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PROPERTIES OF THE RESOLVENT OF SINGULAR q-DIRAC
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Abstract. In this article, we investigate the resolvent operator of a singu-

lar q-Dirac system. We obtain an integral representations for the resolvent

of this system, in terms of the spectral function. Furthermore, we give a for-
mula for the Titchmarsh-Weyl function of q-Dirac system using the integral

representation of the resolvent.

1. Introduction

Quantum analysis is a very interesting subject in mathematics. q-calculus is
a type of mathematical analysis in which the concept of limit is not used, thus
the functions which are not differentiable can be q-differentiable. The history of
this calculus dates back to the beginning of the previous century. First results in q-
calculus belong to Euler. q-calculus has important applications in mathematics and
physics, such as in the relativity theory, basic hypergeometric functions, orthogonal
polynomials, combinatorics and the calculus of variations (see [13] ). For a deeper
understanding of q-calculus we refer the reader to [1, 12, 13, 15, 16, 17, 21, 24] and
the references cited therein.

In the Dirac’s relativistic theory of the hydrogen atom, the energy-levels of the
atom are the eigenvalues of the one dimensional Dirac operator
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where l, c, h,m are physical constants and j is an integer, j 6= 0 (see [25]). In this
work, we discuss the q-analogue of this operator. The authors in [8] introduced a
q-analogue of one dimensional Dirac operator. In [8], they investigate the existence
and uniqueness of the solution of this problem and discuss some spectral properties
of the problem.

In this article, using the spectral function, we construct the integral representa-
tion of the resolvent operator of a singular q-Dirac system. In the classical singu-
lar Sturm-Liouville equation, the integral representation of the resolvent was first
proved by Weyl in 1910. Similar theorems were proved in [2, 3, 4, 5, 6, 7, 20, 22, 26].
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This article is organized as follows. In Section 2, we give some fundamental
concepts of quantum analysis. In Section 3, we study the resolvent of the q-Dirac
system. In Section 4, we give the integral representation of the resolvent of a q-
Dirac operator, in terms of the spectral function. Finally, in Section 5, we give a
formula for the Titchmarsh-Weyl function of this problem.

2. Preliminaries

First, we recall some fundamental concepts of quantum analysis. Following the
standard notation in [18] and [10], let q be a positive number with 0 < q < 1,
A ⊂ R := (−∞,∞) and a ∈ A. A q-difference equation is an equation that contains
q-derivatives of a function defined on A. Let y be a complex-valued function on A.
The q-difference operator Dq, the Jackson q-derivative is defined by

Dqy(x) =
y(qx)− y(x)

(q − 1)x
for all x ∈ A.

Note that there is a connection between the q-deformed Heisenberg uncertainty re-
lation and the Jackson derivative on q-basic numbers (see [23]). In the q-derivative,
as q → 1, the q-derivative is reduced to the ordinary derivative. The q-derivative
at zero is defined by

Dqy(0) = lim
n→∞

y(qnx)− y(0)

qnx
(x ∈ A),

if the limit exists and does not depend on x. A right-inverse of Dq, the Jackson
q-integration is given by∫ x

0

f(t)dqt = x(1− q)
∞∑
n=0

qnf(qnx) (x ∈ A),

provided that the series converges, and∫ b

a

f(t)dqt =

∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt (a, b ∈ A).

The q-integration for a function over [0,∞) is defined in [14] by the formula∫ ∞
0

f(t)dqt = (1− q)
∞∑

n=−∞
qnf(qn).

A function f which is defined on A, with 0 ∈ A, is said to be q-regular at zero if

lim
n→∞

f(xqn) = f(0),

for every x ∈ A. Throughout the remainder of the paper, we deal only with
functions q-regular at zero.

If f and g are q-regular at zero, then we have∫ a

0

g(t)Dqf(t)dqt+

∫ a

0

f(qt)Dqg(t)dqt = f(a)g(a)− f(0)g(0).

Let L2
q(0,∞) be the space of complex-valued functions defined on [0,∞) such

that

‖f‖ :=
(∫ ∞

0

|f(x)|2dqx
)1/2

<∞.
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The space L2
q(0,∞) is a separable Hilbert space with the inner product

(f, g) :=

∫ ∞
0

f(x)g(x)dqx, f, g ∈ L2
q(0,∞)

(see [11]).

