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GENERALIZED VISCOUS CAHN-HILLIARD TYPE EQUATIONS
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Abstract. We study the well-posedness of the generalized viscous Cahn-

Hilliard equation with nonlinear source term. Then, we analyze the singu-
lar limits when the relaxed terms vanish. In the sense of Young measures,

we obtain the measure-valued solution of a forward-backward parabolic type

equation.

1. Introduction

We study the forward-backward parabolic problem

ut = ∆ϕ(u) + f(u) in Ω× (0, T ) =: QT

u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,
(1.1)

by considering the limit of solutions of the generalized viscous Cahn-Hilliard prob-
lems

ut = ∆[ϕ(u)− ε∆u+ δut] + f(u) in Ω× (0, T ) =: QT

u = ∆u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0}
(1.2)

where Ω is a smooth bounded subset of RN (N ≤ 3), ε > 0, and δ > 0. We use the
the following assumptions:

(H1) ϕ ∈ C2(R), ϕ(0) = 0, f ∈ C1(R), f(0) = 0;
(H2) ϕ′(s) ≥ −C0, C0 ≥ 0;
(H3) ϕ(s)s ≥ C1Φ(s)− C2 ≥ −C3 where C1, C2, C3 ≥ 0 and

Φ(s) =

∫ s

0

ϕ(r)dr; (1.3)

(H4) There exist C1 > 0, C2 ∈ R such that

f2(s) ≤ C1Φ(s) + C2;

2010 Mathematics Subject Classification. 35B25, 35K55, 35R25, 28A33, 35D99.
Key words and phrases. Generalized Cahn-Hilliard equation; singular limits;

forward-backward parabolic equations; Young measure.
c©2020 Texas State University.

Submitted July 7, 2019. Published January 13, 2020.

1



2 B. L. T. THANH, N. N. Q. THUONG EJDE-2020/07

(H5) There exist a δ > 0 such that for all u ∈ L2(Ω),

‖f(u)‖‖u‖ ≤ δ
∫

Ω

Φ(u)dx+ Cδ;

(H6) There exist C1, C2 > 0 such that

‖f ′(u)‖2 ≤ C1

∫
Ω

Φ(u)dx+ C2,

where ‖ · ‖ denotes the usual norm in L2(Ω).

Note that when ε = 0 and δ = 0, problem (1.2) becomes (1.1). Letting ε > 0 and
δ = 0 in (1.2) leads to the generalized Cahn-Hilliard equation

ut = ∆[ϕ(u)− ε∆u] + f(u). (1.4)

Depending on the choice of f , we get the corresponding equation which was
widely investigated in the literature. For example, in the case f(s) = −cs with
c > 0, equation (1.4) is known as the Cahn-Hilliard-Oono equation which is an
application in the phase separation process (see [14]). If f(s) = αs(1 − s) and
α > 0, then (1.4) has an application in biology, in particular, in models wound
healing and tumor growth (see [10]). The well-posedness of equation (1.4) was
studied in [12] with the Dirichlet boundary condition, and in [6] with the Neumann
boundary condition. In these articles, they also gave the asymptotic behavior of
solution in terms of finite-dimensional attractors.

The case ε = 0 and δ > 0 leads to the equation

ut = ∆[ϕ(u) + δut] + f(u). (1.5)

This equation arises as a model for populations with the tendency to form groups
which was studied by Padron (see [15]). The model of aggregating population with
a migration rate determined by ϕ, and total birth and mortality rates characterized
by f . He showed that the aggregating mechanism induced by ϕ allows the survival
of a species in danger of extinction. For more information on the application of
equation (1.5), we refer to [15] and the references therein.

Now taking into account ε = 0 in equation (1.4) or δ = 0 in equation (1.5), we
obtain the forward-backward parabolic type equation

ut = ∆ϕ(u) + f(u). (1.6)

This equation has a variety of applications in biology such as aggregating popula-
tions (see [8, 11, 7] and references therein). In aggregation of population models,
the nonlinearity ϕ may be increasing or decreasing therefore, the standard initial
boundary value problems for (1.6) are in general ill-posed. That is the reason for
studying the regularized problem of equation (1.6) by adding some regular terms. It
is worth to mention that in the case of vanishing source term, the forward-backward
parabolic equation

ut = ∆ϕ(u) (1.7)

has no weak solution if the general initial data is considered. Often a higher order
term is added to the right-hand side to regularize the equation. There are mainly
two classes of additional terms which can be found in the mathematical literature,
which, e.g. in case of equation (1.7) reduce to:

(i) ε∆[ψ(u)]t, with ψ′ > 0, leading to third order pseudo-parabolic equations
(ε > 0 being a small parameter; see for example [1, 13, 17]);
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(ii) −ε∆2u, leading to fourth-order Cahn-Hilliard type equations (see for ex-
ample [16, 18] and references therein).

