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SOLUTION TO NAVIER-STOKES EQUATIONS FOR

TURBULENT CHANNEL FLOWS

JING TIAN, BINGSHENG ZHANG

Abstract. In this article, we continue the work done in [12] for turbulent

channel flows described by the Navier-Stokes and the Navier-Stokes-α equa-

tions. We study non-stationary solutions in special function spaces. In par-
ticular, we show the term representing the sum of pressure and potential is

harmonic in the space variable. We find an optimal choice for the function

class.

1. Introduction

Turbulence is a fluid regime with the characteristics of being unsteady, irregular,
seemingly random and chaotic [14]. It can be used for modeling the weather,
ocean currents, water flow in a pipe and air flow around aircraft wings. Studying
turbulent fluid flows involves some of the most difficult and fundamental problems
in classical physics, and is also of tremendous practical importance. The Navier-
Stokes equations (NSE) have been widely used to describe the motion of turbulent
fluid flows [9, 19]. However, solving NSE using the direct numerical simulation
method for turbulent flows is difficult, since accurate simulation of turbulent flows
should account for the interactions of a wide range of scales which leads to high
computational costs.

Turbulence modeling could provide qualitative and in some cases quantitative
measures for many applications [18]. There are several types of turbulence modeling
methods, for example Reynolds Average Navier-Stokes (RANS) and Large Eddy
Simulation (LES). As done in [6, 7], we accept that the Navier-Stokes-α (NS-α)
(also called viscous Camassa-Holm equations or Lagrangian averaged Navier-Stokes
equations) is a well-suited mathematical model for the dynamics of appropriately
averaged turbulent fluid flows. The possibility that the NS-α is an averaged version
of the NSE, first considered in [3, 4], was entailed by several auspicious facts.
Namely, the NS-α analogue of the Poiseuille, resp, Hagen, solution in a channel,
resp, a pipe, displays both the classical Von Kármán and the recent Barenblatt-
Chorin laws [16]. In addition, the NS-α analogue of the Hagen solution, when
suitably calibrated, yields good approximations to many experimental data [4].
Moreover, the NS-α have been proved to have regular solutions [1]. Therefore,
continuing the study of NS-α is extremely useful and important in the aspects of
both mathematical theories and down-to-earth applications.
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To understand the connection for fluid flows described by NSE and by NS-α, in
[12], we used a simple Reynolds type averaging. We restricted our consideration
to channel flows having special function forms prescribed as a function class called
P. This function class P was inspired by the concept of regular part of the weak
attractor of the 3D NSE ([10, 11]) as well as by that of the sigma weak attractor
introduced in [2]. This led us to consider the solution for the channel flows whose
averaged form has both the second and third velocity component to be zero. This
will be our assumption for the discussion done in current work. Starting from
there, a physical model for the wall roughness of the channel was subsequently
provided to show that the NS-α model occurs naturally as the fluid flows. Moreover,
by restricting to consider functions from P, a rational explanation was given to
facilitate the understanding of why, as the Reynolds number increases, the fluid
becomes in favor of the NS-α model instead of the NSE. The class P was composed
by five assumptions, each assumption plays an unique and important role.

In this article, we study the properties of solutions in class P. We first try to
find the explicit formula of the non-stationary solutions for NSE and NS-α. This
particular solution has the form which only the first velocity component is nonzero.
From there, we can recover the classic Poiseuille flow. Moreover, we prove the
symmetric property of the integration form of this Poiseuille flow. Explicit and
detailed energy estimate of the velocity field in class P is presented and is of use
to show the connection between P and the weak global attractor of the equations.
Moreover, for the sum of the pressure and potential, we also prove that it is actually
harmonic in the space variable. Studying the properties of the sum of the pressure
and potential, we find an alternative weaker condition of the last assumption in
class P. Therefore, we have found an optimal choice of the class P.

The article is organized as follows. Section 2 gives elementary results on the
Navier-Stokes equations and the Navier-Stokes-α model as well as the definition
of the class P. In section 3, we solve the channel flows whose velocity fields have
a special form. Section 4 contains the energy estimate for solutions in class P.
In section 5, we discuss the harmonicity of the sum of the pressure and potential
in the space variable and its consequences. The last section contains some basic
inequalities together with their proofs.

2. Preliminaries

2.1. Mathematical background. Throughout, we consider an incompressible
viscous fluid in an immobile region O ⊂ R3 subjected to a potential body force
F = −∇Φ, with a time independent potential Φ = Φ(x) ∈ C∞(O). The velocity
field of such flows,

u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), x = (x1, x2, x3) ∈ O (2.1)

satisfies the NSE equation

∂

∂t
u+ (u · ∇)u = ν∆u−∇P, ∇ · u = 0, (2.2)

where P := p+Φ, t denotes the time, ν > 0 the kinematic viscosity, and p = p(x, t)
the pressure.



EJDE-2020/05 SOLUTION TO NAVIER-STOKES EQUATIONS 3

The NS-α equation is

∂

∂t
v + (u · ∇)v +

3∑
j=1

vj∇uj = ν∆v −∇Q, ∇ · u = 0, (2.3)

where

v = (v1, v2, v3) = (1− α2∆)u = ((1− α2∆)u1, (1− α2∆)u2, (1− α2∆)u3), (2.4)

and Q in (2.3) (like P in (2.2)) may depend on the time t.
We impose the following boundary conditions for both (2.2) and (2.3),

u(x, t) = 0, for x ∈ ∂O := boundary of O . (2.5)

One can observe that if α = 0, the NS-α (2.3) reduce to NSE (2.2), so that (2.3)
is also referred as an α-model of (2.2).