Let y(x) =

(
y1(x)
y2(x)

)
, z(x) =

(
z1(x)
z2(x)

)
. Then, we define the q-Wronskian of y(x)

and z(x) as

Wq(y, z)(x) = y1(x)z2(q−1x)− z1(x)y2(q−1x). (2.1)

A convenient Hilbert space H = L2
q((0,∞);E) (E := C2) of vector-valued functions

is defined by using the inner product

(f, g)H :=

∫ ∞
0

(f(x), g(x))Edqx.

3. Resolvent of the q-Dirac Operator

In this section, we shall construct the resolvent of the q-Dirac system. Let us
consider the q-Dirac system

−1

q
Dq−1y2 + p(x)y1 = λy1 (3.1)

Dqy1 + r(x)y2 = λy2 (3.2)

with the boundary conditions

y1(0, λ) sinα+ y2(0, λ) cosα = 0, (3.3)

y1(q−n, λ) sinβ + y2(q−n, λ) cosβ = 0, α, β ∈ R, n ∈ N, (3.4)

where λ is a complex eigenvalue parameter, p and r are real-valued functions defined
on [0,∞), continuous at zero and p, r ∈ L1

q,loc(0,∞).

We will denote by ϕ(x, λ) =

(
ϕ1(x, λ)
ϕ2(x, λ)

)
and θ(x, λ) =

(
θ1(x, λ)
θ2(x, λ)

)
, the solution

of the system (3.1)-(3.2) which satisfy the initial conditions

ϕ1(0, λ) = cosα, ϕ2(0, λ) = − sinα, θ1(0, λ) = sinα, θ2(0, λ) = cosα. (3.5)

Let us define

χq−n(x, λ) = θ(x, λ) + l(λ, q−n)ϕ(x, λ) ∈ H, n ∈ N = {1, 2, 3, . . . ).

Using this notation we now state the result from [9].

Lemma 3.1. For each non-real number λ, we have χq−n(x, λ)→ χ(x, λ) and∫ q−n

0

‖χq−n(x, λ)‖2Edqx→
∫ ∞
0

‖χ(x, λ)‖2Edqx, n→∞.
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Putting

Gq−n(x, t, λ)

=

{
χq−n(x, λ)ϕT (t, λ), t ≤ x
ϕ(x, λ)χTq−n(t, λ), t > x

(
[χq−n1(x, λ)ϕ1(t, λ) χq−n1(x, λ)ϕ2(t, λ)

χq−n2(x, λ)ϕ1(t, λ) χq−n2(x, λ)ϕ2(t, λ)

)
, t ≤ x(

ϕ1(x, λ)χq−n1(t, λ) ϕ1(x, λ)χq−n2(t, λ)

ϕ2(x, λ)χq−n1(t, λ) ϕ2(x, λ)χq−n2(t, λ)

)
, x < t,

(3.6)

we have

(Rq−nf)(x, λ) = y(x, λ) =

∫ q−n

0

Gq−n(x, t, λ)f(t)dqt, λ ∈ C, (3.7)

where y(x, λ) =

(
y1(x, λ)
y2(x, λ)

)
and f(·) =

(
f1(·)
f2(·)

)
∈ H. Hence we have

Gq−n(x, t, λ)f(t)

=



(
χq−n1(x, λ)ϕ1(t, λ)f1(t) + χq−n1(x, λ)ϕ2(t, λ)f2(t)

χq−n2(x, λ)ϕ1(t, λ)f1(t) + χq−n2(x, λ)ϕ2(t, λ)f2(t)

)
, t ≤ x(

ϕ1(x, λ)χq−n1(t, λ)f1(t) + ϕ1(x, λ)χq−n2(t, λ)f2(t)

ϕ2(x, λ)χq−n1(t, λ)f1(t) + ϕ2(x, λ)χq−n2(t, λ)f2(t)

)
, x < t.

The function Gq−n(x, t, λ) is called the Green function and the operator Rq−n is
called the resolvent operator of the regular boundary value problem (3.1)-(3.4).