It is remarkable, taking advantage of the cubic-like growth of ϕ at infinity, which
gives rise to better estimates of the family {uε} of solutions of the regularized
problem, they proved the existence of solutions in the sense of Young measures.
Moreover, it is worthy to mention that the Cahn-Hilliard equation with a loga-
rithmic nonlinear term has been investigated by many authors (see [5, 4, 3] and
references therein). In all these references, the logarithmic potential is approx-
imated by regular ones. Then, when passing to the limit in the approximated
problems, it is difficult to prove that the limit of the order parameter remains in
(−1, 1). We refer readers to the survey [2] for more applications and other aspects
of the Cahn-Hiliard equation.

In light of the above considerations, we first prove the existence and uniqueness
of solution of problem (1.2) by Galerkin approximation and compactness method
which are the same approaches as in [12, 6]. Secondly, we give the rigorous analysis
of the convergence of a family {uε,δ} of solutions of (1.2) as δ → 0 to obtain the
existence of solution of (1.1). Finally, we investigate the convergence of a family
{uε} of solutions of (1.1). Because of lacking of the compactness, we prove the
appearance of measure-valued solution of (1.1). Actually, taking of the advantage
of the growth of nonlinearities ϕ, f , we only have the L2 uniform bounded estimate
on solutions. Our approach is almost the same as in [18, 16].

Remark 1.1. If we choose ϕ(u) = u3 − u and f(u) = αu(1− u) with α > 0, then
ϕ, f will satisfy the assumptions (H1)–(H6). The choice of ϕ, f is widely used in
the literature.

This article is organized as follows: we introduce our problem and some assump-
tions in Section 1, we study the well-posedness of problem (1.2) in Section 2 and
give the rigorous convergence of the solutions of (1.2) as δ vanishing in Section 3.
Finally, we investigate the existence of measure-valued solution of (1.1) in Section
4.

2. Well-posedness of problem (1.2)

In what follows, the symbols c, c′, c′′, ci (i ≥ 0) will denote positive constants and
may vary from line to line. Q : R+ → R+ will be a positive increasing monotone
function and may also vary from line to line or even in a same line.

2.1. Mathematical formulation and results. In this section, we study the well-
posedness of problem (1.2). By setting A := −∆, the first equation of problem (1.2)
is written in the form

ut +A
(
ϕ(u) + εAu+ δut

)
− f(u) = 0. (2.1)

Operator A : D(A) → L2(Ω) is a strictly positive self-adjoint linear with compact
inverse on L2(Ω), and domain D(A) = H2(Ω) ∩H1

0 (Ω). In this article, we denote(
·, ·
)

as an usual scalar product in L2(Ω) and set ‖ · ‖−1 = ‖A−1/2 · ‖. In general,
we introduce the family of Hilbert spaces

H2s = D(As), ∀s ∈ R
with scalar products

((u, v))2s := (Asu,Asv), ∀u, v ∈ Hs.
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Definition 2.1. For any interval (0, T ), a function uε,δ(x, t) = u(x, t) is called a
solution of problem (1.2) if (u, ut) ∈ L∞(0, T ;D(A)× L2(Ω)) and

ut +A (ϕ(u) + εAu+ δut)− f(u) = 0 in D(A−1), a.e. t ∈ (0, T ),

and
u(0) = u0(x) ∈ D(A), for a.e. x ∈ Ω.

Theorem 2.2. Let assumptions (H1)–(H6) hold and u0 ∈ H2(Ω) ∩H1
0 (Ω). Then

problem (1.2) admits a unique global solution as in definition 2.1. Moreover, let
u1, u2 be two solutions of (1.2) with initial data u0,1 and u0,2 respectively, then
there exists a constant c ≥ 0 such that

‖u1(t)− u2(t)‖2−1 + δ‖u1(t)− u2(t)‖2

≤ ectQ(‖u0,1‖H2 , ‖u0,2‖H2)(‖u0,1 − u0,2‖2−1 + δ‖u0,1 − u0,2‖2)

for any t ≥ 0.

Proof of Theorem 2.2. We first prove the uniqueness of solution of (1.2). Let u1, u2

be two solutions of (1.2) with initial data u0,1 and u0,2 respectively. We set u =
u1 − u2 and u0 = u0,1 − u0,2 and then u satisfies

ut +A
(
ϕ(u1)− ϕ(u2) + εAu+ δut

)
− f(u1) + f(u2) = 0,

u = ∆u = 0 on ∂Ω,

u(x, 0) = u0(x).

(2.2)

We multiply (2.2) by A−1u and we have

1

2

d

dt

(
‖A−1/2u‖2 + δ‖u‖2

)
+ ε‖A1/2u‖2 +

(
ϕ(u1)− ϕ(u2), u

)
−
(
f(u1)− f(u2), A−1u

)
= 0.

