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STABILITY OF NONLINEAR VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS WITH CAPUTO
FRACTIONAL DERIVATIVE AND BOUNDED DELAYS

SNEZHANA HRISTOVA, CEMIL TUNC

Abstract. We use Lyapunov functions to study stability of the first-order

Volterra integro-differential equation with Caputo fractional derivative

C
t0
Dq

t x(t) = −a(t)f(x(t)) +

Z t

t−r
B(t, s)g(s, x(s))ds+ h(t, x(t), x(t− τ(t))) .

For the Lyapunov functions, we consider three types of fractional derivatives.
By means of these derivatives, we obtain new sufficient conditions for stabil-

ity and uniformly stability of solutions We consider both constant and time
variable bounded delays, and illustrated our results with an example.

1. Introduction

Volterra integral equations and Volterra integro-differential equations were intro-
duced by Vito Volterra, in 1926. Thereafter they have been widely used in sciences
and engineering. They appear in physical applications such as: glass forming pro-
cess, nano-hydrodynamics, heat transfer, diffusion process in general neutron dif-
fusion and in biological species coexisting together with increasing and decreasing
rates of generating, and wind ripple in the desert. More details about the sources
for these equations can be found in physics, biology and engineering books (see for
example [8, 18, 25, 26]).

Fractional calculus relates with calculus of integrals and derivatives of orders
that may not be integers. It has become very popular in recent years because of
its applications to fields of science and engineering, such as mechanics, electricity,
chemistry, biology, economics, and control theory. For instance, it has been used
in diffusion processes, such as those founded in batteries [19], and heat transfer
process [10]. Moreover, these models are often used inside classic control schemes,
and for that reason the whole control system results in a fractional order system. In
these cases, the stability of the whole control system has to be analyzed using the
fractional order techniques [6]. For some recent developments in emerging scientific
areas, namely nanoscience, nonlinear science and complexity, symmetries and inte-
grability, and application of fractional calculus in science, engineering, economics
and finance, we refer the reader to [7, 11]. Nowadays, there are several definitions
of fractional derivatives in the literature, but the three most commonly used are
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Riemann-Liouville, Caputo, and Grünwald-Letnikov (see, for example, [16]). Each
of these definitions has advantages and disadvantages. One of the main advantages
of the Caputo fractional derivative is that it requires an initial condition similar to
the one in ordinary differential case, and that leads to applications modeling real
phenomena.

Time dependent delays appear in many engineering systems such as aircraft,
chemical control systems, laser models, internet, biology, and medicine [12, 13].

One of main qualitative properties of solutions of differential equations is their
stability. There are many methods for studying stability; one of them is called the
Lyapunov direct method and it is applicable in practice to Lyapunov functions and
functionals. In applications to delay differential equations there are two different
types of the Lyapunov methods. One of them was proposed by Krasovskii [14] and
it is based on the application of functionals. The other one was proposed by Razu-
mikhin [17], and it is based on the application of functions and the so called Razu-
mikhin condition. Razumikhin method uses Lyapunov-type functions depending
on the current value of the solution. Krasovskii method uses functionals depending
on all values of the solution over the whole past time interval. Krasovskii’s func-
tionals are applied for various types in integro-differential equations [21, 22, 23].
Nevertheless, it is difficult to apply the Krasovskii theorem to test the stability of
a fractional system with delay, because of the non-locality of the fractional deriva-
tives. Razumikhin method for fractional nonlinear time-delay systems has been
extended recently [20].

There are many papers that study different types of stability and boundedness
of solutions of linear and nonlinear fractional differential equations. However, there
are no papers on the stability of solutions of linear or nonlinear Volterra integro-
differential equations with Caputo fractional derivative and delays. In this pa-
per, we extend and applied the Razumikhin method to Volterra integro-differential
equations with Caputo fractional derivative and two types of delays: constant and
a time-variable delays. To the best of our knowledge, this is the first study of sta-
bility properties of such kind of equations. The presence of fractional derivatives
requires an appropriately defined derivative of Lyapunov functions. In these article
we apply three types of derivatives to obtain sufficient conditions for stability and
uniformly stability of solutions. An example is given to illustrate the applicability
of our results.