From (3.7), we have

y1(x, λ)

= qχq−n1(x, λ)

∫ x

0

(ϕ1(qt, λ)f1(qt) + ϕ2(qt, λ)f2(qt))dqt

+ qϕ1(x, λ)

∫ q−n

x

(χq−n1(qt, λ)f1(qt) + χq−n2(qt, λ)f2(qt))dqt,

(3.8)

y2(x, λ)

= qχq−n2(x, λ)

∫ x

0

(ϕ1(qt, λ)f1(qt) + ϕ2(qt, λ)f2(qt))dqt

+ qϕ2(x, λ)

∫ ∞
x

(χq−n1(qt, λ)f1(qt) + χq−n2(qt, λ)f2(qt))dqt.

(3.9)

Now, we shall show that (3.7) satisfies the equation Dqy1 + r(x)y2 = λy2 + f2(x).
From (3.8), it follows that

Dqy1(x, λ) = qDqχq−n1(x, λ)

∫ x

0

(ϕ1(qt, λ)f1(qt) + ϕ2(qt, λ)f2(qt))dqt

+ qDqϕ1(x, λ)

∫ q−n

x

(χq−n1(qt, λ)f1(qt) + χq−n2(qt, λ)f2(qt))dqt

+Wq(ϕ, χq−n)f2(x) = q {λ− r(x)}χq−n2(x, λ)
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×
∫ x

0

(ϕ1(qt, λ)f1(qt) + ϕ2(qt, λ)f2(qt))dqt

+ q{λ− r(x)}ϕ2(x, λ)

×
∫ q−n

x

(χq−n1(qt, λ)f1(qt) + χq−n2(qt, λ)f2(qt))dqt+ f2(x)

= {λ− r(x)}qχq−n2(x, λ)

∫ x

0

(ϕ1(qt, λ)f1(qt) + ϕ2(qt, λ)f2(qt))dqt

+ {λ− r(x)}qϕ2(x, λ)

×
∫ q−n

x

(χq−n1(qt, λ)f1(qt) + χq−n2(qt, λ)f2(qt))dqt+ f2(x)

= {λ− r(x)} y2(x, λ) + f2(x).

The validity of the equality − 1
qDq−1y2 + p(x)y1 = λy1 + f1(x) is proved similarly.

We check at once that (3.7) satisfies the boundary conditions (3.3)-(3.4).

4. Integral representation of the resolvent operator

In this section, by using Levitan’s technique [20], we will give the integral rep-
resentation of the resolvent operator.

In [8], the authors prove that the boundary value problem given by (3.1)-(3.2)
with the boundary conditions (3.3)-(3.4) has a compact resolvent, thus it has a
purely discrete spectrum.

Let λm,q−n (m ∈ Z := {0,±1,±2, . . . } and

ϕm,q−n(x) =

(
ϕm,q−n1(x)
ϕm,q−n2(x)

)
be the eigenvalues and eigenfunctions, respectively of problem (3.1)-(3.4), and

α2
m,q−n =

∫ q−n

0

‖ϕm,q−n(x)‖2Edqx.

If f(·) ∈ L2
q((0, q

−n);E), then we have∫ q−n

0

‖f(x)‖2Edqx =
∞∑

m=−∞

1

α2
m,q−n

∣∣∣ ∫ q−n

0

(f(x), ϕm,q−n(x))Edqx
∣∣∣2

which is called the Parseval equality.
Now let us define the non-decreasing step function %q−n on (−∞,∞) by

%q−n(λ) =

−
∑
λ<λm,q−n<0

1
α2
m,q−n

, for λ ≤ 0∑
0≤λm,q−n<λ

1
α2
m,q−n

for λ ≥ 0.
(4.1)

The function %q−n is called the spectral function of the regular boundary value
problem (3.1)-(3.4). Then the Parseval equality can be written as∫ q−n

0

‖f(x)‖2Edqx =

∫ ∞
−∞

F 2(λ)d%q−n(λ),

where

F (λ) =

∫ q−n

0

(f(x), ϕ(x, λ))Edqx.
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Next we will prove a lemma, but first, we recall some definitions. A function f
defined on an interval [a, b] is said to be of bounded variation if there is a constant
C > 0 such that

n∑
k=1

|f(xk)− f(xk−1)| ≤ C

for every partition of [a, b] by points of subdivision x0, x1, . . . , xn with

a = x0 < x1 < · · · < xn = b . (4.2)

Let f be a function of bounded variation. Then the total variation of f on [a, b]
is denoted by

V ba (f) := sup

n∑
k=1

|f(xk)− f(xk−1)|,

where the least upper bound is taken over all (finite) partitions (4.2) of the interval
[a, b] (see [19]).