In the case of a channel flow, that is, O = R × R × [x
(l)
3 , x

(u)
3 ], where h :=

x
(u)
3 − x(l)

3 > 0 is the “height” of the channel, we recall that a vector of the form

(U(x3), 0, 0) (2.6)

is a stationary solution (i.e., time independent) of the NSE (2.2) if and only if

U(x3) = b
(

1−
(x3 − x

(u)
3 +x

(l)
3

2 )2

(h/2)2

)
, x3 ∈ [x

(l)
3 , x

(u)
3 ], (2.7)

where b is a constant velocity.
Moreover, (U(x3), 0, 0) is a stationary (i.e., time independent) solution of the

NS-α (2.3) if and only if,

U(x3) = a1

(
1−

cosh
(
(x3 − x

(u)
3 +x

(l)
3

2 )/α
)

coshh/(2α)

)
+ a2

(
1−

(x3 − x
(u)
3 +x

(l)
3

2 )2

(h/2)2

)
, (2.8)

for x3 ∈ [x
(l)
3 , x

(u)
3 ], where a1, a2 are constant velocities (cf. [4, formula (9.6)]).

Above, cosh(x) = ex+e−x

2 is the hyperbolic cosine function.

To simplify our notation, we will assume that x
(l)
3 = 0 and x

(u)
3 = h.

2.2. Class P. As in [12], a function u(x, t) belongs to class P if it satisfies condi-
tions (A1)–(A5) below.

(A1) u(x, t) ∈ C∞(O × R).
(A2) u(x, t) is periodic in x1 and x2, with periods Π1 and Π2, respectively, i.e.,

u(x1+Π1, x2, x3, t) = u(x1, x2, x3, t), u(x1, x2+Π2, x3, t) = u(x1, x2, x3, t). (2.9)

(A3) u(x, t) exists for all t ∈ R, and has bounded energy per mass, i.e.,∫ Π1

0

∫ Π2

0

∫ h

0

u(x, t) · u(x, t)dx <∞, ∀t ∈ R. (2.10)

(A4) there exists a constant p̄ <∞ for which

0 < −p1(t) ≤ p̄, |p2(t)| ≤ p̄,
for all t ∈ R, where p1(t) and p2(t) are defined in (2.11).

(A5) P = P (x, t) is bounded in the x2 direction, i.e.,

sup
x2∈R

P (x1, x2, x3, t) <∞, ∀x1, x3, t ∈ R.
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Remark 2.1. From (2.2) and (A2), it follows that

P (x1 + Π1, x2, x3, t)− P (x1, x2, x3, t) =: p1(t),

P (x1, x2 + Π2, x3, t)− P (x1, x2, x3, t) =: p2(t).
(2.11)

Note that, as done in [12], one can show p2(t) = 0.

As mentioned in the introduction, we additionally assume that u3(x, t) = 0. The
reality condition on u becomes, when viewed in the Fourier space,

û∗(t; k1, k2, k) = û(t;−k1,−k2, k), (2.12)

and because u3 = 0, the divergence free condition in(2.2) reduces to

2πk1

Π1
û1 +

2πk2

Π2
û2 = 0. (2.13)

Using u3 = 0, we see that (2.2) becomes

∂

∂t
u1 + u1

∂

∂x1
u1 + u2

∂

∂x2
u1 − ν(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)u1 = − ∂

∂x1
P,

∂

∂t
u2 + u1

∂

∂x1
u2 + u2

∂

∂x2
u2 − ν(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)u2 = − ∂

∂x2
P,

− ∂

∂x3
P = 0,

∂

∂x1
u1 +

∂

∂x2
u2 = 0.

(2.14)

We define the Reynolds type average of a scalar function φ = φ(x) as

〈φ〉(x3) :=
1

Π1Π2

∫ Π1

0

∫ Π2

0

φdx2dx1. (2.15)

Proposition 2.2 ([12]). For all u(x, t) ∈ P, we have

〈u2(t)〉(x3) = 0, (2.16)

for all x3 ∈ [0, h], t ∈ R.

Then the averaged velocity field takes the form

〈u(t)〉(x3) =

〈u1(t)〉(x3)
〈u2(t)〉(x3)
〈u3(t)〉(x3)

 =

〈u1(t)〉(x3)
0
0

 . (2.17)

The following kernel representation of the averaged velocity component 〈u1(t)〉(x3)
is also given in [12].

Proposition 2.3 ([12]). For u(x, t) ∈ P we have

〈u1(t)〉(x3) =

∫ t

−∞
K(x3, t− τ)p1(τ)dτ, (2.18)

where, the kernel K(x, t) is defined by the series,

K(x, t) =

∞∑
k=1

2((−1)k − 1)

Π1kπ
e−ν(πkh )2t sin

πkx

h
. (2.19)
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3. Channel flows with velocity field of a particular form

As shown in Proposition 2.2, the averaged velocity field in the solution of (2.2)
has a special form, namely, both the second and the third components vanish (see
(2.17)). Thus, it is worth to consider the solutions with this form of the NSE
and NS-α in a more general setting. See also (2.7) and (2.8) for time independent
solutions of this form.

3.1. The NSE case. Consider (2.2) with solution of the form

u = (U(x, t), 0, 0), (3.1)

for 0 ≤ x3 ≤ h, satisfying assumptions (A1)–(A3).