(2.3)

Note that from (H2),

(ϕ(u1)− ϕ(u2), u) ≥ −C0‖u‖2.
Furthermore,∣∣(f(u1)− f(u2), A−1u

)∣∣ ≤ ∫
Ω

|A−1u||u|
∫ 1

0

|f ′(su1 + (1− s)u2)| ds dx

≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)‖A−1u‖∞‖u‖
≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)‖u‖2

thank to the continuous embedding H2 ⊂ C(Ω̄). Therefore,

d

dt

(
‖A−1/2u‖2 + δ‖u‖2

)
+ ε‖A1/2u‖2 ≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)‖u‖2. (2.4)

From ‖u‖2 =
(
A−1/2u,A1/2u

)
and Young’s inequality, we have

d

dt

(
‖A−1/2u‖2 + δ‖u‖2

)
+ ε‖A1/2u‖2

≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)(‖A−1/2u‖2 + δ‖u‖2).
(2.5)

By Gronwall’s lemma we obtain

‖u1(t)− u2(t)‖2−1 + δ‖u1(t)− u2(t)‖2

≤ ectQ(‖u0,1‖H2 , ‖u0,2‖H2)(‖u0,1 − u0,2‖2−1 + δ‖u0,1 − u0,2‖2)
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for any t ≥ 0, c ≥ 0. We have the uniqueness and the continuous dependence with
respect to initial data. �

The existence result relies on a standard approximation - a priori estimates and
passage to the limit procedure. The Faedo-Galerkin scheme is as follows. Since A−1

is compact and self-adjoint operator on L2(Ω), there exists an orthonormal basis
of L2(Ω) consisting of eigenvectors {ei} of A and the corresponding eigenvalues λi
with Dirichlet boundary condition; that is,

Aei = λiei, for i = 1, 2, . . .

and 0 < λ1 < λ2 ≤ · · · ≤ λk → ∞. It is easy to check that {λ−1/2
i ei} is an

orthonormal basis of H1
0 (Ω). For any integer number n ≥ 1, let

Vn := span{e1, . . . , en}.

We state the approximating problem as follows.

Problem Pn: Find tn > 0 and ui ∈ C2([0, tn]) for i = 1, · · · , n such that

un :=

N∑
i=1

ui(t)ei(x),

belongs to C2([0, tn], D(A)) and satisfies

〈unt , v〉+ 〈ϕ(un) + εAun + δunt , Av〉 − 〈f(un), v〉 = 0, ∀v ∈ Vn, (2.6)

un(0) = un0 , (2.7)

where un0 ∈ Vn such that un0 → u0 in D(A).
Problem Pn consist of a n-dimensional system of nonlinear ordinary differential

equations. By the Cauchy-Lipschitz Theorem, there exists a unique local in time
solution un in the maximal interval [0, T ∗). We now derive some a priori estimates
that will permit us to prove the existence result by passage the limit as n→∞. The
procedure is standard and so we only give a priori estimates in the next subsection.

2.2. A priori estimates. We multiply the first equation of (1.2) (2.1) by A−1u,
and integrate over Ω and by parts to obtain

1

2

d

dt

(
‖u‖2−1 + δ‖u‖2

)
+
(
ϕ(u), u

)
+ ε‖A1/2u‖2 −

(
f(u), A−1u

)
= 0. (2.8)

Thank to assumptions (H3) and (H5), we have

1

2

d

dt

(
‖u‖2−1 + δ‖u‖2

)
+ ε‖A1/2u‖2 + c1

∫
Ω

Φ(u)dx ≤ ‖f(u)‖‖u‖+ c2,

d

dt

(
‖u‖2−1 + δ‖u‖2

)
+ c
(
ε‖u‖2H1 +

∫
Ω

Φ(u)dx
)
≤ c′, c > 0.

(2.9)

Multiplying (2.1) by u and integrating over Ω, we obtain

1

2

d

dt

(
‖u‖2 + δ‖A1/2u‖2

)
+ ε‖Au‖2 + (ϕ′(u)∇u,∇u)− (f(u), u) = 0. (2.10)

Thank to (H2) and (H5), we have

1

2

d

dt

(
‖u‖2 + δ‖A1/2u‖2

)
+ ε‖Au‖2 ≤ c0‖A1/2u‖+ ‖f(u)‖‖u‖. (2.11)
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Therefore,

d

dt

(
‖u‖2 + δ‖A1/2u‖2

)
+ cε‖u‖2H2 ≤ c1‖A1/2u‖+ c2

∫
Ω

Φ(u)dx+ c3, (2.12)

with c > 0. Finally, we take sum of (2.9) and (2.12) times δ1 > 0, where δ1 is small
enough, to obtain

d

dt

(
‖u‖2−1 + δ‖u‖2 + δ1‖u‖2 + δ1δ‖A1/2u‖2

)
+ c
(
ε‖u‖2H2 +

∫
Ω

Φ(u)dx
)
≤ c′, c > 0.

(2.13)

Note that from (2.13) and Gronwall’s lemma, we have

‖u(t)‖2−1 + δ‖u(t)‖2 + δ1‖u(t)‖2 + δ1δ‖A1/2u(t)‖2 ≤ e−ctQ(‖uo‖H1
0
) + c′, (2.14)

for t > 0 with c > 0. Multiplying equation (2.1) by Au and integrating over Ω, we
have

(ut + δAut, Au) + ε‖A3/2u‖2 + (Aϕ(u)− f(u), Au) = 0. (2.15)

By Holder’s inequality,

1

2

d

dt

(
‖A1/2u‖2 + δ‖Au‖2

)
+ ε‖A3/2‖2 ≤ c

(
‖Aϕ(u)‖2 + ‖f(u)‖2

)
. (2.16)

Since H2(Ω) ⊂ C(Ω̄) with continuous embedding as N ≤ 3 and ϕ, f ∈ C2(R),

‖Aϕ(u)‖2 + ‖f(u)‖2 ≤ Q(‖u‖H2).

