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MULTIPLE POSITIVE SOLUTIONS TO THE FRACTIONAL

KIRCHHOFF PROBLEM WITH CRITICAL INDEFINITE

NONLINEARITIES

JIE YANG, HAIBO CHEN, ZHAOSHENG FENG

Abstract. This article concerns the existence and multiplicity of positive

solutions to the fractional Kirchhoff equation with critical indefinite nonlin-

earities by applying the Nehari manifold approach and fibering maps.

1. Introduction and statement of results

In this paper, we study the existence and multiplicity of positive solutions to the
fractional Kirchhoff type problem

M
(∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)
(−∆)su = fλ(x)|u|q−2u+ g(x)|u|2

∗
s−2u, in Ω,

u = 0, in RN \ Ω,

(1.1)
where Ω ⊂ RN is an open bounded domain with the Lipschitz boundary ∂Ω, dimen-
sion N > 2s with s ∈ (0, 1), 2∗s = 2N

N−2s is the fractional critical Sobolev exponent

and 0 < s < 1 < q < min{2, N
N−2s} < ∞. Here, M(t) = a + btm−1 with m > 1,

a, b > 0, fλ ∈ Lq
∗
(Ω), q∗ =

2∗
s

2∗
s−q

, fλ = λf+− f− with λ > 0, and f± = max{±f, 0}
and g ∈ L∞(Ω). Furthermore, g satisfies the condition

(A1) g(x) = maxx∈Ω̄ g(x) ≡ 1 in Bρ(0) for some ρ > 0.

We denote by (−∆)s the usual fractional Laplacian operator which is defined (up
to normalization factors) as follows (see for instance [18] and the references therein
for further details on the fractional Laplacian) by

(−∆)su(x) = 2P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, (1.2)

where P.V. stands for the principle value.
When M(t) ≡ 1, λ = 1 and s = 1, equation (1.1) can be reduced to the semilinear

elliptic problem

−∆u = f(x)|u|q−2 + g(x)|u|2
∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)
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where Ω is a smooth bounded domain in RN (N ≥ 3), 1 < q < 2, and the weight
functions f , g are continuous and sign-changing. By using the Nehari manifold,
fibering maps and Ljusternik-Schnirelmann category, Wu [25] proved that there
existed at least three positive solutions of (1.3). Xie-Chen [26] presented a mul-
tiplicity result on the Kirchhoff-type problems in the bounded domain by using
a similar strategy. A number of works dealt with the fractional differential equa-
tions [3, 6, 7, 11, 21] and some recent results on problem (1.3) can be seen in
[4, 5, 10, 12, 13, 14, 15, 16, 22, 23, 27] and the references therein.

As we know, the variational problems involving fractional and nonlocal opera-
tors are much more complicated and challenging. In the last decade, considerable
attention focused on the fractional Laplacian operator and nonlocal operator. We
refer to [19] for the Brezis-Nirenberg type results for the following elliptic equation
involving the fractional Laplacian (−∆)s(0 < s < 1) in a bounded domain,

(−∆)su = λu+ |u|2
∗
s−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where λ > 0, s ∈ (0, 1) is fixed, 2∗s = 2N
N−2s , Ω ⊂ RN (N > 2s) is open, bounded and

with the Lipschitz boundary, and (−∆)s is the fractional Laplace operator. The
classical Brezis-Nirenberg result was generalized to the case of nonlocal fractional
operators through variational techniques. The existence of multiple solutions to
the fractional Laplacian equations of Kirchhoff type was considered in [17] and two
positive solutions for proper selection of positive parameter λ was obtained.

The main purpose of this article is to establish the existence and multiplicity
of positive solutions to problem (1.1) with the critical growth and sign-changing
weight functions. Our results encompass and improve the corresponding results
presented in [26] for the fractional Kirchhoff type equations involving the critical
growth.

The energy functional associated with problem (1.1) is

Iλ(u) =
a

2

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

b

2m

(∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)m
− 1

q

∫
Ω

fλ(x)|u|qdx− 1

2∗s

∫
Ω

g(x)|u|2
∗
sdx

for u ∈ Hs
0(Ω). We can prove that Iλ ∈ C1(Hs

0(Ω),R) and a critical point of Iλ in
Hs

0(Ω) corresponds to a weak solution of problem (1.1). We summarize our main
results as follows.

Theorem 1.1. Assume that m < N
N−2s , f± 6≡ 0 and condition (A1) holds. Then

there exist 0 < Λ∗ ≤ Λ0 and b̄ > 0 such that

(i) for any λ ∈ (0,Λ0), problem (1.1) admits at least one positive solution u1

with Iλ(u1) < 0, and u1 is a ground state solution;
(ii) for any λ ∈ (0,Λ∗) and b ∈ (0, b̄), problem (1.1) admits at least two positive

solutions u1 and u2 satisfying Iλ(u1) < 0 < Iλ(u2), and u1 is a ground
state solution.

Theorem 1.2. Assume that m = N
N−2s , f± 6≡ 0 and condition (A1) holds. Then

the following two statements hold:

(i) For b ≥ 1/Sm and any λ > 0, problem (1.1) admits at least one positive
solution.
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(ii) For b < 1/Sm, there exist 0 < Λ̃∗ ≤ Λ0 and b̃ > 0 such that
(1) for any λ ∈ (0,Λ0), problem (1.1) admits at least one positive solution;

(2) for any λ ∈ (0, Λ̃∗) and b ∈ (0, b̃), problem (1.1) admits at least two
positive solutions u1 and u2 satisfying Iλ(u1) < 0 < Iλ(u2), and u1 is
a ground state solution.

Theorem 1.3. Assume that m > N
N−2s , f− ≡ 0, and condition (A1) holds. Then

there exist b∗,Λ∗ > 0 such that for any b ∈ (0, b∗) and λ ∈ (0,Λ∗), problem (1.1)
admits at least three positive solutions ub, uλ, uλ,b with

Iλ(uλ) < Iλ(ub) < 0 < Iλ(uλ,b),

and uλ is a ground state solution.

Note that the corresponding results in [26] are generalized to the nonlocal frac-
tional Kirchhoff problem and the existence results are extended in the sense that
the restriction on the Kirchhoff coefficient M is eliminated.

When g(x) ≡ 1, by Theorems 1.1 and 1.2, we obtain the existence and multi-
plicity of positive solutions to the problem

M
(∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)
(−∆)su = fλ(x)|u|q−2u+ |u|2

∗
s−2u, in Ω,

u = 0, in RN \ Ω,

where M(t) = a+btm−1 with a, b > 0 for t ≥ 0 and m ∈ [1, 2∗s/2], which generalizes
[17, Theorem 1.1].

In view of [2, 5], problem (1.1) appears more complicated because of the lack of
compactness and the nonlocal nature of the fractional Laplacian. Theorems 1.1–1.3
can be regarded as generalizations of [26] for fractional Laplacian operators.

The rest of this paper is organized as follows. In Section 2, we present mathe-
matical notation and technical lemmas. We prove Theorems 1.1 and 1.2 in Section
3, and prove Theorem 1.3 in Section 4.

2. Preliminary results

In this section, we introduce some notation, definitions and useful lemmas which
will be used in the proofs of main results. We define the Hilbert space Hs(RN ) by

Hs(RN ) :=
{
u ∈ L2(RN ) :

|u(x)− u(y)|
|x− y|N+2s

2

∈ L2
(
RN × RN

) }
endowed with the norm

‖u‖Hs(RN ) =
(∫

RN
|u|2dx+

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

, (2.1)

where the term

[u]s =
(∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

is the so-called Gagliardo semi-norm of u. In view of (1.2) and [18, Proposition
3.6], we have

‖(−∆)s/2u‖22 =
1

Cs

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy,
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where Cs is a positive constant depending on s. We define Ds,2(RN ) as the closure
of C∞0 (RN ) with the norm

‖u‖Ds,2 =
(∫

RN
|(−∆)s/2u|2dx

)1/2

.