Simple form of the NSE. Using the form (3.1) of u, NSE (2.2) becomes

∂U

∂t
− ν∆U +

∂P

∂x1
= 0,

∂P

∂x2
= 0,

∂P

∂x3
= 0,

∂U

∂x1
= 0.

(3.2)

Using the first and fourth equations in (3.2), we obtain that U is independent of

x1 and ∂2P
∂x2

1
= 0, which combined with the second and third equations in (3.2) for

P , imply that P must be of the form

P = P (x1, t) = p̃0(t) + x1p̃1(t). (3.3)

Therefore, U = U(x2, x3, t) satisfies

∂U

∂t
− ν
( ∂2

∂x2
2

+
∂2

∂x2
3

)
U = −p̃1(t). (3.4)

Solving (3.2). Based on the periodicity (2.9) in (A2), we can expand U in Fourier
series

U(x2, x3, t) =

∞∑
n=−∞

Û(n, x3, t)e
i2πn
Π2

x2 , (3.5)

where

Û(n, x3, t) :=
1

Π2

∫ Π2

0

U(x2, x3, t)e
− i2πnΠ2

x2dx2,

in particular

Û(0, x3, t) =
1

Π2

∫ Π2

0

U(x2, x3, t)dx2.

So equation (3.4) can be written as

∞∑
n=−∞

e
i2πn
Π2

x2

[ ∂
∂t
Û(n, x3, t)− ν − Û(n, x3, t)(

2πn

Π2
)2 +

∂2

∂x2
3

Û(n, x3, t)
]

= −p̃1(t),

(3.6)
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where (2.5) implies the boundary condition

Û(n, x3, t)|x3=0,h = 0. (3.7)

We first consider the case when n 6= 0: Equation (3.6) implies

∂

∂t
Û(n, x3, t) + ν(

2πn

Π2
)2Û(n, x3, t)− ν

∂2

∂x2
3

Û(n, x3, t) = 0. (3.8)

Taking the dot product with Û(n, x3, t) in (3.8), and then integrating with re-
spect to x3 from 0 to h, we obtain

1

2

d

dt

∫ h

0

|Û(n, x3, t)|2dx3 + ν(
2πn

Π2
)2

∫ h

0

|Û(n, x3, t)|2dx3

− ν
∫ h

0

∂2

∂x2
3

Û(n, x3, t) · Û(n, x3, t)dx3 = 0.

Integrating by parts and applying the boundary condition (3.7), we have

1

2

d

dt

∫ h

0

|Û(n, x3, t)|2dx3 + ν(
2πn

Π2
)2

∫ h

0

|Û(n, x3, t)|2dx3

+ ν

∫ h

0

(
∂

∂x3
Û(n, x3, t))

2dx3 = 0.

(3.9)

Using Poincaré inequality (6.1), Equation (3.9) becomes

1

2

d

dt

∫ h

0

|Û(n, x3, t)|2dx3 + ν(
2πn

Π2
)2

∫ h

0

|Û(n, x3, t)|2dx3

+ ν
1

h2

∫ h

0

|Û(n, x3, t)|2dx3 ≤ 0.

Denoting W (n, t) :=
∫ h

0
|Û(n, x3, t)|2dx3, we have

1

2

d

dt
W (n, t) + ν(

2πn

Π2
)2W (n, t) + ν

1

h2
W (n, t) ≤ 0,

which can be integrated to obtain

W (n, t) ≤ e−2(t−t0)(ν( 2πn
Π2

)2+ ν
h2 )W (n, t0), ∀t > t0. (3.10)

By assumption (A3), W (n, t0) is bounded for all t0 ∈ R. Hence, by taking

t0 → −∞ in (3.10), we obtain W (n, t) = 0, for all t ∈ R. Therefore, Û(n, x3, t) = 0,
for all n 6= 0.

So, we only need to consider the case when n = 0. In this case (3.6) implies

∂

∂t
Û(0, x3, t)− ν

∂2

∂x2
3

Û(0, x3, t) = −p̃1(t), (3.11)

and, the expansion of U(x2, x3, t) in (3.5) becomes

U(x2, x3, t) = Û(0, x3, t) =
1

Π2

∫ Π2

0

U(x2, x3, t)dx2. (3.12)

that is, U(x2, x3, t) = U(x3, t) is independent of x2.
The equation satisfied by U(x3, t) follows from equation (3.4) (or (3.11)):

∂

∂t
U(x3, t)− ν

∂2

∂x2
3

U(x3, t) = −p̃1(t). (3.13)
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Since U(0, t) = U(h, t) = 0, we can take the Fourier sine expansion for U(x3, t):

U(x3, t) =

∞∑
k=1

Û(k, t) sin(
πkx3

h
).

Equation (3.13) gives the following equation for the coefficients Û(k, t):

∂

∂t
Û(k, t) + ν(

πk

h
)2Û(k, t) = − 2

h

∫ h

0

sin(
πkx3

h
) · p̃1(t)dx3. (3.14)

Thus, we obtain the explicit form U(x3, t) in the following theorem.

