds number is
large, the super fast growth of the ever present perturbations will cause the abrupt
development of turbulence, and is the mechanism that maintains the persistence of
turbulence (the so called fully developed turbulence).
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(c) Re = 1000, k1 = k2 = 7 (d) Re = 1000, k1 = k2 = 8

Figure 4. The solid curve is the numerical result of the super fast
growth of perturbations with initial condition (5.7) with different
(k1, k2) where Λ(t) = ‖du(t)‖H3 . The fitting dashed curve is

e21.2
√
t.

5.4. Turbulence regime. In this subsection, we shall simulate more realistic sit-
uations of base solutions in the turbulence regime. Now start with base solution’s
initial condition in the form

u1(0) =
∑

0≤m,n≤16

amnn sin(mx1 + θ1) sin(nx2 + θ2), (5.12)

u2(0) =
∑

0≤m,n≤16

amnm cos(mx1 + θ1) cos(nx2 + θ2), (5.13)

where amn = 0.01a and a is a random variable with standard Gaussian distribution,
and θ1 and θ2 are random variables with uniform distribution on [0, 1]. This type
of initial conditions put the flow into the turbulence regime. For the perturbation
initial condition, we choose

du1(0) = a1 sin(x1) sin(x2), du2(0) = a1 cos(x1) cos(x2), (5.14)

where a1 is a random variable with standard Gaussian distribution (in this single
mode case, it does not matter whether or not a1 is random since the perturbation
satisfies a linear equation). We choose the Reynolds number Re = 1000. First
we run the simulation for a time period 0 ≤ t ≤ 0.03 with time step 0.0005, the
super fast growth of the perturbation is shown in Figure 7(a). Then we restart the
base solution from t = 0.03, i.e. we take the t = 0.03 flash of the base solution as
the new initial condition, introduce the same initial perturbation (5.14), and run
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Figure 5. The solid curve is the numerical result of the super fast
growth of perturbations with initial condition (5.7) with k1 = 1 and
k2 = 1 under different base solutions with initial conditions given
by (5.11), where Λ(t) = ‖du(t)‖H3 . The fitting dashed curve is

e21.2
√
t.

the simulation for the same time period 0 ≤ t ≤ 0.03 with the same time step
0.0005. The super fast growth of the perturbation is shown in Figure 7(b). We
conclude that at any moment, an initial perturbation is introduced into turbulence,

it immediately goes through a ec
√
t super fast amplification. We can visualize

turbulence as a constant super fast amplification of ever appearing perturbations.
Now we choose more general initial perturbations to the base solution initial

condition (5.12)-(5.13) as follows

du1(0) =
∑

0≤m,n≤N

amnn sin(mx1 + θ1) sin(nx2 + θ2), (5.15)

du2(0) =
∑

0≤m,n≤N

amnm cos(mx1 + θ1) cos(nx2 + θ2), (5.16)

where the parameters are defined in (5.12)-(5.13). When N = 16, 8, 4, 2, we have
the same superfast growth (Figure 8), and clearly lower perturbation mode grows
faster. Again, since the perturbation equations are linear, each initial individual
Fourier mode amplifies independently.

5.5. Norm independence of the short term unpredictability. One natural
question is whether or not the super fast amplification of perturbations is due to the
special normH3. We tested different norms. For all the cases we tested, we observed
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Figure 6. The solid curve is the numerical result of the super fast
growth of perturbations with initial condition (5.7) with k1 = 1 and
k2 = 1 under different base solutions with initial conditions given
by (5.11), where Λ(t) = ‖du(t)‖H3 . The fitting dashed curve is

e21.2
√
t.
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(a) Starts at t = 0 (b) Restarts at t = 0.03

Figure 7. Super fast growths of the perturbations with the same
initial condition (5.14) which is introduced at (a). t = 0, and (b).
t = 0.03 to the base solution with the initial condition (5.12)-(5.13),
where Λ(t) = ‖du(t)‖H3 .

that the super fast growth (short term unpredictability) nature is independent of
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Figure 8. Super fast growths of the perturbations with the initial
condition (5.15)-(5.16) when N = 16, 8, 4, 2, to the base solution
with the initial condition (5.12)-(5.13), where Λ(t) = ‖du(t)‖H3 .

the norm used to measure the perturbation. Figure 9 shows the representative cases
of H0 and H3 norms.

In general, norm dependence is a delicate matter [19]. We do not rule out special
examples such that the super fast growth depends on norms.