Then Ds,2(RN ) is continuously embedded into L2∗
s (RN ). As in [7, Theorem 1.1], let

S be the best constant of the fractional Sobolev embedding Ds,2(RN ) ↪→ L2∗
s (RN )

defined by

S = inf
u∈Ds,2(RN )\{0}

∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dx dy( ∫

RN |u|2
∗
sdx
)2/2∗

s
, (2.2)

which is well-defined and strictly positive.
We define

E0 = {u ∈ Hs(RN ) : u = 0 a.e. in RN \ Ω}
with the norm

‖u‖E0
=
(∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

,

which is equivalent to (2.1) [19, 20]. The embedding E0 ↪→ Lr(Ω) is continuous for
any r ∈ [1, 2∗s] and compact whenever r ∈ [1, 2∗s). We recall that (E0, ‖ · ‖E0

) is a
Hilbert space with the inner product defined by

〈u, v〉 =

∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy.

For simplicity, we will just denote ‖·‖E0 and ‖·‖Lp(Ω) by ‖·‖ and |·|p, respectively.
Throughout this paper, the letters C,Ci, i = 1, 2, . . . denote positive constants
which may vary from line to line but independent of the associated terms and
parameters.

As we see, Iλ is of class C1 in E0 and for any v ∈ E0 it holds

〈I ′λ(u), v〉 =M(‖u‖2)

∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy

−
∫

Ω

fλ(x)|u|q−2uvdx−
∫

Ω

g(x)|u|2
∗
s−2uvdx.

Define the Nehari manifold associated with Iλ by

Nλ = {u ∈ E0 \ {0} : 〈I ′λ(u), u〉 = 0}.

It is well-known that the Nehari manifold is closely related to the behavior of the
fibering map φu : t ∈ R+ → Iλ(tu) [2, 8]. Thus, we have

φ′u(t) = at‖u‖2 + bt2m−1‖u‖2m − tq−1

∫
Ω

fλ(x)|u|qdx− t2
∗
s−1

∫
Ω

g(x)|u|2
∗
sdx,

φ′′u(t) = a‖u‖2 + (2m− 1)bt2m−2‖u‖2m

− (q − 1)tq−2

∫
Ω

fλ(x)|u|qdx− (2∗s − 1)t2
∗
s−2

∫
Ω

g(x)|u|2
∗
sdx.

Then u ∈ Nλ if and only if φ′u(1) = 0. Moreover, for u ∈ Nλ we have

φ′′u(1) = a(2− q)‖u‖2 + b(2m− q)‖u‖2m − (2∗s − q)
∫

Ω

g(x)|u|2
∗
sdx, (2.3)
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or

φ′′u(1) = a(2− 2∗s)‖u‖2 + b(2m− 2∗s)‖u‖2m − (q − 2∗s)

∫
Ω

fλ(x)|u|qdx. (2.4)

We split Nλ into three parts:

N+
λ = {u ∈ Nλ|φ′′u(1) > 0},

N−λ = {u ∈ Nλ|φ′′u(1) < 0},
N0
λ = {u ∈ Nλ|φ′′u(1) = 0},

and define

H+ = {u ∈ E0|
∫

Ω

fλ(x)|u|qdx > 0}, H− = {u ∈ E0|
∫

Ω

fλ(x)|u|qdx ≤ 0},

G+ = {u ∈ E0|
∫

Ω

g(x)|u|2
∗
sdx > 0}, G− = {u ∈ E0|

∫
Ω

g(x)|u|2
∗
sdx ≤ 0}.

In view of m ≤ N
N−2s and following [17, Lemma 3.2], we can derive the following

lemma immediately.

Lemma 2.1. If u is a minimizer of Iλ on Nλ such that u /∈ N0
λ, then I ′λ(u) = 0 in

E−1
0 .

Lemma 2.2. For any λ > 0, the functional Iλ is coercive and bounded below on
Nλ.

Proof. For u ∈ Nλ, from (2.2) and Hölder’s inequality, we have

Iλ(u) = Iλ(u)− 1

2∗s
〈I ′λ(u), u〉

=
(1

2
− 1

2∗s

)
a‖u‖2 +

( 1

2m
− 1

2∗s

)
b‖u‖2m −

(1

q
− 1

2∗s

)∫
Ω

fλ(x)|u|qdx

≥
(1

2
− 1

2∗s

)
a‖u‖2 −

(1

q
− 1

2∗s

)
λ|f+|q∗S−q/2‖u‖q.

Recalling that 1 < q < 2, we obtain that Iλ is coercive and bounded below on
Nλ. �

Let

λ1 =
[a(2− q)

2∗s − q
] 2−q

2∗s−2
a(2∗s − 2)S

2∗s−q
2∗s−2

(2∗s − q)|f+|q∗
. (2.5)

Lemma 2.3. There exists λ1 > 0 such that N0
λ = ∅ for λ ∈ (0, λ1).

Proof. By contradiction assume that for some λ ∈ (0, λ1), there is a function u ∈
N0
λ . Then from (2.3) and (2.4), we have

a(2− q)‖u‖2 + b(2m− q)‖u‖2m − (2∗s − q)
∫

Ω

g(x)|u|2
∗
sdx = 0, (2.6)

a(2− 2∗s)‖u‖2 + b(2m− 2∗s)‖u‖2m − (q − 2∗s)

∫
Ω

fλ(x)|u|qdx = 0. (2.7)

It follows from (A1), (2.6) and (2.2) that

‖u‖2 ≤ 2∗s − q
a(2− q)

|u|2
∗
s

2∗
s
≤ 2∗s − q
a(2− q)

S−
2∗s
2 ‖u‖2

∗
s . (2.8)
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Similarly, from (2.2), (2.7) and Hölder’s inequality, we can deduce that

‖u‖2 ≤ 2∗s − q
a(2∗s − 2)

λ

∫
Ω

f+|u|qdx ≤
2∗s − q

a(2∗s − 2)
λ|f+|q∗S−q/2‖u‖q. (2.9)

Combining (2.8) and (2.9) yields[a(2− q)
2∗s − q

S
2∗s
2

] 1
2∗s−2 ≤ ‖u‖ ≤

[ (2∗s − q)λ|f+|q∗S−q/2

a(2∗s − 2)

] 1
2−q .

Therefore,

λ ≥
[a(2− q)

2∗s − q
] 2−q

2∗s−2
a(2∗s − 2)S

2∗s−q
2∗s−2

(2∗s − q)|f+|q∗
= λ1.

This is a contradiction. �

We define

λ2 =

λ1, m < N
N−2s ,(

1
1−bSm

) 2−q
2∗s−2λ1, m = N

N−2s , b < 1/Sm.
(2.10)

The lemma below shows that the component sets N+
λ and N−λ are nonempty.

Lemma 2.4. Assume m < N
N−2s . Then the following two statements are true.

(i) For any u ∈ G+∩H+ and λ ∈ (0, λ2), there exist 0 < t+ = t+(u) < tmax <
t− = t−(u) such that t+u ∈ N+

λ , t
−u ∈ N−λ and

Iλ(t+u) = inf
0≤t≤t−

Iλ(tu), Iλ(t−u) = sup
t≥tmax

Iλ(tu).