Theorem 3.1. Let u = (U(x, t), 0, 0) be a solution of the (2.2) with P = P (x, t)
satisfying (A1)–(A3). Then, U = U(x, t) = U(x3, t) and

U(x3, t) =

∫ t

−∞

∞∑
k=1

2((−1)k − 1)

kπ
e−ν(πkh )2(t−τ) sin(

πkx3

h
)p̃1(τ)dτ. (3.15)

Proof. Simplifying (3.14), we have

∂

∂t
Û(k, t) + ν(

πk

h
)2Û(k, t) =

2

kπ
p̃1(τ)((−1)k − 1),

from which, upon integration, we obtain

Û(k, t) = e−ν(πkh )2(t−t0)Û(k, t0) +
2

kπ
((−1)k − 1)

∫ t

t0

e−ν(πkh )2(t−τ)p̃1(τ)dτ,

which, implies (3.15), by taking t0 → −∞. �

The above theorem shows that non-stationary solutions for (2.2) exist, and are
given by (2.6) and (2.7). In particular, if p̃1(t) is a constant, the Poiseuille flow
(time independent) is recovered. This matches the form given in (2.7).

Corollary 3.2. If we assume that p̃1(t) = p̃10, where p̃10 ∈ R is a constant, then

U(x3, t) =

∞∑
k=1

2p̃10h
2

ν(kπ)3
((−1)k − 1) sin(

πkx3

h
)

= − p̃10

2ν
x3(h− x3).

(3.16)

3.1.1. A symmetry property. Consider the averaged quantity

〈U〉2(x3, t) =
1

Π2

∫ Π2

0

U(x2, x3, t)dx2, (3.17)

which, from (2.5), satisfies

〈U〉2(x3, t)|x3=0,h = 0. (3.18)

We can prove that 〈U〉2(x3, t) satisfies the following symmetry property, which
is a priori assumption in [3]-[5] for the study of the steady solutions.

Theorem 3.3. 〈U〉2(x3, t) in (3.17) satisfies

〈U〉2(h− x3, t) = 〈U〉2(x3, t), (3.19)

for all x3 ∈ [0, h] and t ∈ R.
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Proof. By taking average in x2 as defined in(3.17) of the equation (3.4), and invok-
ing the periodicity condition (2.9), we see that 〈U〉2(x3, t) must satisfy

∂〈U〉2
∂t

− ν ∂
2〈U〉2
∂x2

3

= −p̃1(t). (3.20)

Denoting

〈̃U〉(x3, t) := 〈U〉2(h− x3, t)− 〈U〉2(x3, t), (3.21)

we have
∂〈̃U〉
∂t
− ν ∂

2〈̃U〉
∂x2

3

= 0, (3.22)

with boundary conditions from (3.18):

〈̃U〉(x3, t)|x3=0,h = 0. (3.23)

Taking the dot product of (3.22) with 〈̃U〉 and then integrating with respect to
x3 from 0 to h, together with the boundary conditions (3.23), we have∫ h

0

(∂〈̃U〉
∂t
− ν ∂

2〈̃U〉
∂x2

3

)
〈̃U〉(x3, t)dx3

=
1

2

d

dt

∫ h

0

(
〈̃U〉(x3, t)

)2

dx3 − ν
∫ h

0

∂2〈̃U〉
∂x2

3

〈̃U〉(x3, t)dx3

=
1

2

d

dt

∫ h

0

(
〈̃U〉(x3, t)

)2

dx3 + ν

∫ h

0

( ∂

∂x3
〈̃U〉(x3, t)

)2

dx3 = 0.

Invoking the Poincaré inequality (6.1), we obtain

1

2

d

dt

∫ h

0

(〈̃U〉(x3, t))
2dx3 +

ν

h2

∫ h

0

(〈̃U〉(x3, t))
2dx3 ≤ 0. (3.24)

Therefore, from (3.24) we obtain

ψ(t) ≤ ψ(t0)e−(t−t0)2ν/h2

, (3.25)

for −∞ < t0 < t < ∞, where ψ(t) :=
∫ h

0
(〈̃U〉(x3, t))

2dx3 is nonnegative for all
t ∈ R. Under the assumption (A3), we could let t0 → −∞ in (3.25) to obtain

ψ(t) ≡ 0 for all t ∈ R. Hence, 〈̃U〉(x3, t) ≡ 0 for all x3 ∈ [0, h] and all t ∈ R.
Consequently, the symmetry property (3.19) on 〈U〉2(x3, t) can be obtained. �

3.2. The NS-α case. We assume the following form of solution for (2.3),

u = (U(x, t), 0, 0) (3.26)

and V = (1− α2∆)U , for 0 ≤ x3 ≤ h, with u(x, t) satisfying (A1)–(A3).

Simple form of the NS-α. Using (3.26), equation (2.3) becomes

∂V

∂t
− ν∆V +

∂Q

∂x1
= 0,

V
∂U

∂x2
= − ∂Q

∂x2
,

V
∂U

∂x3
= − ∂Q

∂x3
,

∂U

∂x1
= 0.

(3.27)
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Using the first and fourth equations in (3.27), we obtain

∂2Q

∂x2
1

= 0.

By taking partial derivative in the second and third equations in (3.27) with respect
to x1, we have

∂2Q

∂x1∂x2
=

∂2Q

∂x3∂x1
= 0.

Thus, Q must be of the form

Q = Q(x1, x2, x3, t) = q̃0(x2, x3, t) + x1q̃1(t). (3.28)

Hence, the first equation in (3.27) can be further simplified to be

∂V

∂t
− ν(

∂2

∂x2
2

+
∂2

∂x2
3

)V = −q̃1(t), (3.29)

which is strikingly similar to (3.4).
The no-slip boundary condition (2.5) implies

U(x2, x3, t)|x3=0,h = 0. (3.30)

Solving (3.27). By no-slip boundary condition (3.30), one can write

U(x2, x3, t) =

∞∑
n=−∞

Û(n, x3, t)e
i2πn
Π2

x2 .