Lemma 4.1. For any positive κ, there is a positive constant Υ = Υ(κ) not de-
pending on q−n such that

V κ−κ{%q−n(λ)} =
∑

−κ≤λm,q−n<κ

1

α2
m,q−n

= %q−n(κ)− %q−n(−κ) < Υ. (4.3)

Proof. Let sinα 6= 0. Since ϕ2(x, λ) is continuous at zero, by condition ϕ2(0, λ) =
− sinα, there is a positive number δ nearby 0 such that(1

δ

∫ δ

0

ϕ2(x, λ)dqx
)2

>
1

2
sin2 α. (4.4)

Let us define fδ(x) =

(
f1δ(x)
f2δ(x)

)
, where f1δ(x) = 0 and

f2δ(x) =

{
1/δ, 0 ≤ x ≤ δ
0, x > δ.

From the Parseval equality and (4.4), we obtain∫ δ

0

(f21δ(x) + f22δ(x))dqx =
1

δ
=

∫ ∞
−∞

(1

δ

∫ δ

0

φ2(x, λ)dqx
)2
d%q−n(λ)

≥
∫ κ

−κ

(1

δ

∫ δ

0

φ2(x, λ)dqx
)2
d%q−n(λ)

>
1

2
sin2 α{%q−n(κ)− %q−n(−κ)},

which proves (4.3).

If sinα = 0, then we define fδ(x) =

(
f1δ(x)
f2δ(x)

)
where f2δ(x) = 0 and

f1δ(x) =

{
1
δ2 , 0 ≤ x ≤ δ
0, x > δ .

Thus we obtain the inequality (4.3) by applying the Parseval equality. �
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Now we obtain an expansion into a Fourier series of the resolvent if one knows
the expansion of the function f(·). By q-integration by parts, we find∫ q−n

0

[( 0 − 1
qDq−1

Dq 0

)(
y1
y2

)
+

(
p(x) 0

0 r(x)

)(
y1
y2

)]T
× ϕm,q−n(x)dqx

=

∫ q−n

0

[
− 1

q
Dq−1y2 + p(x)y1

]
ϕm,q−n1(x)dqx

+

∫ q−n

0

[
Dqy1 + p(x)y2

]
ϕm,q−n2(x)dqx

=

∫ q−n

0

[
− 1

q
Dq−1ϕm,q−n2(x) + p(x)y1ϕm,q−n1(x)

]
y2dqx

+

∫ q−n

0

[
Dqϕm,q−n1(x) + p(x)ϕm,q−n2(x)

]
y1dqx

= λm,q−n

∫ q−n

0

ϕTm,q−n(x)y(x, λ)dqx = λm,q−ntm(λ).

(4.5)

For m ∈ Z, we set

y(x, λ) =

∞∑
m=−∞

tm(λ)ϕm,q−n(x), am =

∫ q−n

0

fT (x)ϕm,q−n(x)dqx .

Then we have

am =

∫ q−n

0

fT (x)ϕm,q−n(x)dqx

=

∫ q−n

0

[( 0 − 1
qDq−1

Dq 0

)(
y1
y2

)
+

(
p(x) 0

0 r(x)

)(
y1
y2

)]T
× ϕm,q−n(x)dqx− λ

∫ q−n

0

yT (x, λ)ϕm,q−n(x)dqx

= (λm,q−n − λ)tm(λ), m ∈ Z.

Then, we obtain

tm(λ) =
am

λm,q−n − λ
,

y(x, λ) =

∫ q−n

0

Gq−n(x, t, λ)f(t)dqt =

∞∑
m=−∞

am
λm,q−n − λ

ϕm,q−n(x).