5.6. An intuition on the super fast amplification of perturbation. Take 2D
for example, following is an intuition on the super fast amplification of perturbation:
In terms of the vorticity variable ω, a mode kb = (kb1, k

b
2) with amplitude ωkb of

the base solution and a mode kp = (kp1 , k
p
2) with amplitude ωkp of the perturbation

make a contribution [10]

1

2
[|kb|−2 − |kp|−2]

∣∣∣∣kp1 kb1
kp2 kb2

∣∣∣∣ωkpωkb
to the time derivative of the amplitude ωkp+kb of the perturbation mode kp + kb.
When |kb| is much larger than kp, the above contribution is usually of the order

|kb||ωkp |.

This can lead to a super-fast amplification of the perturbation in H1 norm (i.e.
vorticity’s L2 norm). The amplification of the H3 norm of the perturbation is even
faster.

This simple intuition only hints a possible amplification. The specific temporary

amplification as revealed via numerical simulation is of the form ec
√
t.
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Figure 9. Super fast growths of the perturbations measured in
different norms, with the initial condition (5.15)-(5.16) to the base
solution with the initial condition (5.12)-(5.13) (N = 2), where
Λ(t) = ‖du(t)‖Hn (n = 0, 3).

6. Reynolds-number dependence of the super fast amplification of
perturbations

When the initial perturbations are of single modes, lower mode amplifies faster.
This does not mean that the lowest mode initial perturbation is the maximizer in
the definition (5.10) of the norm of the derivative of the solution map, as shown
below. Let dû(0) and dũ(0) be two single-mode initial perturbations:

‖dû(t)‖H3 =
√
C1(t)‖dû(0)‖H3 , ‖dũ(t)‖H3 =

√
C2(t)‖dũ(0)‖H3 .

For any fixed t > 0, without loss of generality, assume that C1(t) ≥ C2(t). Consider
the initial perturbations dû(0) + αdũ(0), where α is a real parameter,

‖dû(t) + αdũ(t)‖2H3 = ‖dû(t)‖2H3 + α2‖dũ(t)‖2H3 + 2α〈dû(t), dũ(t)〉H3 ,

where

〈dû(t), dũ(t)〉H3

=

∫ ∑
0≤m+n≤3,`=1,2

[( ∂

∂x1

)m( ∂

∂x2

)n
dû`

][( ∂

∂x1

)m( ∂

∂x2

)n
dũ`

]
dx1 dx2.

Then

‖dû(t) + αdũ(t)‖2H3 = C1(t)‖dû(0)‖2H3 + α2C2(t)‖dũ(0)‖2H3 + 2α〈dû(t), dũ(t)〉H3 .
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Since dû(0) and dũ(0) are single modes, 〈dû(0), dũ(0)〉H3 = 0,

‖dû(0) + αdũ(0)‖2H3 = ‖dû(0)‖2H3 + α2‖dũ(0)‖2H3 .

Next we show that for some range of the parameter α,

‖dû(t) + αdũ(t)‖2H3 > C1(t)‖dû(0) + αdũ(0)‖2H3 , (6.1)

that is, dû(0)+αdũ(0) can amplify faster than both dû(0) and dũ(0). The inequality
(6.1) is equivalent to

2

α
〈dû(t), dũ(t)〉H3 > (C1(t)− C2(t))‖dũ(0)‖2H3 .

As long as 〈dû(t), dũ(t)〉H3 6= 0, the inequality is satisfied in certain range of α with
small enough |α|. Similarly, in another range of α with large enough |α|, such that

−2α〈dû(t), dũ(t)〉H3 > (C1(t)− C2(t))‖dû(0)‖2H3 ,

we have
‖dû(t) + αdũ(t)‖2H3 < C2(t)‖dû(0) + αdũ(0)‖2H3 ,

that is, dû(0) + αdũ(0) can amplify slower than both dû(0) and dũ(0). Let

f(α) =
‖dû(t) + αdũ(t)‖2H3

‖dû(0) + αdũ(0)‖2H3

,

the qualitative feature of f(α) is shown in Figure 10, where Figure 10(a) corre-
sponds to the case 〈dû(t), dũ(t)〉H3 > 0 and Figure 10(b) corresponds to the case
〈dû(t), dũ(t)〉H3 < 0, since

f ′(0) =
2〈dû(t), dũ(t)〉H3

‖dû(0)‖2H3

.

 f(α)

α

•  C
1
(t)

•
  C

2
(t)

α
+

α
-

 f(α)

α

•

  C
1
(t)

•
  C

2
(t)

α
+

α
-

(a) 〈dû(t), dũ(t)〉H3 > 0 (b) 〈dû(t), dũ(t)〉H3 < 0

Figure 10. Qualitative feature of f(α): (a) 〈dû(t), dũ(t)〉H3 > 0,
and (b) 〈dû(t), dũ(t)〉H3 < 0.