Hence,

V = (1− α2∆)U =
(

1 + α2(
2πn

Π2
)2 − α2 ∂

2

∂x2
3

)
U.

Similarly, we have the equations for Û(n, x3, t), which follow from (3.29): when
n = 0 (

1− α2 ∂
2

∂x2
3

)
(
∂

∂t
− ν ∂

2

∂x2
3

)Û(n, x3, t) = −q̃1(t).

When n 6= 0(
1 + α2(

2πn

Π2
)2 − α2 ∂

2

∂x2
3

)( ∂
∂t

+ ν(
2πn

Π2
)2 − ν ∂

2

∂x2
3

)
Û(n, x3, t) = 0. (3.31)

Using arguments similar to those in the previous section, we obtain Û(n, x3, t) =

0, when n 6= 0, so U = Û(0, x3, t) = U(x3, t) is also independent of x2, and satisfies,(
1− α2 ∂

2

∂x2
3

)( ∂
∂t
− ν ∂

2

∂x2
3

)
Û(0, x3, t) = −q̃1(t). (3.32)

From (3.32) and (3.3), we obtain the following theorem.

Theorem 3.4. Let u = (U(x, t), 0, 0) be a solution of the NSE (2.2) with P =
P (x, t) given, satisfying (A1)–(A3). Then, u is also a solution of the NS-α (2.3)
with

Q = Q(x, t) = p̃1(t)x1 −
1

2

(
U2 − α2

( ∂U
∂x3

)2)
.



10 J. TIAN, B. ZHANG EJDE-2020/05

We apply

U = U(x3, t) =

∞∑
k=1

Û(k, t) sin
(πkx3

h

)
=

∞∑
k=1

Û(k, t) sin
(πkx3

h

)
.

From (3.32), it follows that the Fourier coefficient Û(k, t) satisfies:

(
1 +α2(

πk

h
)2
)( ∂

∂t
Û(k, t) + ν(

πk

h
)2Û(k, t)

)
= − 2

h

∫ h

0

sin
(πkx3

h

)
q̃1(t)dx3. (3.33)

Hence, using the same procedure as in previous section, we obtain the following
form of the solution U = U(x3, t).

Theorem 3.5. The solution of the NSE (2.2) has the form

U(x3, t) =

∫ t

−∞

∞∑
k=1

2((−1)k − 1)

πk(1 + α2(πk/h)2)
e−ν(πkh )2(t−τ) sin

(πkx3

h

)
q̃1(τ)dτ. (3.34)

The above theorem shows that non-stationary solutions for NS-α (2.3) exist,
besides those stationary solutions given by (2.6) and (2.8). In the particular case
when q̃1(t) is a constant, we obtain the steady state solution mentioned in [3]-[5],
which is basically of the form (2.8).

Note that the coefficients in (3.35) satisfy [4, condition (9.7)] with c = 0 and
d0 = h/2, but there are typos in (9.7) there, namely, the left hand sides of the
second and the third relations should be, respectively, π0/ν and π2/ν.

Corollary 3.6. If we assume q̃1(t) = q̃10, where q̃10 ∈ R is a constant, then

U(x3, t) =

∞∑
k=1

2h2

ν(πk)3

1

(1 + α2(πk/h)2)
q̃10((−1)k − 1) sin

(πkx3

h

)
=
α2q̃10

ν

(
1−

cosh(x3−h/2
α )

cosh( h
2α )

)
− q̃10

2ν
x3(h− x3).

(3.35)

Proof. Equality (3.35) follows from applying

x(h− x) =

∞∑
k=1

4h2(1− (−1)k)

(πk)3
sin
(πkx
h

)
,

and

cosh(
h

2α
)− cosh(

x− h/2
α

) =

∞∑
k=1

2 cosh(h/2α)

πk(1 + α2(πk/h)2)
(1− (−1)k) sin(

πkx

h
).

�

Remark 3.7. From Corollary 3.6, we observe that all solutions having the form
(3.26) of the NS-α(2.3) with time independent ∂Q/∂x1 and satisfying (A1)–(A3)
are actually stationary solutions.
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4. Energy estimates

In this Section, we will use inequality (6.6) in Lemma 6.2 to obtain an inequality
estimating the energy of the velocity field u(x, t) ∈ P.

Taking the dot product of (2.2) with u and integrating over Ω := [0,Π1] ×
[0,Π2]× [0, h], we have

1

2

d

dt

∫
Ω

|u|2dx+ ν

∫
Ω

|∇u|2dx = −
3∑
j=1

∫
Ω

∂P

∂xj
ujdx. (4.1)

Note that here, the nonlinear term
∫

Ω
(u · ∇)u · udx vanishes. Indeed, using

integration by parts and the periodicity conditions (A2), one gets, for j = 1, 2,∫ Πj

0

uk
∂

∂xj
(ujuk)dxj = −

∫ Πj

0

ujuk
∂

∂xj
ukdxj , for k = 1, 2, 3,

similarly, using the boundary condition (2.5) and integration by parts, we obtain∫ h

0

uk
∂

∂x3
(u3uk)dx3 = −

∫ h

0

u3uk
∂

∂x3
ukdx3, for k = 1, 2, 3.