(ii) For any u ∈ G+ ∩H− and λ > 0, there exists a unique t− = t−(u) > tmax

such that t−u ∈ N−λ and

Iλ(t−u) = sup
t≥0

Iλ(tu).

Proof. Fix u ∈ E0 \ {0} and define ψu(t) : R+ → R by

ψu(t) = at2−q‖u‖2 + bt2m−q‖u‖2m − t2
∗
s−q

∫
Ω

g(x)|u|2
∗
sdx. (2.11)

We remark that tu ∈ Nλ if and only if ψu(t) =
∫

Ω
fλ|u|qdx.

(i) Let u ∈ G+ ∩H+. From (2.11), it is easy to check that

ψu(0) = 0, lim
t→∞

ψu(t) = −∞, lim
t→0+

ψ′u(t) > 0 and lim
t→∞

ψ′u(t) < 0.

Define ψ′u(t) = t1−qhu(t), where

hu(t) = a(2− q)‖u‖2 + (2m− q)bt2m−2‖u‖2m − (2∗s − q)t2
∗
s−2

∫
Ω

g(x)|u|2
∗
sdx.

Then, there exists a unique t0 > 0 such that h′u(t0) = 0, where

t0 =
( (2m− q)(2m− 2)b‖u‖2m

(2∗s − q)(2∗s − 2)
∫

Ω
g(x)|u|2∗

sdx

) 1
2∗s−2m

.

From m < N
N−2s it follows that limt→0+ hu(t) > 0 and limt→∞ hu(t) = −∞. This

implies that there is a unique tmax > t0 such that hu(tmax) = 0. Hence, ψ′u(t) >
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0 for t ∈ (0, tmax), ψ′u(t) < 0 for t ∈ (tmax,∞) and ψ′u(tmax) = 0. Moreover,
ψu(tmax) = maxt>0 ψu(t) ≥ maxt>0 ψ̄u(t), where

ψ̄u(t) = at2−q‖u‖2 − t2
∗
s−q

∫
Ω

g(x)|u|2
∗
sdx.

From (2.2) it follows that

max
t>0

ψ̄u(t) = ‖u‖q a(2∗s − 2)

2∗s − q

( (2− q)a‖u‖2∗
s

(2∗s − q)
∫

Ω
g(x)|u|2∗

sdx

) 2−q
2∗s−2

≥ ‖u‖q a(2∗s − 2)

2∗s − q

( (2− q)aS
2∗s
2

2∗s − q

) 2−q
2∗s−2

.

For u ∈ H+, it holds

ψu(0) = 0 <

∫
Ω

fλ(x)|u|qdx ≤ λ
∫

Ω

f+|u|qdx ≤ λ|f+|q∗S−q/2‖u‖q.

So, if

λ < λ1 =
a(2∗s − 2)S

2∗s−q
2∗s−2

(2∗s − q)|f+|q∗

( (2− q)a
2∗s − q

) 2−q
2∗s−2

,

there exist unique t+ = t+(u) < tmax and t− = t−(u) > tmax such that

ψu(t+) =

∫
Ω

fλ(x)|u|qdx = ψu(t−), ψ′u(t+) > 0, ψ′u(t−) < 0,

which implies t+u, t−u ∈ Nλ. According to φ′′u(1) = tq+1ψ′u(t), we can deduce that
t+u ∈ N+

λ and t−u ∈ N−λ . Since φ′u(t) = tq−1
(
ψu(t) −

∫
Ω
fλ(x)|u|qdx

)
, it is clear

that φ′u(t) < 0 for t ∈ [0, t+) and φ′u(t) > 0 for t ∈ (t+, t−). This indicates that
Iλ(t+u) = inf0≤t≤t− Iλ(tu).

Similarly, from φ′u(t) > 0 for t ∈ (t+, t−) and φ′u(t) < 0 for t ∈ (t−,∞), we can
obtain Iλ(t−u) = supt≥tmax

Iλ(tu).
(ii) The proof is essentially the same as that in Part (i), so we omit it. �

As in Lemma 2.4, we can deduce the following two lemmas.

Lemma 2.5. Assume that m = N
N−2s and b ≥ 1/Sm. Then for any u ∈ H+, there

exists a unique 0 < t+ < tmax such that t+u ∈ Nλ and Iλ(t+u) = inft≥0 Iλ(tu).

Lemma 2.6. Assume that m = N
N−2s and b < 1/Sm. Then the following two

statements are true.

(i) For any u ∈ H+ and λ ∈ (0, λ2), there exist 0 < t+ = t+(u) < tmax < t− =
t−(u) such that t+u ∈ N+

λ , t
−u ∈ N−λ and

Iλ(t+u) = inf
0≤t≤t−

Iλ(tu), Iλ(t−u) = sup
t≥tmax

Iλ(tu).

(ii) For any u ∈ H− and λ > 0, there exists a unique t− = t−(u) > tmax such
that t−u ∈ N−λ and

Iλ(t−u) = sup
t≥0

Iλ(tu).

Lemma 2.7. Assume λ ∈ (0, λ1). Then for any u ∈ N+
λ and v ∈ N−λ , there exist

B0 > Bλ > 0 such that ‖v‖ > B0 > Bλ > ‖u‖.
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Proof. Let u ∈ N+
λ ⊂ Nλ. In view of (2.2) and (2.4), it follows from Hölder’s

inequality that

a(2∗s − 2)‖u‖2 < (2∗s − q)
∫

Ω

fλ(x)|u|qdx ≤ (2∗s − q)λS−q/2|f+|q∗‖u‖q.

Then

‖u‖ <
( (2∗s − q)λS−q/2|f+|q∗

a(2∗s − 2)

) 1
2−q

= Bλ.

Similarly, if v ∈ N−λ ⊂ Nλ, from (2.3) and (A1) we have

a(2− q)‖v‖2 < (2∗s − q)
∫

Ω

g(x)|v|2
∗
sdx ≤ (2∗s − q)S−2∗

s/2‖v‖2
∗
s .

Hence, we have

‖v‖ >
(a(2− q)S

2∗s
2

2∗s − q

) 1
2∗s−2

= B0.

By a direct calculation, we can verify that B0 > Bλ for λ ∈ (0, λ1), where λ1 is
given in (2.5). �

Corollary 2.8 ([11]). For any λ ∈ (0, λ1), N−λ is a closed set in E0 topology.

3. Proof of Theorems 1.1 and 1.2

In this section, we discuss the existence and multiplicity of solutions to problem
(1.1) when m ≤ N

N−2s . From Lemmas 2.3, 2.4 and 2.6, if m < N
N−2s or m = N

N−2s ,

and b < 1/Sm holds for any λ ∈ (0, λ1), then Nλ = N+
λ ∪N

−
λ . Now, we study the

infimum of Iλ on the N±λ by defining c±λ = infN±
λ
Iλ(u) and λ3 = q

2λ1.

Lemma 3.1. Assume that m < N
N−2s or m = N

N−2s , and b < 1/Sm. Then

(i) for any λ ∈ (0, λ1), we have c+λ = infu∈N+
λ
Iλ(u) < 0;

(ii) for any λ ∈ (0, λ3), we have c−λ ≥ α > 0. In particular, if λ ∈ (0, λ1), then

c+λ = inf
u∈Nλ

Iλ(u).