In this article we assume q ∈ (0, 1) and we use the Riemann-Liouville fractional
derivative [16],

RL
t0 Dq

tm(t) =
1

Γ(1− q)
d

dt

∫ t

t0

(t− s)−qm(s)ds, t ≥ t0,

where Γ(·) denotes the Gamma function. Also we use the Caputo fractional deriv-
ative [16],

C
t0D

q
tm(t) =

1
Γ(1− q)

∫ t

t0

(t− s)−qm′(s)ds, t ≥ t0.

For a wide class of functions we have the following properties: From [16, Section
2.4.1] we have

C
t0D

qm(t) = RL
t0 Dq[m(t)−m(t0)].
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From [16, Section 2.4.1] we have
C
t0D

qm(t) = RL
t0 Dqm(t), t > t0 if m(t0) = 0,

C
t0D

qm(t) < RL
t0 Dqm(t), t > t0 if m(t0) > 0.

(1.1)

2. Statement of the problem

Let t0 be an arbitrary initial time. The physical meaning of the independent
variable t is time in differential equations, so we will assume t0 ∈ R+ = [0,∞).

We consider the following initial value problem (IVP) for the scalar nonlinear
Volterra integro-differential equation with Caputo fractional derivative and delays
(IFrDDE)

C
t0D

q
tx(t) = −a(t)f(x(t)) +

∫ t

t−r

B(t, s)g(s, x(s))ds+ h(t, x(t), x(t− τ(t))) for t > t0,

x(t0 + Θ) = φ0(Θ) for Θ ∈ [−r, 0], x(t0+) = φ0(0),
(2.1)

where x ∈ R, a : [0,∞) → (0,∞), r > 0 is a given constant, f : R → R, g :
[−r,∞)× R→ R, τ : [0,∞)→ [0, r], h : [0,∞)× R2 → R and φ0 ∈ C([−r, 0],R).

First we give some basic notation related to (2.1) and used throughout this paper.
Let x(t, t0, φ) denote the solution of (2.1) on [t0 − r,∞). For any φ ∈ C([−r, 0],R)
we denote ‖φ‖0 = maxt∈[−r,0] |φ(t)|. We use the class

K = {w ∈ C(R+,R+) : w(s) is strictly increasing and w(0) = 0}.
Next we give the definition for stability of the zero solution of (2.1) with zero

initial function φ0 ≡ 0. This definition is similar to the one in [1].

Definition 2.1. The zero solution of (2.1) with zero initial function is said to be
• stable with respect to t0, if for any number ε > 0 there exists δ = δ(ε, t0) > 0

such that for any initial function φ ∈ C([−r, 0],Rn) : 0 < ‖φ‖0 < δ the
inequality ‖x(t; t0, φ)‖ < ε holds for t ≥ t0;

• uniformly stable, if for any number ε > 0 there exists δ = δ(ε) > 0 such
that for any initial function φ ∈ C([−r, 0],Rn) : 0 < ‖φ‖0 < δ and any
initial time t0 ∈ R+ the inequality ‖x(t; t0, φ)‖ < ε holds for t ≥ t0.

One approach to study various stability properties of solutions of any types of
nonlinear differential equations is based on using Lyapunov functions. The first
step is to define a Lyapunov function. The second step is to define its derivative
along the solution to the studied equation.

3. Lyapunov functions for Caputo fractional differential equations

We will use the well known class of functions called Lyapunov functions [12, 13].

Definition 3.1. Let J = [t0−r, T ), T ≤ ∞, be a given interval, and ∆ ⊂ R, 0 ∈ ∆
be a given set. We will say that the function V (t, x) : J ×∆→ R+ belongs to the
class Λ(J,∆) if V (t, x) is continuous on [t0, T ) × ∆ and it is locally Lipschitzian
with respect to its second argument.