Hence the expansion of the resolvent is

(Rq−nf)(x, z) =

∞∑
m=−∞

ϕm,q−n(x)
∫ q−n
0

fT (t)ϕm,q−n(t)dqt

α2
m,q−n(λm,q−n − z)

=

∫ ∞
−∞

ϕ(x, λ)

λ− z

{∫ q−n

0

fT (t)ϕm,q−n(t, λ)dqt
}
d%q−n(λ).

(4.6)



8 B. P. ALLAHVERDIEV, H. TUNA EJDE-2020/03

Lemma 4.2. Let z be a non-real number and x be a fixed number. Then∫ ∞
−∞

‖ϕ(x, λ)‖2E
|z − λ|2

d%q−n(λ) < K. (4.7)

Proof. Putting f(t) = ϕm,q−n(t) in (4.6), we obtain

1

αm,q−n

∫ q−n

0

Gq−n(x, t, z)ϕm,q−n(t)dqt =
ϕm,q−n(x)

αm,q−n(λm,q−n − z)
, (4.8)

since the eigenfunctions ϕm,q−n(x) are orthogonal. Using (4.8), if we apply the
Parseval equality to Gq−n(x, t, z), we obtain∫ q−n

0

‖Gq−n(x, t, z)‖2Edqt =

∞∑
m=−∞

‖ϕm,q−n(x)‖2E
α2
m,q−n |λm,q−n − z|2

=

∫ ∞
−∞

‖ϕ(x, λ)‖2E
|z − λ|2

d%q−n(λ).

Since the last integral is convergent by Lemma 3.1, the proof is complete. �

Now we recall a well-known theorems by Helly.

Theorem 4.3 ([19]). Let (wn)n∈N be a uniformly bounded sequence of real non-
decreasing functions on a finite interval a ≤ λ ≤ b. Then there exists a subsequence
(wnk)k∈N and a non-decreasing function w such that

lim
k→∞

wnk(λ) = w(λ), a ≤ λ ≤ b.

Theorem 4.4 ([19]). Assume that (wn)n∈N is a real, uniformly bounded, sequence
of non-decreasing functions on a finite interval a ≤ λ ≤ b, and suppose that

lim
n→∞

wn(λ) = w(λ), a ≤ λ ≤ b.

If f is any continuous function on a ≤ λ ≤ b, then

lim
n→∞

∫ b

a

f(λ)dwn(λ) =

∫ b

a

f(λ)dw(λ).

By Lemma 4.1, the set {%q−n(λ)} is bounded. Using Lemma 4.2 and Theorem
4.3, we can find a sequence {q−nk} such that the functions %q−nk (λ) (nk → ∞)
converge to a monotone function %(λ). The function %(λ) is called the spectral
function of the singular boundary value problem (3.1)-(3.3) on [0,∞).

Lemma 4.5. Let z be a non-real number and x be a fixed number. Then∫ ∞
−∞

‖ϕ(x, λ)‖2E
|z − λ|2

d%(λ) ≤ K. (4.9)

Proof. By inequality (4.7), for arbitrary η > 0, we have∫ η

−η

‖ϕ(x, λ)‖2E
|z − λ|2

d%q−n(λ) < K.

Letting η →∞ and n→∞, we obtain the desired result. �

Lemma 4.6. For arbitrary η > 0, we have the inequalities∫ −η
−∞

d%(λ)

λ2
<∞,

∫ ∞
η

d%(λ)

λ2
<∞. (4.10)
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Proof. Since ‖ϕ(0, λ)‖2E 6= 0, putting x = 0 in (4.9), we obtain∫ ∞
−∞

d%(λ)

|z − λ|2
<∞,

which completes the proof. �

Lemma 4.7. Let f(·) ∈ H and

(Rf)(x, z) =

∫ ∞
0

G(x, t, z)f(t)dqt,

where

G(x, t, z) =

{
χ(x, z)ϕT (t, z), t ≤ x
ϕ(x, z)χT (t, z), t > x.

Then ∫ ∞
0

‖(Rf)(x, z)‖2Edqx ≤
1

v2

∫ ∞
0

‖f(x)‖2Edqx, z = u+ iv.