Therefore,∫
Ω

(u · ∇)u · u dx =

∫
Ω

3∑
k=1

3∑
j=1

uj(
∂

∂xj
uk)ukdx

=

∫
Ω

3∑
k=1

3∑
j=1

uk
∂

∂xj
(ujuk)dx

= −
3∑
k=1

∫
Ω

(
u1uk

∂

∂x1
uk + u2uk

∂

∂x2
uk + u3uk

∂

∂x3
uk

)
dx

= −
3∑
k=1

∫
Ω

uk

3∑
j=1

uj
∂

∂xj
ukdx

= −
∫

Ω

(u · ∇)u · udx.

Hence ∫
Ω

(u · ∇)u · udx = 0.

Remark 4.1. Observe that the above proof can be applied to show∫
Ω

(u · ∇)v · vdx = 0, (4.2)

for u, v ∈ P.

We have the following energy estimates.
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Proposition 4.2. For u(x, t) ∈ P,

d

dt

∫
Ω

|u|2dx+ 2ν

∫
Ω

3∑
k,l=1

(
∂uk
∂xl

)2dx− ν
∫

Ω

(
(
∂u1

∂x1
)2 + (

∂u2

∂x2
)2
)
dx

≤ p̄2Π1Π2h

6ν
+ p̄3/2(Π1 + Π2)h+ p̄1/2

2∑
j=1

∫ Πj′

0

∫ h

0

〈uj〉2jdx3dxj′ .

(4.3)

Proof. For the term on the right hand side of (4.1), by (2.11), we have∫
Ω

∂P

∂x1
u1dx =

∫ Π2

0

∫ h

0

(
(Pu1)|x1=Π1 − (Pu1)|x1=0 −

∫ Π1

0

P
∂u1

∂x1
dx1

)
dx3dx2

= p1(t)

∫ Π2

0

∫ h

0

u1|x1=0dx3dx2 −
∫

Ω

P
∂u1

∂x1
dx.

Similarly, ∫
Ω

∂P

∂x2
u2dx = p2(t)

∫ Π1

0

∫ h

0

u2|x2=0dx3dx1 −
∫

Ω

P
∂u2

∂x2
dx.

From the no-slip boundary condition (2.5),∫
Ω

∂P

∂x3
u3dx = −

∫
Ω

P
∂u3

∂x3
dx.

Therefore,

−
∫

Ω

∇P · udx

=

∫
Ω

P∇ · udx− p1(t)

∫ Π2

0

∫ h

0

u1|x1=0dx3dx2 − p2(t)

∫ Π1

0

∫ h

0

u2|x2=0dx3dx1

= −p1(t)

∫ Π2

0

∫ h

0

u1|x1=0dx3dx2 − p2(t)

∫ Π1

0

∫ h

0

u2|x2=0dx3dx1,

where in the last line, the incompressibility condition (i.e., the second equation in
(2.2)) is used.

Therefore, using (6.6) in Lemma 6.2, relations (2.11), and denoting j′ = 3 − j
for j = 1, 2, (4.1) becomes

1

2

d

dt

∫
Ω

|u|2dx+ ν

∫
Ω

|∇u|2dx

= −p1(t)

∫ Π2

0

∫ h

0

u1|x1=0dx3dx2 − p2(t)

∫ Π1

0

∫ h

0

u2|x2=0dx3dx1

≤
2∑
j=1

|pj(t)|
∫ Πj′

0

∫ h

0

(
〈uj〉j +

Πj

2
√

3
〈(∂uj
∂xj

)2〉1/2j

)
dx3dxj′

=

2∑
j=1

|pj(t)|
∫ Πj′

0

∫ h

0

(
〈uj〉j +

Πj
1/2

2
√

3

(∫ Πj

0

(
∂uj
∂xj

)2dxj

)1/2)
dx3dxj′ ,

(4.4)

where 〈·〉j denotes the average in the xj direction, i.e.,

〈·〉j :=
1

Πj

∫ Πj

0

· dxj . (4.5)
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We then use Young’s inequality and (A4) to obtain

|pj(t)|
∫ Πj′

0

∫ h

0

Πj
1/2

2
√

3

(∫ Πj

0

(
∂uj
∂xj

)2dxj

)1/2

dx3dxj′

≤ p̄2Π1Π2h

24ν
+
ν

2

∫
Ω

(
∂uj
∂xj

)2dx, j = 1, 2.

Hence,

d

dt

∫
Ω

|u|2dx+ 2ν

∫
Ω

3∑
k,l=1

(
∂uk
∂xl

)2dx− ν
∫

Ω

(
(
∂u1

∂x1
)2 + (

∂u2

∂x2
)2
)
dx

≤ p̄2Π1Π2h

6ν
+ 2p̄

2∑
j=1

∫ Πj′

0

∫ h

0

〈uj〉jdx3dxj′

≤ p̄2Π1Π2h

6ν
+ 2p̄

2∑
j=1

(Πj′h)1/2
(∫ Πj′

0

∫ h

0

〈uj〉2jdx3dxj′
)1/2

≤ p̄2Π1Π2h

6ν
+ p̄3/2(Π1 + Π2)h+ p̄1/2

2∑
j=1

∫ Πj′

0

∫ h

0

〈uj〉2jdx3dxj′ .

�

Remark 4.3. Following the general procedure in [8], one can start from (4.4) and
show the existence of the weak global attractor of the NSE (2.2).

5. Harmonicity of P = P (x, t) in the space variables

5.1. Harmonicity of P . The following property of P , namely, harmonicty in the
space variable, could be deduced. Recall that P = p + Φ, where p is the pressure
and Φ is the potential. Notice that from (2.14), P is independent of x3.