We will give a brief overview of the main three types of derivatives of Lyapunov
functions among Caputo fractional delay differential equations (FrDDE) (for more
details see [1]):

C
t0D

q
tx(t) = F (t, x(t), x(t− τ(t))) for t > t0 (3.1)
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here x ∈ Rn, F : [0,∞)×Rn ×Rn → Rn, F (t, 0, 0) = 0, i.e. the FrDDE (3.1) has a
zero solution for zero initial function.
First type - Caputo fractional derivative. Let x(t) ∈ ∆, t ∈ [t0, T ), be a
solution of the FrDDE (3.1). Then

c
t0D

qV (t, x(t)) =
1

Γ(1− q)

∫ t

t0

(t− s)−q d

ds

(
V (s, x(s))

)
ds, t ∈ (t0, T ) (3.2)

This type of derivative is applicable mainly for quadratic Lyapunov functions to
study some stability properties of fractional differential equations (see [15]).
Second type - Dini fractional derivative. Let the initial point t0 ∈ R+ and
ψ ∈ C([−r, 0],∆) be given. Then

D+
(3.1)V (t, ψ(0); t0) = lim sup

h→0

1
hq

[
V (t, ψ(0))−

[
t−t0

h ]∑
r=1

(−1)r+1
qCrV (t− rh, ψ(0))

− hqF (t, ψ(0), ψ(−τ(0)))
]
, for t ∈ (t0, T ).

(3.3)

This derivative has a memory. The idea of the definition (3.3) is given in [9].
Third type - Caputo fractional Dini derivative. Let the initial data (t0, φ0)
belong to R+ × C([−r, 0],∆) for (3.1) and let the function ψ ∈ C([−r, 0],∆) be
given. Then

c
(3.1)D

q
+V (t, ψ(0); t0, φ0(0)) = lim sup

h→0+

1
hq

{
V (t, ψ(0))− V (t0, φ0(0))

−
[

t−t0
h ]∑

r=1

(−1)r+1
qCr

(
V (t− rh, ψ(0)

− hqF (t, ψ(0), ψ(−τ(0)))− V (t0, φ0(0))
)}

(3.4)

or its equivalent form
c
(3.1)D

q
+V (t, ψ(0); t0, φ0(0))

= lim sup
h→0+

1
hq

{
V (t, ψ(0)) +

[
t−t0

h ]∑
r=1

(−1)r
qCrV (t− rh, ψ(0)

− hqF (t, ψ(0), ψ(−τ(0)))
}
− V (t0, φ0(0))

(t− t0)qΓ(1− q)
.

(3.5)

The Caputo fractional Dini derivative was applied to study different types of sta-
bility of Caputo fractional differential equations without delay in [2]-[5] and for
Caputo delay differential equations in [1] .

Note the number T in the above definitions could be ∞.

Remark 3.2 ([1]). For any initial data (t0, φ0) ∈ R+×C([−r, 0],∆) of the IVP for
IFrDDE (2.1) the relation between the Dini fractional derivative and the Caputo
fractional Dini derivative is given by

c
(3.1)D

q
+V (t, ψ(0); t0, φ0(0)) = D+

(3.1)V (t, ψ(0); t0)− V (t0, φ0(0))
(t− t0)qΓ(1− q)

,
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for t > t0, ψ ∈ C([−r, 0],∆); or
c
(3.1)D

q
+V (t, ψ(0); t0, φ0(0)) = D+

(3.1)V (t, ψ(0); t0)− RL
t0 Dq

(
V (t0, φ0(0))

)
,

for t > t0, φ ∈ C([−r, 0],∆) (compare with (1.1)).

In our proofs we will use Razumikhin method combined with the above defined
fractional derivatives of Lyapunov functions to study some qualitative properties
of IFrDDE (2.1). For this purpose, we will use some stability results for Caputo
fractional differential equations with delays obtained in [1]. In the case of Caputo
fractional derivative we will use the following result.

Lemma 3.3 ([1]). Assume there exists a function V ∈ Λ([−r,∞),R+) such that
(i) a(‖x‖) ≤ V (t, x) ≤ b(‖x‖) for t ∈ R+, x ∈ R, where a, b ∈ K;
(ii) for any initial data (t0, φ) ∈ R+ × C([−r, 0],R and any point s > t0 such

that V (s+ Θ, x(s+ Θ)) < V (s, x(s)) for Θ ∈ [−r, 0) we have
c
t0D

qV (t, x(t)) ≤ 0, t ∈ (t0, s], (3.6)

where x(t) = x(t; t0, φ) is the corresponding solution of (3.1).
Then the zero solution of (3.1) with zero initial function is uniformly stable.