Proof. From (4.6) and the Parseval equality, we obtain∫ q−n

0

‖(Rf)(x, z)‖2Edqx

=

∞∑
m=−∞

1

α2
m,q−n |λm,q−n − z|2

∣∣∣ ∫ q−n

0

fT (t)ϕm,q−n(t)dqt
∣∣∣2

≤ 1

v2

∞∑
m=−∞

1

α2
m,q−n

∣∣∣ ∫ q−n

0

fT (t)ϕm,q−n(t)dqt
∣∣∣2

=
1

v2

∫ q−n

0

‖f(t)‖2Edqt.

Letting n→∞, we obtain the desired result. �

The function G(x, t, z) is called the Green function and the operator R is called
the resolvent operator of the singular boundary value problem (3.1)-(3.3) on [0,∞).
Now we obtain the integral representations for the resolvent.

Theorem 4.8. For every non-real z and for each f(·) ∈ H, one has

(Rf)(x, z) =

∫ ∞
−∞

ϕ(x, λ)

λ− z
F (λ)d%(λ), (4.11)

where

F (λ) = lim
ξ→∞

∫ q−ξ

0

fT (x)ϕ(x, λ)dqx.

Proof. Let the function fξ(x) vanish outside the interval [0, q−ξ] (where q−ξ < q−n)
and satisfy the boundary condition (3.3). Let a be an arbitrary positive number.
Set

Fξ(λ) =

∫ q−ξ

0

fTξ (x)ϕ(x, λ)dqx.
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From (4.6), we obtain

(Rq−nfξ)(x, z) =

∫ ∞
−∞

ϕ(x, λ)

λ− z
Fξ(λ)d%q−n(λ)

=

∫ −a
−∞

ϕ(x, λ)

λ− z
Fξ(λ)d%q−n(λ) +

∫ a

−a

ϕ(x, λ)

λ− z
Fξ(λ)d%q−n(λ)

+

∫ ∞
a

ϕ(x, λ)

λ− z
Fξ(λ)d%q−n(λ)

= I1 + I2 + I3.

(4.12)

Now we estimate I1. By (4.6), we obtain

‖I1‖E = ‖
∫ −a
−∞

ϕ(x, λ)

λ− z
Fξ(λ)d%q−n(λ)‖E

= ‖
∑

λk,q−n<−a

ϕk,q−n(x)
∫ q−ξ
0

fTξ (x)ϕk,q−n(x)dqx

α2
k,q−n(λk,q−n − z)

‖E

≤ (
∑

λk,q−n<−a

‖ϕk,q−n(x)‖2E
α2
k,q−n |λk,q−n − z|2

)1/2

×
( ∑
λk,q−n<−a

1

α2
k,q−n

∣∣∣ ∫ q−ξ

0

fTξ (x)ϕk,q−n(x)dqx
∣∣∣2)1/2.

(4.13)

By q-integration by parts, we have∫ q−ξ

0

fTξ (x)ϕk,q−n(x)dqx

=
1

λk,q−n

∫ q−ξ

0

fξ1(x)
{
− 1

q
Dq−1ϕk,q−n2(x) + p(x)ϕk,q−n1(x)

}
dqx

+
1

λk,q−n

∫ q−ξ

0

fξ2(x){Dqϕk,q−n1(x) + r(x)ϕk,q−n2(x)}dqx

=
1

λk,q−n

∫ q−ξ

0

ϕk,q−n1(x){−1

q
Dq−1fξ2(x) + p(x)fξ1(x)}dqx

+
1

λk,q−n

∫ q−ξ

0

ϕk,q−n2(x){Dqfξ1(x) + r(x)fξ2(x)}dqx.

(4.14)

By Lemma 4.2, we have

‖I1‖E ≤
K1/2

a

( ∑
λk,q−n<−a

1

α2
k,q−n

|
∫ q−ξ

0

hTξ (x)ϕk,q−n(x)dqx|2
)1/2

,

where

hξ(x) =

(
− 1
qDq−1fξ2(x) + p(x)fξ1(x)

Dqfξ1(x) + r(x)fξ2(x)

)
.