Denoting

A = ‖dû(0)‖2H3 , B = ‖dũ(0)‖2H3 , P (t) = 〈dû(t), dũ(t)〉H3 ,

the maximum and minimum points of f(α) are

α± =
−AB(C1(t)− C2(t))±

√
A2B2(C1(t)− C2(t))2 + 4ABP (t)2

2BP (t)
.
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In the case C1(t) > C2(t), when |α+| is small,

α+ ≈
P (t)

(C1(t)− C2(t))B
, (6.2)

when |α−| is large,

α− ≈ −
(C1(t)− C2(t))A

P (t)
.

The key point is that if

〈dû(0), dũ(0)〉H3 = 0 and 〈dû(t), dũ(t)〉H3 6= 0,

then there is a range of the parameter α such that dû(0) + αdũ(0) can amplify
faster than both dû(0) and dũ(0). By iterating the above argument for all the
single Fourier modes, adding higher and higher Fourier modes leads to faster and
faster amplifications. Such combinations of more and more Fourier modes amplify
closer and closer to the supremum (5.10). In general, the supremum cannot be
reached by any specific initial perturbation. The supremum strongly depends on
the Reynolds number Re. For a specific initial perturbation, the Reynolds-number
effect is negligible when the Reynolds number is large enough. In fact, we believe
that the square-root nature of the Reynolds number in (3.3) can only be realized
by the supremum, and cannot be realized by any specific initial perturbation.

Our argument here shows that in turbulence, neither lower modes nor higher
modes rather certain combinations of them grow faster! Such a mechanism mani-
fests in the appearance of turbulence.

7. 3D numerical simulations on rough dependence on initial data

In this section, we will demonstrate numerically the super fast amplification of
perturbations to the solutions of the 3D Navier-Stokes equations. We will also show
that such super fast amplification of perturbations is ubiquitous. We numerically
simulate the 3D Navier-Stokes equations (3.1) for the base solutions, and the cor-
responding perturbation equations (the same form with (5.6)) under the periodic
boundary condition with period domain [0, 2π] × [0, 2π]× [0, 2π]. In parallel with
the 2D simulations, we have two goals: First we want to realized the super fast
amplification of perturbations, and then we want to show that such super fast am-
plification of perturbations is abundant among perturbations and base solutions.
Again, for such two goals, we are going to choose the initial conditions of the base
solutions and the perturbations, to be of the form of single Fourier modes. Since
the perturbation equations are linear, such perturbation solutions generated from
single Fourier modes form a base of superposition.

We will start with the initial condition for the base solution in the single-mode
form

u1(0) =
A

k1
cos(k1x1) sin(k2x2) sin(k3x3),

u2(0) =
A

k2
sin(k1x1) cos(k2x2) sin(k3x3),

u3(0) = −2
A

k3
sin(k1x1) sin(k2x2) cos(k3x3),

(7.1)
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and the initial condition for the perturbation in the single-mode form

du1(0) =
a

k̂1

cos(k̂1x1) sin(k̂2x2) sin(k̂3x3),

du2(0) =
a

k̂2

sin(k̂1x1) cos(k̂2x2) sin(k̂3x3),

du3(0) = −2
a

k̂3

sin(k̂1x1) sin(k̂2x2) cos(k̂3x3).

(7.2)

After we simulate these single-mode cases, we will simulate more realistic situations
in the turbulence regime.

7.1. Fixed base solution and different perturbations. To show the abun-
dance of the super fast amplification among perturbations, we choose in (7.1)-(7.2)
that

Re = 1000, A = 20, k1 = 6, k2 = 5, k3 = 1, a = 0.1, (7.3)

and time step ∆t = 0.0001.

0 0.01 0.02 0.03 0.04 0.05 0.06

t

0

2

4

6

8

10

12

ln
(Λ

/Λ
0
)

0 0.01 0.02 0.03 0.04 0.05 0.06

t

0

2

4

6

8

ln
(Λ

/Λ
0
)

(a) k̂1 = 1, k̂2 = 1, k̂3 = 1 (b) k̂1 = 2, k̂2 = 2, k̂3 = 2

0 0.01 0.02 0.03 0.04 0.05 0.06

t

0

2

4

6

ln
(Λ

/Λ
0
)

(c) k̂1 = 3, k̂2 = 3, k̂3 = 3

Figure 11. Super fast growth of the perturbations of different
modes in 3D with parameters (7.3).