Corollary 3.4. Let the conditions in Lemma 3.3 be satisfied with (ii) replaced by
(ii*) there exists an initial time t0 ≥ 0 such that for any initial function φ ∈

C([−r, 0],R) and any point s > t0 such that V (s+Θ, x(s+Θ)) < V (s, x(s))
for Θ ∈ [−r, 0) , inequality (3.6) holds.

Then the zero solution of (3.1) with zero initial function is stable with respect to
t0.

If the Dini fractional derivative is applied then we will use the following result.

Lemma 3.5 ([1]). Assume there exists a function V ∈ Λ([−r,∞),R+) such that
(i) a(‖x‖) ≤ V (t, x) ≤ b(‖x‖) for t ∈ R+, x ∈ R, where a, b ∈ K;
(ii) for any initial time t0 ≥ 0 and any function ψ ∈ C([−r, 0],R+) such that

if for a point t ≥ t0 we have V (t + Θ, ψ(Θ)) < V (t, ψ(0)) for Θ ∈ [−r, 0),
then we have

D+
(3.1)V (t, ψ; t0) ≤ 0 . (3.7)

Then the zero solution of (3.1) with zero initial function is uniformly stable.

Corollary 3.6. Let the conditions in Lemma 3.5 be satisfied with (ii) replaced by
(ii**) there exists an initial time t0 ≥ 0 such that for any function φ ∈ C([−r, 0],R+):

if for a point t ≥ t0 we have V (t + Θ, φ(Θ)) < V (t, φ(0)) for Θ ∈ [−r, 0),
then (3.7) holds.

Then the zero solution of (3.1) with zero initial function is stable with respect to
t0.

In the case of the Caputo fractional Dini derivative the following result will be
applied.

Lemma 3.7 ([1]). Assume there exists a function V ∈ Λ([τ,∞),R+) such that
V (t, 0) = 0 for t ∈ R+ and

(i) a(‖x‖) ≤ V (t, x) ≤ b(‖x‖) for t ∈ R+, x ∈ Rn : |x| ≤ ρ, where a, b ∈ K;
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(ii) for any initial data (t0, φ) ∈ R+ × C([−r, 0],R)) and any function ψ ∈
C([−r, 0],R) such that if for a point t ≥ t0 we have V (t + Θ, ψ(Θ)) <
V (t, ψ(0)) for Θ ∈ [−r, 0), then

c
(3.1)D

q
+V (t, ψ(0); t0, φ(0)) ≤ 0 . (3.8)

Then the zero solution of (3.1) with zero initial function is uniformly stable.

Corollary 3.8. Let the conditions of Lemma 3.7 be satisfied with (ii) replaced by

(ii***) there exists an initial time t0 ≥ 0 such that for any initial function φ ∈
C([−r, 0],R) and any function ψ ∈ C([−r, 0],R) such that if for a point
t ≥ t0 we have V (t + Θ, ψ(Θ)) < V (t, ψ(0)) for Θ ∈ [−r, 0), then (3.8)
holds.

Then the zero solution of (3.1) with zero initial function is stable with respect to
t0.

4. Stability of the Caputo fractional integro-differential equations
with delays

In this section we will use Razumikhin method combined with the above defined
fractional derivatives of Lyapunov functions to study some qualitative properties of
(2.1). We will obtain several types of explicit conditions for stability with respect
to a given initial time as well as uniform stability of zero solution. We use the
following assumptions:

(H1) a ∈ C([0,∞), (0,∞)) and there exists a positive constant a0 such that
a(t) ≥ a0 for t ≥ 0.