Proof. (i) For u ∈ N+
λ , it follows from (2.4) that∫

Ω

fλ(x)|u|qdx ≥
(2∗s − 2

2∗s − q

)
a‖u‖2 +

(2∗s − 2m

2∗s − q

)
b‖u‖2m. (3.1)

By (3.1), we obtain

c+λ ≤ Iλ(u)− 1

2∗s
〈I ′λ(u), u〉

=
(1

2
− 1

2∗s

)
a‖u‖2 +

( 1

2m
− 1

2∗s

)
b‖u‖2m −

(1

q
− 1

2∗s

)∫
Ω

fλ(x)|u|qdx

≤ −
(1

q
− 1

2

)(
1− 2

2∗s

)
a‖u‖2 −

(1

q
− 1

2m

)(
1− 2m

2∗s

)
b‖u‖2m

< 0.

(ii) For u ∈ N−λ , applying Lemma 2.7 and λ ∈ (0, λ3), we deduce

Iλ(u) =
(1

2
− 1

2∗s

)
a‖u‖2 +

( 1

2m
− 1

2∗s

)
b‖u‖2m −

(1

q
− 1

2∗s

)∫
Ω

fλ(x)|u|qdx
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≥ ‖u‖q
[as
N

(a(2− q)
2∗s − q

S
2∗s
2

) 2−q
2∗s−2 − λ

(1

q
− 1

2∗s

)
|f+|q∗S−q/2

]
≥ (2∗s − q)|f+|q∗‖u‖q

2∗sqS
q
2

(λ3 − λ)

≥ α > 0.

�

Lemma 3.2. For each u ∈ N±λ and λ ∈ (0, λ1), there is a number ε and a
differentiable function ζ : B(0, ε) ⊆ E → R such that ζ(0) = 1, the function
ζ(v)(u− v) ∈ N±λ , and

〈ζ ′(0), v〉

=
2a〈u, v〉+ 2mb‖u‖2(m−1)〈u, v〉 − q

∫
Ω
fλ|u|q−2uvdx− 2∗s

∫
Ω
g|u|2∗

s−2uvdx

(2− q)a‖u‖2 + (2m− q)b‖u‖2m − (2∗s − q)
∫

Ω
g|u|2∗

sdx
,

where

〈u, v〉 =

∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy

for v ∈ Bε(0) = {v ∈ E0 : ‖v‖ ≤ ε}.

The proof of the above lemma is similar to that of [11, Lemma 3.4], we omit it
here.

Lemma 3.3. Assume that λ ∈ (0, λ1). Then there exists a minimizing sequence
{uk} ⊂ Nλ such that

Iλ(uk)→ cλ and ‖I ′λ(uk)‖E−1
0
→ 0 as k →∞ (3.2)

with cλ = infu∈Nλ Iλ(u).

Proof. It follows form Lemma 2.2 and the Ekeland’s variational principle [9] that
there exists a minimizing sequence {uk} ⊂ Nλ such that

cλ < Iλ(uk) < cλ +
1

k
, (3.3)

Iλ(uk) < Iλ(u) +
1

k
‖u− uk‖, u ∈ Nλ. (3.4)

From (3.3) and Lemma 2.2, we have supk ‖uk‖ <∞. Now, we claim that ‖I ′λ(uk)‖E−1
0
→

0 as k →∞. From Lemma 3.2, we know the differentiable functions ζk : Bεk(0)→ R
for some εk > 0 such that ζk(v)(uk− v) ∈ Nλ for v ∈ Bεk(0). For a fixed k, we take
0 < % < εk and define v% = %u/‖u‖ with u ∈ E0, u 6≡ 0 and ω% = ζk(v%)(uk − v%).
Then it is easy to see that ω% ∈ Nλ. By (3.4), we can deduce that

Iλ(ω%)− Iλ(uk) ≥ −1

k
‖ω% − uk‖,

which implies

〈I ′λ(uk), ω% − uk〉+ ok (‖ω% − uk‖) ≥ −
1

k
‖ω% − uk‖.

Therefore,

−〈I ′λ(uk), v%〉+ (ζk(v%)− 1) 〈I ′λ(uk), uk − v%〉 ≥ −
1

k
‖ω% − uk‖+ ok (‖ω% − uk‖) .
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Then 〈I ′λ(ω%), uk − v%〉 = 0 yields

− %〈I ′λ(uk),
u

‖u‖
〉+ (ζk(v%)− 1)〈I ′λ(uk)− I ′λ(ω%), uk − v%〉

≥ −1

k
‖ω% − uk‖+ ok(‖ω% − uk‖).

That is,

〈I ′λ(uk),
u

‖u‖
〉 ≤ 1

k%
‖ω% − uk‖+

ok(‖ω% − uk‖)
%

+
(ζk(v%)− 1)

%
〈I ′λ(uk)− I ′λ(ω%), uk − v%〉.

(3.5)

Since ‖ω% − uk‖ ≤ ρ|ζk(v%)| + |ζk(v%) − 1|‖uk‖ and lim%→0
|ζk(v%)−1|

% ≤ ‖ζ ′k(0)‖,
taking the limit %→ 0+ in (3.5), we obtain

〈I ′λ(uk),
u

‖u‖
〉 ≤ C

k

(
1 + ‖ζ ′k(0)‖

)
for some C > 0 independent of u.

It suffices to show that ‖ζ ′k(0)‖ is bounded. Assume by contradiction that
〈ζ ′(0), v〉 =∞. It follows from Lemma 3.2 and Hölder’s inequality that

〈ζ ′k(0), v〉 =
C‖v‖

(2− q)a‖uk‖p + (2m− q)b‖uk‖2m − (2∗s − q)
∫

Ω
g(x)|uk|2∗

sdx

for some C > 0, which implies that there exists a subsequence {uk} such that

(2− q)a‖uk‖2 + (2m− q)b‖uk‖2m − (2∗s − q)
∫

Ω

g(x)|uk|2
∗
sdx = ok(1). (3.6)

Analogously, we can obtain

a(2− 2∗s)‖uk‖2 + b(2m− 2∗s)‖uk‖2m − (q − 2∗s)

∫
Ω

fλ(x)|uk|qdx = ok(1). (3.7)

From (3.6) and (3.7), as in the proof of Lemma 2.3, we can see that λ ≥ λ1, which
is impossible. �

We define

c∗λ :=
s

N
(aS)

N
2s −Dλ

2
2−q , (3.8)

where

D =
(2− q)(2∗s − q)|f+|

2
2−q
q∗

2q2∗s

( 2∗s − q
(2∗s − 2)S

) q
2−q

.

Lemma 3.4. Assume that m ≤ N
N−2s . Then Iλ satisfies the (PS) condition at the

level cλ < c∗λ, where c∗λ is given in (3.8).

Proof. Let {un} be a (PS)cλ sequence satisfying (3.2). It follows from Lemma 2.2
that {un} is bounded in E0. Hence, we may assume that, up to a subsequence,
there exists u ∈ E0 such that

un → u, a. e. in Ω,

un ⇀ u, weakly in E0,

un → u, strongly in Lr(Ω), 1 ≤ r < 2∗s.