Thus,
d

dt

(
‖A1/2u‖2 + δ‖Au‖2

)
≤ Q(‖A1/2u‖2 + δ‖Au‖2). (2.17)

Let y be the solution to the ordinary differential equation

y′ = Q(y), y(0) = ‖A1/2u0‖2 + δ‖Au0‖2.
Then by the comparison principle, there exists a time T ∗ = T ∗(‖u0‖H2) > 0 such
that

‖A1/2u(t)‖2 + δ‖Au(t)‖2 ≤ y(t), t ≤ T ∗.
In summary we have

δ‖u(t)‖H2 ≤ Q(‖u0‖H2
), ∀t ≤ T ∗. (2.18)

Multiplying (2.1) by A−1ut and have

ε

2

d

dt
‖A1/2u‖2 + ‖ut‖2−1 + δ‖ut‖2 + (ϕ(u), ut)−

(
f(u), A−1ut

)
= 0, (2.19)

which, by (2.18) and Holder’s inequality, for t ≤ T ∗ yields

ε

2

d

dt
‖A1/2u‖2 + ‖ut‖2−1 + δ‖ut‖2 ≤ c

(
‖ϕ(u)‖2H1 + ‖f(u)‖2

)
≤ Q(‖u‖H2) ≤ Q(‖u0‖H2).

(2.20)

Therefore,

ε‖A1/2u(t)‖2 +

∫ T∗

0

‖ut‖2−1 + δ‖ut‖2ds ≤ Q(‖u0‖H2), t ≤ T ∗. (2.21)

Differentiating (2.1) with respect to time and setting v = ut we have

A−1vt + δvt + εAv + ϕ′(u)v −A−1(f ′(u)v) = 0. (2.22)
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Multiplying (2.22) by tv, for t ≤ T ∗ we obtain

d

dt

(
t‖v‖2−1 + δt‖v‖2

)
+ εt‖A1/2v‖2 ≤ Q(‖u0‖H2)(t‖v‖2) + ‖v‖2−1 + δ‖v‖2. (2.23)

Noting that ‖v‖2 ≤ c‖v‖−1‖A1/2v‖, we have

d

dt

(
t‖v‖2−1 + δt‖v‖2

)
≤ Q(‖u0‖H2)(t‖v‖2 + δt‖v‖2) + ‖v‖2−1 + δ‖v‖2. (2.24)

Integrate (2.24) over (0, t) with t ≤ T ∗; then thanks to (2.21) we have

t‖v‖2−1 + δt‖v‖2 ≤ c
∫ t

0

(s‖v‖2 + δs‖v‖2)ds+

∫ t

0

‖v‖2−1 + δ‖v‖2ds (2.25)

≤ c
∫ t

0

(s‖v‖2 + δs‖v‖2)ds+Q(‖u0‖H2). (2.26)

By Gronwall’s inequality,

‖v‖2−1 + δ‖v‖2 ≤ 1

t
Q(‖u0‖H2), 0 < t ≤ T ∗. (2.27)

We now multiply (2.22) by v to have

d

dt

(
‖v‖2−1 + δ‖v‖2

)
+ 2ε‖A1/2v‖+ 2 (ϕ′(u)v, v) ≤ 2|

(
A−1(f ′(u)v), v

)
|. (2.28)

Thank to (H2), Young’s inequality and ‖f ′(u)‖ ≤ c1
∫

Φ(u)dx+ c2, we have

d

dt

(
‖v‖2−1 + δ‖v‖2

)
+ 2ε‖A1/2v‖ ≤ c0‖v‖2 + c‖f ′(u)‖‖v‖−1‖A1/2v‖

≤
(
c1

∫
Φ(u)dx+ c2

) (
‖v‖2−1 + δ‖v‖2

)
.

(2.29)

From (2.9), we have ∫ t

0

∫
Ω

Φ(u) dx ds ≤ c‖u0‖2 + c′t+ c′′. (2.30)

Using Gronwall’s inequality and (2.29) we have

‖v‖2−1 + δ‖v‖2 ≤
(
‖v(T ∗)‖2−1 + δ‖v(T ∗)‖2

)
e
∫ t
0
dt

∫
Ω
c1Φ(u)dx+c2 . (2.31)

Thanks to (2.27), we have

‖v‖2−1 + δ‖v‖2 ≤ ectQ(‖u0‖H2), t ≥ T ∗. (2.32)

Again rewritten our equation (2.1) in the following form

εAu+ ϕ(u)−A−1f(u) = −A−1v − δv := h. (2.33)

It is clearly that from (2.32)

‖h‖ ≤ ectQ(‖u0‖H2), ∀t ≥ T ∗.
Multiplying (2.33) by u and integrating over Ω, we have

ε‖A1/2u‖2 + (ϕ(u), u) ≤ ‖h‖‖u‖+ ‖f(u)‖‖u‖. (2.34)