(H2) f, g ∈ C(R,R), f(0) = 0, g(0) = 0 and there exist positive constants m0,M0

such that xf(x) ≥M0x
2 and g2(x) ≤ m0x

2 for x ∈ R.
(H3) B ∈ C([−r,∞)× [−r,∞),R) and B(t, s) ≥ 0 for s ≤ t.
(H4) τ belongs to C([0,∞), [0, r]).
(H5) h ∈ C([0,∞)×R2,R) is such that h(t, 0, 0) = 0 for t ≥ 0 and there exists a

function λ ∈ C([0,∞), [0,∞)) such that for any x1, x2, y1, y2 ∈ R, we have

|h(t, x1, y1)− h(t, x2, y2)| ≤ λ(t)(]x1 − x2|+ |y1 − y2|), t ≥ 0 .

Theorem 4.1. Assume (H1)–(H5) are satisfied and

2M0a(t) ≥ (1 +m0)
∫ t

t−r

B(t, s)ds+ 4λ(t), t ≥ 0 . (4.1)

Then the zero solution of (2.1) is uniformly stable.

Proof. We use the Lyapunov function V (t, x) = x2. Consider an arbitrary initial
data (t0, φ0) ∈ R+ × C([−r, 0],R). Let x(t) = x(t; t0, φ0) be the corresponding
solution of the IVP for (2.1). Let the point t > t0 be such that V (t+ Θ, x(t+ s)) <
V (t, x(t)) for s ∈ [−r, 0), i.e. (x(t + s))2 < (x(t))2 for s ∈ [−r, 0). Then using
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x2 + y2 ≥ 2xy, x, y ∈ R, we obtain

c
t0D

qV (t, x(t))

≤ 2x(t) c
t0D

qx(t)

= −2a(t)x(t)f(x(t)) + 2x(t)
∫ t

t−r

B(t, s)g(x(s))ds

+ 2x(t)h(t, x(t), x(t− τ(t)))

≤ −2a(t)M0(x(t))2 + x2(t)
∫ t

t−r

B(t, s)ds+
∫ t

t−r

B(t, s)g2(x(s))ds

+ 2λ(t)|x(t)|
(
|x(t)|+ |x(t− τ(t))|

)
≤ −2a(t)M0(x(t))2 + x2(t)

∫ t

t−r

B(t, s)ds+m0

∫ t

t−r

B(t, s)(x(s))2ds

+ 3λ(t)x2(t) + λ(t)x2(t− τ(t))

≤ −
(

2a(t)M0 − (1 +m0)
∫ t

t−r

B(t, s)ds− 4λ(t)
)

(x(t))2 ≤ 0.

(4.2)

From (4.1) and Lemma 3.3, the zero solution of (2.1) is uniformly stable. �

Theorem 4.2. Assume (H1)–(H5) are satisfied and there exists a function p ∈
C(R+, (0,∞)) such that 0 < C1 ≤ p(t) ≤ C2, C1, C2 are positive constants, and for
any t0 ≥ 0 ,

2M0a(t) ≥
∫ t

t−r

B(t, s)ds+m0p(t)
∫ t

t−r

B(t, s)
p(s)

ds+
RL
t0 Dqp(t)
p(t)

+ λ(t)
(

3 +
p(t)

p(t− τ(t))

)
, for t ≥ t0 .

(4.3)

Then the zero solution of (2.1) is uniformly stable.

Remark 4.3. Note that if the function p(t) in Theorem 4.2 is such that RL
t0 Dqp(t) ≥

0 for any t0 ≥ 0 then from (4.3) it follows (4.1). Therefore, if (4.1) is not satisfied,
to obtain stability of the zero solution of (2.1) we need a function p(t) such that
the RL

t0 Dqp(t) is not non-negative. Such kind of functions are, for example, p(t) =
1.1 + cos(t) or p(t) = 0.1 + cos2(t).