(3.9)
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Meanwhile, there exists h̄ ∈ L2(Ω) such that |un(x)| ≤ h̄(x) a.e. in Ω. Note that
limn→∞ ‖un‖ = β and M is continuous. We derive that M(‖un‖2) → M(β2) as
n→∞. Set vn = un − u. We can assume that limn→∞ ‖vn‖ = d1 > 0. Otherwise,
the conclusion follows. From [1, Lemma 2.7], (3.9) and condition (A1), we have

‖un‖2 = ‖un − u‖2 + ‖u‖2 + on(1),∫
Ω

g(x)|un|2
∗
sdx =

∫
Ω

g(x)|un − u|2
∗
sdx+

∫
Ω

g(x)|u|2
∗
sdx+ on(1),

(3.10)

as n→∞. By (3.9)-(3.10), we obtain

on(1) = 〈I ′λ(un), un〉

= M(‖un‖2)‖un‖2 −
∫

Ω

fλ(x)|u|qdx−
∫

Ω

g(x)|u|2
∗
sdx

−
∫

Ω

g(x)|vn|2
∗
sdx,

(3.11)

and

on(1) = 〈I ′λ(un), u〉 = M
(
‖un‖2

)
‖u‖2 −

∫
Ω

fλ(x)|u|qdx−
∫

Ω

g(x)|u|2
∗
sdx. (3.12)

As a consequence of (3.11) and (3.12), we obtain

M
(
‖un‖2

)
‖vn‖2 −

∫
Ω

g(x)|vn|2
∗
sdx = on(1).

Let limn→∞
∫

Ω
g(x)|vn|2

∗
sdx = d2. We derive(

a+ bβ2(m−1)
)
d2

1 = d2, (3.13)

which implies d2 > 0. Moreover, from the definition of S in (2.2), we have

d2
1 ≥ Sd

2/2∗
s

2 . (3.14)

Combining (3.13) and (3.14), we obtain

d2
1 ≥ a

N−2s
2s S

N
2s . (3.15)

It follows from Hölder’s inequality that

cλ = lim
n→∞

(
Iλ(un)− 1

2∗s
〈I ′λ(un), un〉

)
= lim
n→∞

{(1

2
− 1

2∗s

)
a‖un‖2 +

( 1

2m
− 1

2∗s

)
b‖un‖2m −

(1

q
− 1

2∗s

)∫
Ω

fλ|un|qdx
}

≥
(1

2
− 1

2∗s

)
ad2

1 +
(1

2
− 1

2∗s

)
a‖u‖2 −

(1

q
− 1

2∗s

)
λ|f+|q∗S−q/2‖u‖q.

Setting

Fλ(t) =
(1

2
− 1

2∗s

)
at2 −

(1

q
− 1

2∗s

)
λ|f+|q∗S−q/2tq,

we deduce that Fλ(t) attains its minimum as

min
t≥0

Fλ(t) = − (2− q)(2∗s − q)(λ|f+|q∗)
2

2−q

22∗sq

( 2∗s − q
(2∗s − 2)S

) q
2−q

= −Dλ
2

2−q ,
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where

D =
(2− q)(2∗s − q)|f+|

2
2−q
q∗

2q2∗s

( 2∗s − q
(2∗s − 2)S

) q
2−q

.

By applying (3.15), we obtain

cλ ≥
s

N
(aS)

N
2s −Dλ

2
2−q = c∗λ,

which yields a contradiction with the hypothesis cλ < c∗λ. �

We define

λ4 :=
( s
N

(aS)
N
2s /D

) 2−q
2

and Λ0 = min{λ1, λ2, λ3, λ4}, where λ1, λ2 and λ3 are given in (2.5), (2.10) and
Lemma 3.1, respectively.

Proposition 3.5. Assume that m < N
N−2s or m = N

N−2s and b < 1/Sm. Then for

λ ∈ (0,Λ0), Iλ has a minimizer u1 in Nλ, which is a positive solution to problem
(1.1) with Iλ(u1) = c+λ and ‖u1‖ → 0 as λ→ 0.

Proof. For λ ∈ (0,Λ0), combining the definition of c∗λ and Lemma 3.1 gives

c+λ < 0 < c∗λ.

In view of the Ekeland’s variational principle [9], there exists a (PS)c+λ
sequence

{un} ⊂ N+
λ satisfying (3.2). It follows from Lemma 3.4 that there exists u1 ∈ Nλ

such that
I ′λ(u1) = 0, Iλ(u1) = c+λ < 0,

We now show that u1 ∈ N+
λ . Consider the case m < N

N−2s , while the case

m = N
N−2s and b < 1/Sm follows similarly. Suppose by contradiction that u1 ∈ N−λ .

Combining this with (2.3), we have u1 ∈ G+. On the other hand, from u1 ∈ Nλ
and Iλ(u1) = c+λ < 0, we can see that u1 ∈ H+. Hence, from Lemma 2.4, we can

infer that there exist t−(u1) > t+(u1) > 0 such that t−u1 ∈ N−λ and t+u1 ∈ N+
λ .

This implies t− = 1 and t+ < 1. Therefore, there exists t̃ ∈ (t+, t−) such that

Iλ(t+u1) = min
0≤t≤t−

Iλ(tu1) < Iλ(t̃u1) < Iλ(t−u1) = Iλ(u1) = c+λ ,

which yields a contradiction. This implies u1 ∈ N+
λ .

Furthermore, we show that u1 is positive. Note that Iλ(u) 6= Iλ(|u|) and ‖u‖ 6=
‖|u|‖ in E0. We consider the positive part of problem (1.1) by defining

I+
λ (u) =

a

2
‖u‖2 +

b

2m
‖u‖2m − 1

q

∫
Ω

fλ(x)|u+|qdx− 1

2∗s

∫
Ω

g(x)|u+|2
∗
sdx.

Then there exists a critical point u1 ∈ N+
λ for I+

λ . That is, for any v ∈ E0 it holds

M
(
‖u1‖2

) ∫
R2N

(u1(x)− u1(y))(v(x)− v(y))

|x− y|N+2s
dx dy

=

∫
Ω

fλ(x)|u+
1 |q−1vdx−

∫
Ω

g(x)|u+
1 |2

∗
s−1vdx.

(3.16)

Taking v = u−1 = min{u1, 0} as a test function in (3.16) and applying the inequality

(u1(x)− u1(y))(u−1 (x))− u−1 (y)) = −u+
1 (x)u−1 (y)− u−1 (x)u+

1 (y)− [u−1 (x)− u−1 (y)]2

≤ −[u−1 (x)− u−1 (y)]2,
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we obtain

(a+ b‖u−1 ‖2(m−1))

∫
R2N

|u−1 (x)− u−1 (y)|2

|x− y|N+2s
dx dy = o(1),

which implies ‖u−1 ‖ = 0, i.e. u1 ≥ 0 in RN . Moreover, by the strong maximum
principle [3], we know that u1 is positive.

Then, we prove that u1 is a local minimizer of Iλ in E0. From Lemmas 2.4 and
2.6, we have t+(u1) = 1 < tmax(u1). From continuity of u 7→ tmax(u), for the fixed
ε > 0, there exists δ1 = δ1(ε) > 0 such that tmax(u1 − u) > 1 + ε for all ‖u‖ < δ1.
Meanwhile, by Lemma 3.2, we can see that for a given δ2 > 0, there exists a C1

map ζ : Bδ2(0) → R+ such that ζ(u)(u1 − u) ∈ N+
λ and ζ(0) = 1. Hence, taking

into account 0 < δ = min{δ1, δ2} and the uniqueness of zeros of fibering map, we
have t+(u1−u) = ζ(u) < 1+ ε < tmax(u1−u) for all ‖u‖ < δ. By tmax(u1−u) > 1,
we obtain Iλ(u1) ≤ Iλ(t+(u1 − u)(u1 − u)) ≤ Iλ(u1 − u), which implies that u1 is
a local minimizer of Iλ in E0.