Lemma 5.1. Let u(x, t) ∈ P, then P = P (x1, x2, t) is harmonic in the space
variables x1 and x2.

Proof. From (2.14), by taking ∂/∂x1 in the first equation and ∂/∂x2 in the second
equation and then summing the two resulting equations, we can obtain(∂u1

∂x1

)2

+ 2
∂u1

∂x2

∂u2

∂x1
+
(∂u2

∂x2

)2

= −
( ∂2

∂x2
1

+
∂2

∂x2
2

)
P, (5.1)

where P = P (x1, x2, t) is independent of x3 (see the third equation in (2.14)).
In (5.1), the left-hand side (LHS) takes values zero at x3 = 0 and x3 = h, while

the right hand side (RHS) is independent of x3, hence

−
( ∂2

∂x2
1

+
∂2

∂x2
2

)
P = 0, (5.2)

for all x1, x2 ∈ R. �

Now we have an intriguing corollary for the harmonicity of P .

Corollary 5.2.

∂(u1, u2)

∂(x1, x2)
=

∣∣∣∣∣∣
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∣∣∣∣∣∣ = 0. (5.3)
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Proof. Equation (5.3) is obtained by using the fourth relation in (2.14), and the
fact that the LHS in (5.1) equals zero. �

Remark 5.3. For u = (u1, u2, u3) being the velocity field for channel flows, after
we assume u3 = 0. Corollary 5.2 tells us that the two nonzero components, u1 and
u2, are not totally independent, one of them is, at least locally, a function of the
other component.

5.2. An estimate of P .

Lemma 5.4. For the term P = P (x1, x2, t), we have

sup
x1,x2

∣∣ ∂
∂x1

P (x1, x2, t)
∣∣ <∞, (5.4)

for all t ∈ R.

Proof. According to Poisson’s formula [15, 17] we have, for any a > 0,

P (z, t) =

∫
|y|=a

H(y, z)P (y, t)dy, for |z| < a,

where z = (x1, x2), and

H(y, z) =
1

2πa

a2 − |z|2

|z − y|2
.

Therefore,

P (z, t) = P (x1, x2, t)

=
1

2π

∫
|y|=1

1− | za |
2

| za − y|2
P (ay1, ay2, t)dy

=
1

2π

∫ 2π

0

1− x2
1+x2

2

a2

1− 2(
x2

1+x2
2

a2 )1/2 cos(θ − ω) +
x2

1+x2
2

a2

P (a cos θ, a sin θ, t)dθ,

(5.5)

where x1 + ix2 = |z|eiω and y1 + iy2 = |y|eiθ.
However, we will work with the following form which equivalent to (5.5),

P (x1, x2, t) =
1

2π

∫ 2π

0

H(z/a, θ)P (a cos θ, a sin θ, t)dθ, (5.6)

where, for |z| < 1,

H(z, θ) =
1− x2

1 − x2
2

(x1 − cos θ)2 + (x2 − sin θ)2
=

1− x2
1 − x2

2

1 + x2
1 + x2

2 − 2(x1 cos θ + x2 sin θ)
.

A direct calculation yields

∂

∂x1
H(x1, x2, θ) =

−4x1 + 2 cos θ + 2x2
1 cos θ − 2x2x

2
2 cos θ + 4x1x2 sin θ

(1 + x2
1 + x2

2 − 2(x1 cos θ + x2 sin θ))2
.

For a > 4|z|+ 1, this implies

∂

∂x1
H(z/a, θ) =

1

a

∂H

∂x1
(z, θ)

∣∣
z=z/a

≤
4( |x1|

a + 2 |z|
2

a2 + 1)

a(1 + |z|2
a2 − 2 |z|a )2

≤ 32.
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Therefore, from (5.6), recalling the bound (5.7) given in Lemma 5.5, we have∣∣ ∂
∂x1

P (x1, x2, t)
∣∣ ≤ 32p̄

Π1
+ 32a sup{|P (x1, x2, t)| : 0 ≤ x1 < Π1},

where sup{|P (x1, x2, t)| : 0 ≤ x1 < Π1} is a periodic function in x2 with period Π2,
and hence

max
x2∈R

sup{|P (x1, x2, t)| : 0 ≤ x1 < Π1} <∞.

Consequently,

sup
x1,x2

| ∂
∂x1

P (x1, x2, t)| <∞,

for all t ∈ R. �

5.3. Simple form of P . From (2.11), we observe that

P (x1 + nΠ1, x2, t)− P (x1, x2, t) = np1(t), ∀n ∈ N+.

Now, for any y ∈ R+, choose n ∈ N, such that nΠ1 ≤ y < (n+ 1)Π1, then

P (y, x2, t) = P (y − nΠ1, x2, t) + np1(t)

≤ sup{|P (x1, x2, t)| : 0 ≤ x1 < Π1}+ np1(t)

≤ sup{|P (x1, x2, t)| : 0 ≤ x1 < Π1}+
y

Π1
p̄.

Similar arguments apply to the case when y ≤ 0, and we obtain the next result.

Lemma 5.5. Let u(x, t) ∈ P be a solution of (2.2). Then

P (y, x2, t) ≤ sup{|P (x1, x2, t)| : 0 ≤ x1 < Π1}+
|y|
Π1

p̄ (5.7)

for all y, x2, t ∈ R, where p̄ is as given in (A4).