Figure 11 shows the super fast growth of the perturbations of different modes
where Λ(t) is defined in (5.9). We arrive at the same conclusion as in 2D, that
is, lower wave number perturbations have faster super fast growth, and such super
fast growth is abundant among perturbations.
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7.2. Fixed perturbation and different base solutions. To show the abun-
dance of the super fast amplification among base solutions, we choose in (7.1)-(7.2)
that

Re = 1000, A = 20, k̂1 = 1, k̂2 = 1, k̂3 = 1, a = 0.1, (7.4)

and time step ∆t = 0.0001.
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Figure 12. Super fast growth of the perturbation under different
base solutions in 3D with parameters (7.4).

Figure 12 shows the super fast growth of the perturbation under different base
solutions with initial conditions of the form (7.1), where Λ(t) is defined in (5.9).
We arrive at the same conclusion as in 2D, that is, the perturbation of higher mode
base solutions has faster super fast growth, and such super fast growth is abundant
among base solutions. Clearly, the super fast amplification of perturbations is a
generic phenomenon that is independent of spatial dimensions, and is ubiquitous.

7.3. Turbulence regime. In this subsection, we shall simulate more realistic sit-
uations of base solutions in the turbulence regime. We start with base solution’s
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initial condition in the form

u1(0) =

16∑
l=1

16∑
m=1

16∑
n=1

almnmn cos(lx1 + φ1lmn)

× sin(mx2 + φ2lmn) sin(nx3 + φ3lmn),

u2(0) =

16∑
l=1

16∑
m=1

16∑
n=1

almnln sin(lx1 + φ1lmn)

× cos(mx2 + φ2lmn) sin(nx3 + φ3lmn),

u3(0) = −2

16∑
l=1

16∑
m=1

16∑
n=1

almnlm sin(lx1 + φ1lmn)

× sin(mx2 + φ2lmn) cos(nx3 + φ3lmn),

(7.5)

and the initial condition for the perturbation in the form

du1(0) =

N∑
l=1

N∑
m=1

N∑
n=1

blmnmn cos(lx1 + φ1lmn)

× sin(mx2 + φ2lmn) sin(nx3 + φ3lmn),

du2(0) =

N∑
l=1

N∑
m=1

N∑
n=1

blmnln sin(lx1 + φ1lmn)

× cos(mx2 + φ2lmn) sin(nx3 + φ3lmn),

du3(0) = −2

N∑
l=1

N∑
m=1

N∑
n=1

blmnlm sin(lx1 + φ1lmn)

× sin(mx2 + φ2lmn) cos(nx3 + φ3lmn),

(7.6)

where almn = 0.0005a, blmn = 0.00001a, a is a random variable following the stan-
dard Gaussian distribution, φjlmn = 2πφ (j = 1, 2, 3), and φ is a random variable
following the uniform distribution over (0, 1). This type of initial conditions put the
base flow into the turbulence regime. We choose the Reynolds number Re = 1000,
and we run the simulation with time step 0.0001. When N = 16, 8, 4, 2, we have
the same super fast growth (Figure 13), and clearly lower perturbation mode grows
faster. We would like to reiterate that each initial individual Fourier mode amplifies
independently. Finally, We would also like to reiterate that the super fast ampli-
fication phenomenon is a generic fact of fluids, and is ubiquitous. Microscopically,
Navier-Stokes equations model fluid flows well. Thus, the super fast amplification
phenomenon of Navier-Stokes equations reveals the same phenomenon in physical
fluid flows.

Conclusions. Through numerical simulations, we showed the super fast growth of
perturbations (rough dependence upon initial data) in high Reynolds number fluid
flows. We also showed the abundance of such super fast growth among perturba-
tions and base solutions in support of our theory that fully developed turbulence
is caused and maintained by such super fast growth of perturbations. Such super
fast amplification of perturbations is ubiquitous in turbulence.
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Figure 13. Super fast growths of the perturbations with the ini-
tial condition (7.6) when N = 16, 8, 4, 2, to the base solution with
the initial condition (7.5), where Λ(t) = ‖du(t)‖H3 .
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