By Lemma 2.1, we obtain that u1 is a positive solution to problem (1.1) . By
Lemma 2.7, we arrive at the desired result. �

In [19], it is shown that the infimum in (2.2) is attained by

uε(x) =
ε(N−2s)/2

(ε2 + |x|2)(N−2s)/2
, ε > 0, (3.17)

which satisfies ∫
R2N

|uε(x)− uε(y)|2

|x− y|N+2s
dx dy = S|uε|

2∗
s

2∗
s
.

We define

uε,η(x) = η(x)uε(x), (3.18)

where η(x) ∈ C∞0 (Bρ(0)) satisfies 0 ≤ η ≤ 1 in Bρ(0), η ≡ 1 in Bρ/2(0) and η ≡ 0

in RN \ Bρ(0), for some ρ > 0 sufficiently small as given in condition (A1). From
[19], we have

‖uε,η‖2 ≤ SN/(2s) +O
(
εN−2s

)
and |uε,η|

2∗
s

2∗
s

= SN/(2s) +O
(
εN
)
. (3.19)

It follows from (3.17) and (3.18) that∫
Bρ(0)

|uε,η|qdx ≤ C
(∫

Bε(0)

1

εq(N−2s)/2
dx+

∫
Bρ(0)\Bε(0)

εq(N−2s)/2

|x|q(N−2s)
dx
)

= CωN

(
εN−

(N−2s)q
2 + ε

q(N−2s)
2

∫ ρ

ε

rN−1−q(N−2s)dr
)

= O
(
εN−

(N−2s)q
2

)
+O

(
ε
q(N−2s)

2

)
= O

(
ε
q(N−2s)

2

)
,

where 1 < q < N/(N − 2s), and ωN denotes the unit sphere in RN .
In view of condition (A1) and the definition of η, we have the following lemma.

Lemma 3.6 ([11, 19]). For small ε > 0, the following statements are true.

(i)
∫
Bρ(0)

|uε,η|qdx = O
(
εq(N−2s)/2

)
;

(ii)
∫
Bρ(0)

|uε,η|2
∗
s−1dx ≥ CεN−2s

2 ;

(iii)
∫
Bρ(0)

g(x)|uε,η|2
∗
sdx = S

N
2s +O(εN ).
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We consider the following two sets

A1 = {u ∈ E \ {0} :
1

‖u‖
t−
( u

‖u‖
)
> 1} ∪ {0},

A2 = {u ∈ E \ {0} :
1

‖u‖
t−
( u

‖u‖
)
< 1},

where t− is given in Lemma 2.4. It follows from [25] that t−(u) is continuous for
u ∈ E0\{0} and N−λ = {u ∈ E0\{0} : 1

‖u‖ t
−( u
‖u‖
)

= 1} splits E0 into two connected

parts A1 and A2. It follows from Lemmas 2.4 and 2.6 that for any u ∈ N+
λ and

λ ∈ (0, λ2), we have 1 < tmax(u) < t−(u). Then N+
λ ⊂ A1. Particularly, u+

λ ∈ A1.

Lemma 3.7. Assume that m < N
N−2s or m = N

N−2s and b < 1/Sm. Then for any
ε > 0, there exists t1 > 0 such that u1 + t1uε,η ∈ A2.

Proof. We just prove the case of m = N
N−2s and b < 1/Sm, since the case of

m < N
N−2s can be processed in a similar manner.

We claim that there exists a constant c̃ > 0 such that 0 < t−
( u1+tuε,η
‖u1+tuε,η‖

)
< c̃

for m = N
N−2s and b < 1/Sm. Otherwise, there is a sequence {tn} ⊂ R+ such that

tn →∞ and t−
(

u1+tnuε,η
‖u1+tnuε,η‖

)
→∞ as n→∞. Let vn =

u1+tnuε,η
‖u1+tnuε,η‖ . From (3.19),

we deduce that∫
Bρ(0)

g|vn|2
∗
sdx− b‖vn‖2

∗
s =

∫
Bρ(0)

g|u1 + tnuε,η|2
∗
sdx

‖u1 + tnuε,η‖2∗
s

− b

→

∫
Bρ(0)

g|uε,η|2
∗
sdx

‖uε,η‖2∗
s

− b

≥ 1/Sm − b+O
(
εN
)
> 0

for 0 < ε < ε1 with some ε1 > 0, as n→∞. Thus, Iλ(t−(vn)vn)→ −∞ as n→∞
for m = N

N−2s and ε ∈ (0, ε1), which contradicts Lemma 2.2. According to [25,

Lemma 3.6], we obtain u1 + t1uε,η ∈ A2 immediately. �

Lemma 3.8. Assume that m < N
N−2s or m = N

N−2s and b < 1/Sm. Then there

exist Λ∗ ∈ (0,Λ0] and b̄ > 0 such that for any λ ∈ (0,Λ∗) and b ∈ (0, b̄) it holds

sup
t≥0

Iλ(u1 + tuε,η) < c∗λ,

where c∗λ is given in (3.8).

Proof. For any α, β ≥ 0 and m ≥ 1, we recall the inequality

(α+ β)m ≤ αm + Cm(αm + βm) +mαm−1β,

where Cm > 0 is a constant depending on m. It follows from Young’s inequality
that

b

2m
‖u1 + tuε,η‖2m

≤ b

2m
‖u1‖2m + b‖u1‖2(m−1)t

∫
R2N

(u1(x)− u1(y))(uε,η(x)− uε,η(y))

|x− y|N+2s

+ bCm‖u1‖2m + bDmt
2m‖uε,η‖2m,

(3.20)
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where Dm > 0. Since u1 is a critical point of Iλ, we obtain

〈I ′λ(u1), tuε,η〉 = 0. (3.21)

In view of the inequality

(α+ β)p − αp − βp − pαp−1β ≥ Cαβp−1, α, β ≥ 0, p > 2,

it follows from the definition of η, (3.20), (3.21) and condition (A1) that

Iλ(u1 + tuε,η)

=
a

2
‖u1 + tuε,η‖2 +

b

2m
‖u1 + tuε,η‖2m

− 1

q

∫
Bρ(0)

fλ|u1 + tuε,η|qdx−
1

2∗s

∫
Bρ(0)

g|u1 + tuε,η|2
∗
sdx

≤ Iλ(u1) +
a

2
‖tuε,η‖2 + bCm‖u1‖2m + bDm‖tuε,η‖2m

− 1

q

∫
Bρ(0)

fλ

(∫ tuε,η

0

[|u1 + s|q−1 − |u1|q−1]ds
)
dx

− 1

2∗s

∫
Bρ(0)

g
[
|u1 + tuε,η|2

∗
s − |u1|2

∗
s − 2∗stuε,η|u1|2

∗
s−1
]
dx

≤ c+λ +
a

2
‖tuε,η‖2 + bCm‖u1‖2m + bDm‖tuε,η‖2m + C|f−|∞|tuε,η|qq

− 1

2∗s

∫
Bρ(0)

g|tuε,η|2
∗
sdx− C

∫
Bρ(0)

|u1||tuε,η|2
∗
s−1dx.

(3.22)

We now consider

Jλ(tuε,η) =
a

2
‖tuε,η‖2 + bCm‖u1‖2m + bDm‖tuε,η‖2m + C|f−|∞|tuε,η|qq

− 1

2∗s

∫
Bρ(0)

g|tuε,η|2
∗
sdx− C

∫
Bρ(0)

|u1||tuε,η|2
∗
s−1dx.