This implies

ε‖A1/2u‖2 + c

∫
Ω

Φ(u)dx ≤ ectQ(‖u0‖H2
) + c′′. (2.35)

Multiplying (2.33) by Au and integrating over Ω, we have

ε‖Au‖2 + (ϕ′(u)∇u,∇u) ≤ ‖h‖‖Au‖+ ‖f(u)‖‖u‖. (2.36)
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This implies

ε‖Au‖2 ≤ ‖h‖2 + c0‖A1/2u‖2 + c1

∫
Ω

Φ(u)dx+ c2. (2.37)

Adding (2.29) and δ2 times (2.37), where δ2 is small enough, yields

ε‖u(t)‖2H2 ≤ ectQ(‖u0‖H2) + c′, ∀t ≥ T ∗, c ≥ 0. (2.38)

Combining this with (2.18), we obtain

ε‖u(t)‖2H2 ≤ ectQ(‖u0‖H2
) + c′, ∀t ≥ 0, c ≥ 0. (2.39)

From (2.13), we have

ε

∫ 1

0

‖u(t)‖H2dt ≤ c‖u0‖2H1 + c′, (2.40)

so that there exists a T ∈ (0, 1) such that

‖u(T )‖H2 ≤ c‖u0‖2H1 + c′. (2.41)

If we start from time t = T instead of t = 0, inequality (2.41) holds for T = 1, that
is,

‖u(1)‖H2 ≤ c‖u0‖2H1 + c′, c ≥ 0. (2.42)

Again from (2.13) and Gronwall’s lemma, we can prove that for any t ≥ 0,∫ t+1

t

‖u(s)‖H2ds ≤ e−ctQ(‖u0‖H1) + c′, c ≥ 0.

Hence for every t ≥ 1, there exists a t1 ∈ [t− 1, t] such that

‖u(t1)‖H2 ≤ e−ctQ(‖u0‖2H1) + c′, (2.43)

which implies, for t2 ∈ [0, 1], that t = t1 + t2. Thanks to (2.39) and (2.43),

‖u(t)‖2H2 = ‖u(t1 + t2)‖2H2

≤ ect2Q(‖u(t1)‖H2) + c′

≤ c1e−c2t2Q(‖u(t1)‖H2) + c3

≤ c1e−c2t2Q
(
e−c

′tQ′(‖u0‖2H2) + c′′
)

+ c3

≤ e−ctQ′(‖u0‖2H1) + c′,

that is,
‖u(t)‖H2 ≤ ectQ(‖u0‖H2) + c′, c > 0, t ≥ 0. (2.44)

3. Convergence of solutions of problem (1.2) as δ → 0

In this section, we study the well-posedness of problem (1.2) in the sense of
convergence of a family of solutions {uε,δ} of (1.2) as δ → 0.

Definition 3.1. Let T > 0, u0 ∈ H1
0 (Ω)∩H2(Ω), ε > 0, by a solution uε of (1.2), we

mean a function uε ∈ L∞(0, T ;H1
0 (Ω))∩L2(0, T ;H2(Ω)), uεt ∈ L∞(0, T ;H−1(Ω)),

ϕ(uε), f(uε) ∈ L2(QT ) such that∫ T

0

〈uεt, η〉ds+

∫ T

0

〈ϕ(uε) + εAuε, Aη〉ds−
∫ T

0

〈f(uε), η〉ds = 0, (3.1)

for any test function η ∈ C1(0, T ;H1
0 (Ω) ∩ H2(Ω)), and uε(x, 0) = u0(x) for a.e.

x ∈ Ω.
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Theorem 3.2. Let (H1)–(H6) hold, and u0 ∈ H2(Ω)∩H1
0 (Ω). Then problem (1.1)

admits a unique solution as in Definition 3.1.

Proof. We focus mainly on proving the existence result. Thanks to estimates (2.13),
(2.14), (2.21), (2.32) and (2.44), there exists a positive constant C independent of
δ such that

‖uε,δ‖L∞(0,T :H1
0 (Ω)) ≤ C, (3.2)

‖uε,δ‖L2(0,T :H2(Ω)) ≤ C, (3.3)

‖uε,δt‖L∞(0,T :H−1(Ω)) ≤ C, (3.4)
√
δ‖uε,δt‖L∞(0,T :L2(Ω)) ≤ C, (3.5)

By standard argument of compactness and Aubin-Lions Lemma, there exist a
function uε ∈ L∞(0, T ;H1

0 (Ω)) ∩ L2(0, T ;H2(Ω)), uεt ∈ L∞(0, T ;H−1(Ω)) and a
subsequence of {uε,δ} (still denote {uε,δ}) such that

• uε,δ converges weakly-star to uε in L∞(0, T ;H1
0 (Ω)),

• uε,δ converges weakly to uε in L2(0, T ;H2(Ω)),
• uε,δ converges strongly to uε in L2(QT ) and a.e. in QT ,
• uε,δt converges weakly-star to uεt in L∞(0, T ;H−1(Ω)).