Next, we explore the harmonicity of P = P (x, t) = P (x1, x2, t) in x1 and x2,
and get the following explicit formula for P (x, t), namely, P (x, t) is linear in the
variable x1.

Lemma 5.6. The term P = P (x1, x2, t) in (2.14) is of the form

P (x1, x2, t) = p̃0(t) + x1p̃1(t) = p̃0(t) + x1p1(t)/Π1. (5.8)

Proof. Using (5.4) in Lemma 5.4 given in Appendix C, and Liouville’s theorem for
harmonic function ∂

∂x1
P (x1, x2, t), we conclude that

∂

∂x1
P (x1, x2, t) = p̃1(t),

for some function p̃1(t) of time t, so that

P = P (x1, x2, t) = p̃0(x2, t) + x1p̃1(t), (5.9)

and, by the harmonicity of P (x1, x2, t) in x1 and x2, we have

∂2

∂x2
2

p̃0(x2, t) = 0.

Therefore, p̃0(x2, t) is a linear function in x2, but then periodicity of P (x1, x2, t) in
x2 would imply that p̃0(x2, t) is only a function of time t, i.e.,

p̃0(x2, t) = p̃0(t).
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Finally, the second equality in (5.8), namely, follows from (5.9) and relation (2.11).
�

It follows from the harmonicity of P and Lemma 5.6 that we can replace (A5)
by a weaker condition.

Corollary 5.7. Condition (A5) can be replaced by the f weaker condition

lim sup
x2→±∞

P (x1, x2, x3, t) <∞, (5.10)

for any given x1, x3 and t ∈ R.

We have found an optimal choice of the function class.

6. Appendix

6.1. Classic inequalities. In this appendix, we include several classic inequalities
that are used in our discussion, together with their proofs.

Lemma 6.1 (Poincaré’s inequality). For any C1 function φ(y) defined on [0, h],
with φ(0) = φ(h) = 0, we have∫ h

0

(φ′(y))2dy ≥ 1

h2

∫ h

0

(φ(y))2dy. (6.1)

Proof. By the fundamental theorem of calculus, we have, for any x ∈ R, and
x ∈ [0, h],

φ2(x) = 2

∫ x

0

φ(y)φ′(y)dy, (6.2)

and

φ2(x) = −2

∫ h

x

φ(y)φ′(y)dy. (6.3)

Using Cauchy inequality in (6.2), we obtain

φ2(x) ≤ 2(

∫ x

0

φ2(y)dy)1/2(

∫ x

0

(φ′(y))2dy)1/2.

Hence, ∫ h/2

0

φ2(x)dx ≤ 2

∫ h/2

0

(∫ x

0

φ2(y)dy
)1/2(∫ x

0

(φ′(y))2dy
)1/2

dx

≤ 2

∫ h/2

0

(∫ h/2

0

φ2(y)dy
)1/2(∫ h/2

0

(φ′(y))2dy
)1/2

dx

≤ h
(∫ h/2

0

φ2(y)dy
)1/2(∫ h/2

0

(φ′(y))2dy
)1/2

;

that is, ∫ h/2

0

φ2(x)dx ≤ h2

∫ h/2

0

(φ′(y))2dy. (6.4)

Similarly, using (6.3), and repeating the above steps, we have∫ h

h/2

φ2(x)dx ≤ h2

∫ h

h/2

(φ′(y))2dy. (6.5)

Combined (6.4) and (6.5), we obtain (6.1). �
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L∞ inequality. Recall that, in our paper, for a given function φ = φ(y) with peri-
odicity Π > 0, we denote its average by 〈φ〉, i.e.,

〈φ〉 :=
1

Π

∫ Π

0

φ(y)dy.

Lemma 6.2. For any continuous function φ = φ(y) with period Π > 0, it holds
that

|φ|L∞ ≤ 〈φ〉+
Π

2
√

3
〈(φ′)2〉1/2. (6.6)

Consequently, if

〈(φ′)2〉 <∞,
then φ is continuous in R, and thus |φ(y)| ≤ |φ|L∞ ,∀y ∈ R.

Proof. Without loss of generality, we assume φ(0) = |φ|L∞ , then

φ(0) ≤

{
φ(y) +

∫ y
0
|φ′(z)|dz, y ≥ 0,

φ(y) +
∫ 0

y
|φ′(z)|dz, y ≤ 0.

Thus,

Π

2
φ(0) ≤


∫ Π/2

0
φ(y)dy +

∫ Π/2

0
(
∫ Π/2

z
dy)|φ′(z)|dz,∫ 0

−Π/2
φ(y)dy +

∫ 0

−Π/2
(
∫ z
−Π/2

dy)|φ′(z)|dz,

=


∫ Π/2

0
φ(y)dy +

∫ Π/2

0
(Π/2− z)|φ′(z)|dz,∫ 0

−Π/2
φ(y)dy +

∫ 0

−Π/2
(Π/2 + z)|φ′(z)|dz.

Hence,

Π|φ|L∞ = Πφ(0)

≤ Π〈φ〉+
(∫ Π/2

0

(Π/2− z)2dz
)1/2(∫ Π/2

0

(φ′(z))2dz
)1/2

+
(∫ 0

−Π/2

(Π/2 + z)2dz
)1/2(∫ 0

−Π/2

(φ′(z))2dz
)1/2

≤ Π〈φ〉+
Π2

2
√

3
〈(φ′)2〉1/2.

Then, (6.6) follows. �
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