Claim 1. There exist tε and t2 > 0 independent of ε and λ such that

t2 ≤ tε ≤ t1, Jλ(tεuε,η) = sup
t≥0

Jλ(tuε,η),
d

dt
Jλ(tuε,η)|t=tε = 0, (3.23)

where t1 is given in Lemma 3.7. Since λ ∈ (0, λ3), from Lemma 3.1 we have

0 < α < α− c+λ ≤ c
−
λ − c

+
λ ≤ sup

t≥0
Iλ(u1 + tuε,η)− c+λ ≤ Jλ(tεuε,η),

which implies t2 ≤ tε for some t2 > 0.
To find the estimate of supt≥0 Jλ(tuε,η), we define

h(t) =
at2

2
‖uε,η‖2 −

t2
∗
s

2∗s

∫
Bρ(0)

g|uε,η|2
∗
sdx.

By (3.19) and Lemma 3.6, we obtain

sup
t≥0

h(t) ≤ s

N
(aS)

N
2s +O

(
εN−2s

)
. (3.24)
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From (3.23), (3.24) and Lemmas 3.6 and 2.7, we deduce that

Jλ(tuε,z) ≤
s

N
(aS)

N
2s + bCm‖u1‖2m + bDmt

2m
1 ‖uε,η‖2m +O

(
εN−2s

)
+ Ctq1|f−|∞|uε,η|qq − Ct

2∗
s−1

2

∫
Bρ(0)

|u1||uε,η|2
∗
s−1dx

≤ s

N
(aS)

N
2s +O(εN−2s) + Cbλ

2m
2−q + Cb+ Cε

q(N−2s)
2 − Cε

N−2s
2

≤ s

N
(aS)

N
2s + Cbλ

2m
2−q + Cb− Cε

N−2s
2

0

(3.25)

for some ε0 > 0. Thus, there exist two positive numbers Λ∗ ∈ (0,Λ0] and b̄ > 0
such that for any λ ∈ (0,Λ∗) and b ∈ (0, b̄) it holds

Cbλ
2m
2−q + Cb+Dλ

2
2−q < Cε

N−2s
2

0 .

Combining this and (3.22)-(3.25) and by Lemma 3.8, we arrive at the desired result.
�

Proof of Theorem 1.1. Clearly, (i) follows from Proposition 3.5. (ii) Let λ ∈ (0,Λ∗).
From Proposition 3.5 and Lemma 3.7, we obtain u1 ∈ A1 and u1 + t1uε,η ∈ A2. We
define a path γ(s) = u1 +st1uε,η for s ∈ [0, 1]. Since γ(0) ∈ A1 and γ(1) ∈ A2, there
exists s ∈ (0, 1) such that u1 + st1uε,η ∈ N−λ , which implies c−λ ≤ supt≥0 Iλ(u1 +

tuε,η). According to Lemma 3.8, we obtain c−λ < c∗λ for any λ ∈ (0,Λ∗) and

b ∈ (0, b̄). In view of Corollary 2.8, N−λ is a closed set. By Proposition 3.5, there

exists u2 ∈ N−λ such that I ′λ(u2) = 0 and Iλ(u2) = c−λ . This indicates that u2 is
also a positive solution to problem (1.1). �

Proof of Theorem 1.2. (i) From Lemma 2.5, we obtain N+
λ = Nλ and define cλ =

infu∈Nλ Iλ(u). It is clear that cλ < 0. By Proposition 3.5, there exists a (PS)cλ
sequence {un} ⊂ N+

λ for Iλ. It follows from Lemma 2.2 that {un} is bounded in E0.
Hence, up to a subsequence, there is u ∈ E0 satisfying (3.9). Denote vn = un − u,
for b ≥ 1/Sm. Then ∫

Ω

g(x)|u|2
∗
sdx− b‖u‖2m < 0.

Combining this (3.11) and (3.12) yields

a‖vn‖2 ≤ a‖vn‖2 + b‖u‖2(m−1)‖vn‖2 + b‖vn‖2m −
∫

Ω

g(x)|u|2
∗
sdx = on(1),

which implies un → u in E0. According to Proposition 3.5, we see that u is a
positive solution to problem (1.1).

The proof of (ii) is similar to that of Theorem 1.1, so we omit it. �

4. Proof of Theorem 1.3

In this section, we assume that m > N
N−2s , f− ≡ 0 and condition (A1) holds.

Let us start with a compactness result.

Lemma 4.1. Iλ satisfies the (PS) condition if

c < c∗λ,b :=
s

N
(aS)

N
2s −D1b−D2λ

2
2−q .
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Proof. Let {un} be a (PS)c sequence satisfying (3.2). We claim that {un} is
bounded in E0. By way of contradiction, we assume that there is a subsequence of
the original sequence such that ‖un‖ → ∞, as n → ∞. We define wn = un/‖un‖.
By the Sobolev and Hölder’s inequalities, we obtain∫

Ω

g(x)|wn|2
∗
sdx ≤ S−2∗

s/2 and

∫
Ω

λf(x)|wn|qdx ≤ λS−q/2|f |q∗ .

Therefore,

c+ on(1)

‖un‖2∗
s

=
a

2

‖un‖2

‖un‖2∗
s

+
b

2m

‖un‖2m

‖un‖2∗
s
− 1

q

∫
Ω
λf(x)|u|qdx
‖un‖2∗

s
− 1

2∗s

∫
Ω

g(x)|wn|2
∗
sdx

≥ b

2m
‖un‖2m−2∗

s − S−2∗
s/2

2∗s
+ on(1)→∞.

In view of m > N/(N − 2s), this yields a contradiction.
Hence, up to a subsequence, there exists u ∈ E0 satisfying (3.9). Similar to the

proof of Lemma 3.4, setting vn = un−u, we can suppose that limn→∞ ‖vn‖ = d1 >
0. Using Hölder’s inequality, (3.15) and m > N

N−2s , we deduce that

c = lim
n→∞

(
Iλ(un)− 1

2∗s
〈I ′λ(un), un〉

)
= lim
n→∞

{as
N
‖un‖2 −

( 1

2∗s
− 1

2m

)
b‖un‖2m −

(1

q
− 1

2∗s

)
λ

∫
Ω

f |un|qdx}

≥ as

N
d2

1 +
as

N
‖u‖2 −D1b−

(1

q
− 1

2∗s

)
λ|f |q∗‖u‖q

≥ s

N
(aS)

N
2s −D1b−D2λ

2
2−q ,

where D1 = D1(N,m, s) and D2 = D2(N, q, S, a, |f |q∗). This contradicts the hy-
pothesis of c < c∗λ,b.. �

Lemma 4.2. There exist λ5 > 0 and r > 0 such that for any λ ∈ (0, λ5) it holds

inf
u∈E0,‖u‖=r

Iλ(u) = α̃ > 0.

In particular, when λ = 0, there exists an r0 > r such that I0(u) > 0 for all
u ∈ Br0\{0}.

Proof. For u ∈ E0, we have

Iλ(u) =
a

2
‖u‖2 +

b

2m
‖u‖2m − 1

q

∫
Ω

λf(x)|u|qdx− 1

2∗s

∫
Ω

g(x)|u|2
∗
sdx

≥ a

2
‖u‖2 − λ|f |q∗

qSq/2
‖u‖q − 1

2∗sS
2∗
s/2
‖u‖2

∗
s

≥
(a

2
‖u‖2−q − λ|f |q∗

qSq/2
− 1

2∗sS
2∗
s/2
‖u‖2

∗
s−q
)
‖u‖q.