Now we are ready to take limit δ → 0 in the weak formulation of solution uε,δ of
problem (1.2). For any η ∈ C1(0, T ;H1

0 ∩H2), T > 0, we have∫ T

0

〈uε,δt, η〉ds+

∫ T

0

〈ϕ(uε,δ)+εAuε,δ+δuε,δt, Aη〉ds−
∫ T

0

〈f(uε,δ), η〉ds = 0. (3.6)

Taking δ → 0 in (3.6), using above convergences of {uε,δ} and noting that∣∣ ∫ T

0

∫
Ω

δuε,δtη dx ds
∣∣ =

∣∣ ∫ T

0

∫
Ω

δ1/2δ1/2uεδtη dx ds
∣∣

≤ δ1/2‖δ1/2uε,δt‖L2(QT )‖η‖L2(QT )

≤ Cδ1/2 → 0 as δ → 0,

which yields the weak formulation (3.1) as in Definition 3.1. It is also easy to prove
that uε(x, 0) = u0(x) a.e. in Ω. Concerning the uniqueness, we first observe that
for a.e. t ∈ (0, T ),

〈uεt, η〉+ 〈ϕ(uε) + εAuε, Aη〉 − 〈f(uε), η〉 = 0 (3.7)

for any η ∈ H1
0 (Ω) ∩H2(Ω). Let u1, u2 be two solutions of (1.1) with initial data

u0,1 and u0,2 respectively. We set u = u1−u2 and u0 = u0,1 = u0,2 and then u1, u2

satisfy (3.7). We choose η = A−1u and subtract equations of u1 and u2 to obtain

1

2

d

dt
‖A−1/2u‖2 + ε‖A1/2u‖2 + (ϕ(u1)− ϕ(u2), u)−

(
f(u1)− f(u2), A−1u

)
= 0.

(3.8)
Note that from (H2)

(ϕ(u1)− ϕ(u2), u) ≥ −C0‖u‖2.
Furthermore,∣∣ (f(u1)− f(u2), A−1u

) ∣∣ ≤ ∫
Ω

|A−1u||u|
∫ 1

0

|f ′(su1 + (1− s)u2)| ds dx

≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)‖A−1u‖∞‖u‖
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≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)‖u‖2

by the continuous embedding H2 ⊂ C(Ω̄). And thus, we have

d

dt
‖A−1/2u‖2 + ε‖A1/2u‖2 ≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)‖u‖2. (3.9)

From ‖u‖2 =
(
A−1/2u,A1/2u

)
and Young’s inequality we have

d

dt

(
‖A−1/2u‖2

)
+ ε‖A1/2u‖2 ≤ Q(‖u0,1‖H2 , ‖u0,2‖H2)‖A−1/2u‖2. (3.10)

By Gronwall’s lemma we obtain

‖u1(t)− u2(t)‖2−1 ≤ ectQ(‖u0,1‖H2 , ‖u0,2‖H2)‖u0,1 − u0,2‖2−1

for any t ≥ 0, some c ≥ 0. We complete the proof of Theorem 3.2. �

4. Existence of measure-valued solution of problem (1.1)

Concerning the well-posedness of problem (1.2), we refer to Section 3 or to Alain
Miranville [12].

Set vε(x, t) = ϕ(uε(x, t)) − ε∆uε(x, t), then ut = ∆v + f(u). We state the
equivalence of problem (1.2), finding (uε, vε) of

uεt = ∆vε + f(uε) in Ω× (0, T ) =: QT

uε = vε = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0}
(4.1)

Theorem 4.1 (Well-posedness of (4.1)). Let (H1)–(H6) hold and u0 ∈ H2(Ω) ∩
H1

0 (Ω). Then problem (4.1) admits a unique global solution uε(·, t) ∈ H2(Ω) ∩
H1

0 (Ω), vε ∈ L2((0, T ), H1
0 (Ω)∩H2(Ω)), uεt ∈ L2(QT ) for all t ≥ 0 in strong sense.

Proposition 4.2 (A priori estimates). Let (H1)–(H6) hold and
∫

Ω
Φ(u0)dx < ∞.

Then the family of solutions {uε, vε}ε>0 which are guaranteed by Theorem 4.1 sat-
isfy the following inequalities

‖uε(·, t)‖L2(Ω) ≤ C, ∀t ∈ [0, T ], (4.2)∫
Ω

ε|∇uε(x, t)|2dx ≤ C, ∀t ∈ [0, T ], (4.3)

‖vε‖L2(0,T ;H1
0 (Ω)) ≤ C (4.4)

where C is a positive constant independent of ε.

Next we prove the existence of Young measure solutions of problem (1.1) in
the sense of the following definition. For the definition and properties of Young
measure, we refer to [19].