By using Bessel’s inequality, we obtain

‖I1‖E ≤
K1/2

a

[ ∫ q−ξ

0

‖hTξ (x)‖2Edqx
]1/2

=
C1

a
.



EJDE-2020/03 RESOLVENT OF SINGULAR q-DIRAC OPERATORS 11

By a similar method, one can prove that ‖I3‖E ≤ C2

a . Then, I1 and I3 tend to zero
as a→∞, uniformly in q−n. By using Theorems 4.3 and 4.4 in (4.12), we obtain

(Rfξ)(x, z) =

∫ ∞
−∞

ϕ(x, λ)

λ− z
Fξ(λ)d%(λ). (4.15)

As is known, if f(·) ∈ H, then one can find a sequence {fξ(x)}∞ξ=1 which satisfies

the previous conditions and tends to f(x) as ξ →∞. From the Parseval’s equality,
the sequence of Fourier transforms converges to the transform of f(·). By Lemmas
4.5 and 4.7, we can pass to the limit as ξ → ∞ in (4.15). Hence the proof is
complete. �

5. Titchmarsh-Weyl function

In this section, we will derive formulas for the Titchmarsh-Weyl function m(z)
and the spectral function %(λ), with the help of the integral representation of the
resolvent.

First, we recall the Stieltjes inversion formula. Let σ(λ) = σ1(λ) + iσ2(λ) be a
complex function of bounded variation on the entire line. We put

ϕ(z) =

∫ ∞
−∞

dσ(λ)

z − λ
,

ψ(σ, τ) =
sgnτ

π

ϕ(z)− ϕ(z)

2i
= − 1

π

∫ ∞
−∞

|τ |dσ(λ)

(λ− σ)2 + τ2
, z = σ + iτ.

Theorem 5.1 ([20]). If a and b are the points of continuity of σ(λ), then we have

σ(b)− σ(a) = − lim
τ→0

∫ b

a

ψ(σ, τ)dσ.

Theorem 5.2. (i) For any non-real z, one has

m(z)−m(z0) =

∫ ∞
−∞

[ 1

λ− z
− 1

λ− z0

]
d%(λ), Im z0 6= 0. (5.1)

(ii) If λ and µ are points of continuity of %(λ), then one has

%(λ)− %(µ) = − 1

π
lim
τ→0

∫ λ

µ

Im{m(σ + iτ)}dσ, z = σ + iτ, τ > 0. (5.2)

Proof. (i) Since f(x) is arbitrary, from (4.11) it follows that

G(x, t, z) =

∫ ∞
−∞

ϕ(x, λ)ϕT (t, λ)

λ− z
d%(λ).

Hence

G(x, t, z)−G(x, t, z0) =

∫ ∞
−∞

ϕ(x, λ)ϕT (t, λ)
[ 1

λ− z
− 1

λ− z0
]
d%(λ). (5.3)

Since both sides in (5.3) are matrices, their corresponding elements are equal. Thus,
by using (3.6) and the definition of the product ϕ(x, λ)ϕT (t, λ), putting x = t = 0,
and then taking the initial conditions (3.5), we obtain

{sinα+m(z) cosα} cosα− {sinα+m(z0) cosα} cosα

=

∫ ∞
−∞

cos2 α
[ 1

λ− z
− 1

λ− z0
]
d%(λ), Im z 6= 0, Im z0 6= 0,
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i.e.,

m(z)−m(z0) =

∫ ∞
−∞

[ 1

λ− z
− 1

λ− z0
]
d%(λ).

(ii) From (5.1), we obtain

ψ(σ, τ) =
sgnτ

π

m(z)−m(z)

2i
= − 1

π

∫ ∞
−∞

|τ |dσ(λ)

(λ− σ)2 + τ2
.

By Theorem 5.1, we have

%(λ)− %(µ) = − lim
τ→0

∫ λ

µ

ψ(σ, τ)dσ. (5.4)

Since m(z) = m(z), it follows that

ψ(σ, τ) =
sgnτ

π

m(z)−m(z)

2i
=
sgnτ

π
Im{m(z)}. (5.5)

For τ > 0, we obtain (5.2) by using (5.4) and (5.5). Thus the theorem is proved. �
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