(4.1)

We define

l(t) =
a

2
t2−q − 1

2∗s
S−2∗

s/2t2
∗
s−q

for t ≥ 0. In view of 2 < 2∗s, for each u ∈ E0 with

‖u‖ = r :=
[a2∗sS

2∗
s/2(2− q)

2(2∗s − q)
]1/(2∗

s−2)
,
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we obtain maxt≥0 l(t) = l(r) > 0. Thus, by taking

λ < λ5 =
l(r)q

S−q/2|f |q∗
,

we obtain

Iλ(u) ≥
(
l(r)− λ |f |q

∗

qS2/q

)
rq =: α̃ > 0.

When λ = 0, from (4.1), there exists an r0 = [(2∗s − q)/(2 − q)]1/(2
∗
s−2)r > r such

that I0(u) > 0 for u ∈ Br0\{0}. �

Lemma 4.3. Let λ5 be given in Lemma 4.2. Then there exist two positive constants
b1 and 0 < λ6 ≤ λ5 such that for each b ∈ (0, b1) and λ ∈ (0, λ6), problem (1.1)
admits a positive solution ub with Iλ(ub) < 0.

Proof. It follows from Lemma 4.2 that there is an r > 0 such that Iλ(u) ≥ 0 for
‖u‖ = r. For u ∈ E0\{0} and t > 0 sufficiently small, we have

Iλ(tu) =
at2

2
‖u‖2 +

bt2m

2m
‖u‖2m − tq

q

∫
Ω

λf(x)|u|qdx− t2
∗
s

2∗s

∫
Ω

g(x)|u|2
∗
sdx < 0.

Thus, we obtain

mλ := inf{Iλ(u) : u ∈ B̄r} < 0. (4.2)

By Ekeland’s variational principle [9], there exists a minimizing sequence {un} ⊂
B̄r such as

Iλ(un)→ mλ, ‖I ′λ(un)‖E−1
0
→ 0,

as n→∞. On the other hand, it is easy to see that there exist b1 > 0 and λ6 ≤ λ5

such that

c∗λ,b > 0, b ∈ (0, b1), λ ∈ (0, λ6),

where c∗λ,b is given in Lemma 4.1. It follows from (4.2) and Lemma 4.1 that there

exists ub ∈ E0 such that un → ub, i.e. ub is a nontrivial solution of problem (1.1).
By Proposition 3.5, we see that ub is a positive solution of (1.1). �

Lemma 4.4. Let r and b1 be given in Lemmas 4.2 and 4.3, respectively. Then there
exist 0 < b2 ≤ b1 and e1 ∈ E0 with ‖e1‖ > r such that Iλ(e1) < 0 for b ∈ (0, b2).

Proof. If b = 0, we consider the functional Iλ denoted by

Iλ,0(tuε,η) =
at2

2
‖uε,η‖2 −

tq

q

∫
Bρ(0)

λf(x)|uε,η|qdx−
t2

∗
s

2∗s

∫
Bρ(0)

g(x)|uε,η|2
∗
sdx.

Recalling Fatou’s Lemma and Lemma 3.6 (iii), we can see that for small ε > 0 it
holds

lim
t→∞

Iλ,0(tuε,η)

t2
∗
s

≤ − 1

2∗s
S
N
2s + CεN < 0.

Namely, there exists a large T > 0 satisfying ‖Tuε,η‖ > r and Iλ,0(Tuε,η) < 0.
Since Iλ(Tuε,η) → Iλ,0(Tuε,η) as b → 0+, we deduce that there exists 0 < b2 ≤ b1
such that Iλ(Tuε,η) < 0 for any b ∈ (0, b2). �

Lemma 4.5. Let λ6 and b2 be given in Lemmas 4.3 and 4.4, respectively. Then
there exists αb < 0 such that for any b ∈ (0, b2) it holds

αb ≤ m̄λ := inf{Iλ(u) : u ∈ E0} < 0.
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Furthermore, for any b ∈ (0, b2) and λ ∈ (0, λ6), problem (1.1) admits a positive
solution uλ with Iλ(uλ) = m̄λ.

Proof. Note that

Iλ(u) =
a

2
‖u‖2 +

b

2m
‖u‖2m − 1

q

∫
Ω

λf(x)|u|qdx− 1

2∗s

∫
Ω

g(x)|u|2
∗
sdx

≥ b

2m
‖u‖2m − 1

q
λ|f |q∗S−q/2‖u‖q −

1

2∗s
S−

2∗s
2 ‖u‖2

∗
s .

Let

Ā =
2mλ|f |q∗
bqSq/2

, B̄ =
2m

2∗sbS
2∗
s/2

, ΦĀ,B̄(t) = t2m − Ātq − B̄t2
∗
s .

From [22, Lemm 2.3], for any b > 0 there exist t3, t4 > 0 such that

αb = min
t≥0

ΦĀ,B̄(t) = ΦĀ,B̄(t3) < 0

and ΦĀ,B̄(t) ≥ 0 for t ≥ t4. While, by Lemma 4.4, it is easy to see that for any
b ∈ (0, b2) it holds

m̄λ := inf{Iλ(u) : u ∈ E0} < 0. (4.3)

Then using a similar strategy of Lemma 4.3, we obtain that uλ is a positive solution
of problem (1.1) . �

To obtain two distinct solutions to (1.1), we need to show that the infimum
m̄λ < mλ.

Lemma 4.6. There exists 0 < λ7 ≤ λ6 such that m̄λ < mλ for b ∈ (0, b2) and
λ ∈ (0, λ7).

Proof. For λ = 0, let m0 be given as in (4.3). So, for any b ∈ (0, b2), problem (1.1)
admits a positive solution u0,b satisfying I0(u0,b) = m0 := inf{I0(u) : u ∈ E0} < 0.
Taking into account f− = 0, we deduce

m̄λ ≤ Iλ(u0,b) = I0(u0,b)− λ
∫

Ω

f |u0,b|qdx = m0 − λ
∫

Ω

f |u0,b|qdx ≤ m0. (4.4)

In view of Lemma 4.2 and (4.2), we have mλ → 0 as λ → 0. Then, there exists
0 < λ7 ≤ λ6 such that m0 < mλ for any b ∈ (0, b2) and λ ∈ (0, λ7). Combining this
and (4.4), we arrive at the desired result. �

It follows from Lemmas 4.2 and 4.4 that Iλ has the mountain pass geometry.
Using the mountain pass theorem [24], there exists a (PS)cλ,b sequence {un} ⊂ E0,
that is

Iλ(un)→ cλ,b, ‖I ′λ(un)‖E−1
0
→ 0.

We note that cλ,b has the characteristic property

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where
Γ := {γ ∈ C([0, 1], E0) : γ(0) = ub, γ(1) = ub + Tuε,η}.

Similar to Lemma 3.8, we can obtain the following lemma.

Lemma 4.7. There exist 0 < Λ∗ ≤ λ7 and 0 < b∗ ≤ b2 such that for any λ ∈ (0,Λ∗)
and b ∈ (0, b∗) it holds

cλ,b ≤ sup
t≥0

Iλ(ub + tuε,η) < c∗λ,b.



20 J. YANG, H. B. CHEN, Z. FENG EJDE-2020/101

Proof of Theorem 1.3. By Lemmas 4.2 and 4.4, it is easy to see that Iλ has the
mountain pass geometry. i.e. there exists a bounded (PS)cλ,b sequence {un}. It
follows from Lemmas 4.1 and 4.7 that, up to a subsequence, there exists uλ,b ∈ E0

such that Iλ(uλ,b) = cλ,b > 0. By Lemmas 4.3 and 4.5 and 4.6, problem (1.1)
admits three positive solutions ub, uλ and uλ,b. �
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