Definition 4.3. Let N ≤ 3, u0 ∈ H1
0 (Ω). By a Young measure solution of problem

(1.1) in QT we mean a triplet (u, v, τ) such that:

(i) u ∈ L2(QT ), ut ∈ L2((0, T ), H−1(Ω));
(ii) v ∈ L2((0, T );H1

0 (Ω)), τ ∈ Y(QT ;P(R));
(iii) for almost every (x, t) ∈ QT it holds

u(x, t) = 〈τ(x,t), id 〉R =

∫
R
ξ dτ(x,t)(ξ) , (4.5)

where id(ξ) := ξ (ξ ∈ R) and τ(x,t) ∈ P(R) denotes the disintegration of τ ;
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(iv) for any ζ ∈ C1([0, T );C1
c (Ω)) and t ∈ (0, T )∫ t

0

∫
Ω

[
u ζs −∇v · ∇ζ + f∗ζ

]
(x, s) dx ds

=

∫
Ω

u(x, t)ζ(x, t) dx−
∫

Ω

u0(x) ζ(x, 0) dx ,

(4.6)

where v(x, t) and f∗ satisfy

v(x, t) = ϕ∗(x, t) := 〈τ(x,t), ϕ〉R =

∫
R
ϕ(ξ) dτ(x,t)(ξ), (4.7)

f∗(x, t) := 〈τ(x,t), f〉R =

∫
R
f(ξ) dτ(x,t)(ξ) (4.8)

for almost every (x, t) ∈ QT .

A Young measure solution of problem (1.1) in Q∞, which exists in QT for any
T ∈ (0,∞), is said to be global.

Proposition 4.4. Let assumptions in Theorem 4.1 hold. Then there exist functions
(u, v) ∈ L2(QT )×L2(0, T ;H1

0 (Ω)) and subsequences {uεk}, {vεk} of {uε}, {vε} (still
denote {uε}, {vε} for convenience) such that:

(i) uε converges weakly to u in L2(QT );
(ii) vε converges weakly to v in L2(0, T ;H1

0 (Ω));
(iii) The sequence of Young measure {τk} associated with the sequence {uεk}.

There exists a Young measure τ such that

τk → τ narrowly in the sense of Definition 5.5;

(iv) We have

u(x, t) = 〈τ(x,t), id 〉R =

∫
R
ξ dτ(x,t)(ξ) . (4.9)

Moreover for any φ ∈ C1(R) there exists a function φ∗ such that

φ∗(x, t) := 〈τ(x,t), φ〉R =

∫
R
φ(ξ) dτ(x,t)(ξ) . (4.10)

Our main result is as follows.

Theorem 4.5. Let assumptions in Theorem 4.1 hold. Then problem (1.1) admits
a global Young measure solution as in Definition 4.3.

Proof of Proposition 4.2. Multiplying the two-sides of the first equation of (1.1) by
vε and integrating over Ω, yields∫

Ω

uεt[ϕ(uε)− ε∆uε]dx =

∫
Ω

∆vεvε + f(uε)vεdx,

d

dt

(∫
Ω

Φ(uε) +
ε

2
|∇uε|2dx

)
+

∫
Ω

|∇vε|2dx =

∫
Ω

f(uε)vεdx.

Using Poincare’ inequality for vε and Hölder’s inequality for the integral in the
right-hand side, we obtain∫

Ω

Φ(uε) +
ε

2
|∇uε|2dx+

∫ t

0

∫
Ω

|∇vε|2dx =

∫ t

0

∫
Ω

f(uε)vεdx+ C(‖u0‖H1
0 (Ω)),∫

Ω

Φ(uε) +
ε

2
|∇uε|2dx+

∫ t

0

∫
Ω

|∇vε|2dx ≤ C1

∫ t

0

∫
Ω

f2(uε)dx+ C2.
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Now using assumption (H4),∫
Ω

Φ(uε) +
ε

2
|∇uε|2dx+

∫ t

0

∫
Ω

|∇vε|2dx ≤ C
∫ t

0

∫
Ω

Φ(uε)dx+M.

By Gronwall’s inequality, we obtain∫
Ω

Φ(uε)dx ≤ C(u0, T,Ω).

Then the assumption on the growth of Φ implies inequality (4.2),

‖uε‖L2(Ω) ≤ C.

From this, we can easily obtain the remaining estimates in Proposition 4.2 �

Proof of Proposition 4.4. The statements in this Proposition follow directly from
estimates (4.2), (4.4) and the Fundamental Theorem of Young measure. �

Proof of Theorem 4.5. Firstly, we prove the statement (4.7). Indeed, for any η ∈
C∞c (QT ),∣∣ ∫

QT

[ϕ(uεk)− v]η dx dt
∣∣ =

∣∣ ∫
QT

[ϕ(uεk)− vεk + vεk − v]η dx dt
∣∣

≤
∣∣ ∫
QT

[ϕ(uεk)− vεk ]η dx dt
∣∣+
∣∣ ∫
QT

[vεk − v]η dx dt
∣∣

=
∣∣ ∫
QT

εk∆uεkη dx dt
∣∣+
∣∣ ∫
QT

[vεk − v]η dx dt
∣∣

=
∣∣ ∫
QT

εk∇uεk∇η dx dt
∣∣+
∣∣ ∫
QT

[vεk − v]η dx dt
∣∣

→ 0 as k →∞,∣∣ ∫
QT

[vεk − v]η dx dt
∣∣→ 0 by Proposition 4.4 (ii),

∣∣ ∫
QT

εk∇uεk∇η dx dt
∣∣ =
√
εk‖
√
εk∇uεk‖L2(QT )‖∇η‖L2(QT ) → 0

by the uniform bounded estimate (4.3) of Proposition 4.2

Secondly, by the well-posedness Theorem 4.1 for problem (1.2), with εk instead
of ε, and with the initial datum u0εk := u0. For any function ζ ∈ C1([0, T );C1

c (Ω))
and t ∈ (0, T ) we have∫ t

0

∫
Ω

[
(uεk)s ζ −∆vζ

]
(x, s) dx ds =

∫
Ω

f(uεk(x, t))ζ(x, t) dx.

Integration by parts yields∫ t

0

∫
Ω

[
uεk ζs −∇v · ∇ζ + f(uεk)ζ

]
(x, s) dx ds =

∫
Ω

[uεkζ](x, t)dx−
∫

Ω

u0(x)ζ(x, 0).

By Proposition 4.4 and the above statement of weak convergence of {vεk}, we send
k →∞ to get the weak formulation (4.6),∫ t

0

∫
Ω

[
u ζs −∇v · ∇ζ + f∗ζ

]
(x, s) dx ds
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=

∫
Ω

u(x, t)ζ(x, t) dx−
∫

Ω

u0(x) ζ(x, 0) dx ,

where f∗ is barycenter of the nonlinearity f which is defined as in (4.8). This
completes the proof. �

5. Appendix

Concerning Young measures on Q× R (e.g., see [9, 19] and references therein).

Definition 5.1. By a Young measure on Q × R we mean any positive Radon
measure τ such that

τ(E × R) = |E| (5.1)

for any Lebesgue measurable set E ⊆ Q. The set of Young measures on Q×R will
be denoted by Y(Q;R).

If f : Q→ R is Lebesgue measurable, the Young measure associated to f is the
measure τ ∈ Y(Q;R) such that

τ(E × F ) = |E ∩ f−1(F )| (5.2)

for any Lebesgue measurable set E ⊆ Q and any Borel set F ⊆ R.

Remark 5.2. In view of (5.2), if τ is the Young measure associated to a Lebesgue
measurable function f : Q → R, for any τ -integrable function ψ : Q × R → R̄ we
have ∫

Q×R
ψ dτ =

∫∫
Q

ψ(x, t, f(x, t)) dx dt . (5.3)

Proposition 5.3. Let τ ∈ Y(Q;R). Then for almost every (x, t) ∈ Q there exists
a measure τ(x,t) ∈ P(R), such that for any function ψ : Q × R → R bounded and
continuous:

(i) the map

(x, t)→ 〈τ(x,t), ψ(x, t, ·)〉R =

∫
R
ψ(x, t, ξ) dτ(x,t)(ξ)

is Lebesgue measurable;
(ii) it holds

〈τ, ψ〉Q×R :=

∫
Q×R

ψ dτ =

∫∫
Q

〈τ(x,t), ψ(x, t, ·)〉R dx dt

=

∫∫
Q

dx dt

∫
R
ψ(x, t, ξ) dτ(x,t)(ξ) .

(5.4)

Therefore, every τ ∈ Y(Q × R) can be identified with the associated family
{τ(x,t) : (x, t) ∈ Q}, which is called the disintegration of τ .

Remark 5.4. If τ is the Young measure associated to a Lebesgue measurable
function f : Q→ R, equalities (5.3)-(5.4) imply

ψ(x, t, f(x, t)) = 〈τ(x,t), ψ(x, t, ·)〉R =

∫
R
ψ(x, t, ξ) dτ(x,t)(ξ) (5.5)

for almost every (x, t) ∈ Q; where ψ ∈ BC(Q×R) and {τ(x,t)} is the disintegration
of τ . In this case

τ(x,t) = δf(x,t) for almost every (x, t) ∈ Q ,
where δP denotes the Dirac mass concentrated in P ∈ R.



14 B. L. T. THANH, N. N. Q. THUONG EJDE-2020/07

Definition 5.5. Let {τn} ⊆ Y(Q;R), τ ∈ Y(Q;R) (n ∈ N). We say that τn → τ
narrowly in Q× R, if ∫

Q×R
ψ dτn →

∫
Q×R

ψ dτ (5.6)

for any function ψ : Q × R → R bounded and measurable, such that ψ(x, t, ·) is
continuous for almost every (x, t) ∈ Q.

Theorem 5.6. Let {fn} be a bounded sequence in L1(Q), and {τn} the sequence
of associated Young measures. Then:

(i) there exist subsequences {fk} ≡ {fnk
} ⊆ {fn}, {τk} ≡ {τnk} ⊆ {τn} and a

Young measure τ on Q× R such that τk → τ narrowly in Q× R;
(ii) for any ρ ∈ C(R) such that the sequence {ρ ◦ fn} ⊆ L1(Q) is uniformly

integrable, it holds

ρ ◦ fk ≡ ρ ◦ fnk
⇀ ρ∗ in L1(Q) , (5.7)

where

ρ∗(x, t) := 〈τ(x,t), ρ〉R =

∫
R
ρ(ξ) dτ(x,t)(ξ) a.e. (x, t) ∈ Q (5.8)

and {τ(x,t)} is the disintegration of τ .
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