Proof of Theorem 4.2. Let (4.3) hold but (4.1) is not satisfied. Then we use the
Lyapunov function V (t, x) = p(t)x2. In this case the Caputo fractional derivative
of the Lyapunov function is difficult to obtain because of Leibniz rule in fractional
case. Therefore, we use the Dini fractional derivative. Let t0 ≥ 0 be an arbitrary
initial time and φ ∈ C([−r, 0],R). Let t ≥ t0 be such that V (t+s, φ(s)) < V (t, φ(0)),
s ∈ [−r, 0), i.e. p(t+ s)

(
φ(s)

)2
< p(t)

(
φ(0))2 for s ∈ [−r, 0).
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Therefore, using the substitution s− t = ξ we obtain∫ t

t−r

B(t, s)g2(φ(s− t))ds

≤ m0

∫ t

t−r

B(t, s)φ2(s− t)ds = m0

∫ 0

−r

B(t, t+ ξ)
p(t+ ξ)

p(t+ ξ)(φ(ξ))2dξ

≤ m0

∫ 0

−r

B(t, t+ ξ)
p(t+ ξ)

p(t)(φ(0))2dξ = m0p(t)(φ(0))2
∫ 0

−r

B(t, t+ ξ)
p(t+ ξ)

dξ

= m0p(t)(φ(0))2
∫ t

t−r

B(t, s)
p(s)

ds

(4.4)

Then using x(t + s) = φ(s), s ∈ [−r, 0], x(t − τ(t)) = φ(−τ(t)), x(ξ) = φ(ξ − t),
ξ ∈ [t− r, t], the substitution t− s = ξ and (4.4) we obtain

D+
(2.1)V (t, φ; t0)

= 2φ(0)p(t)
(
− a(t)f(φ(0)) +

∫ t

t−r

B(t, s)g(φ(s− t))ds+ h(t, φ(0), φ(−τ(t)))
)

+ (φ(0))2 RL
t0 Dqp(t)

≤ −2φ(0)p(t)a(t)f(φ(0)) + p(t)
∫ t

t−r

B(t, s)
(

2φ(0)g(φ(s− t))
)
ds

+ (φ(0))2 RL
t0 Dqp(t) + 2λ(t)p(t)(φ(0))2 + 2λ(t)p(t)|φ(0)‖φ(−τ(t))|

≤ −2p(t)a(t)M0(φ(0))2 + p(t)φ2(0)
∫ t

t−r

B(t, s)ds+ p(t)
∫ t

t−r

B(t, s)g2(φ(s− t))ds

+ (φ(0))2 RL
t0 Dqp(t) + 3λ(t)p(t)(φ(0))2 + λ(t)

p(t)
p(t− τ(t))

p(t− τ(t))φ2(−τ(t))

≤
(
− 2a(t)M0 +

∫ t

t−r

B(t, s)ds+m0p(t)
∫ t

t−r

B(t, s)
p(s)

ds

+
RL
t0 Dqp(t)
p(t)

+ λ(t)(3 +
p(t)

p(t− τ(t))
)
)
p(t)(φ(0))2.

From the above inequality, (4.3), and Lemma 3.5 the zero solution of (2.1) is uni-
formly stable. �

Theorem 4.4. Assume (H1)–(H6) are satisfied and there exist an initial time t0
and a function p ∈ C(R+, (0,∞)) such that 0 < C1 ≤ p(t) ≤ C2, C1, C2 are positive
constants, and (4.3) holds. Then the zero solution of (2.1) is stable w.r.t. t0.

The proof of the above theorem is similar to that of Theorem 4.2, with the
application of Corollary 3.6 instead of Lemma 3.5. We omit it.

Remark 4.5. Note the proofs of Theorems 4.2 and 4.4 could be done by using
Caputo fractional Dini derivative of Lyapunov function V (t, x) = p(t)x2 and Lemma
3.7 applying Remark 3.2.
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Example 4.6. Consider the IVP for the IFrDDE

C
0 D

0.9
t x(t) = −

( 0.7
1.01− | cos(t+ 0.7)|

− 0.5
)

log
(x(t) + 0.5

0.5− x(t)

)
+ 0.05

∫ t

t−1

cos2(s)x(s)ds+
0.25
t+ 10

x(t− t

1 + t
) for t > 0,

x(Θ) = φ(Θ) for Θ ∈ [−1, 0],

(4.5)

where x ∈ R, φ ∈ C([−1, 0],R), a(t) = 0.7
1.01−| cos(t+0.7)| − 0.5, f(x) = log(x+0.5

0.5−x ),
B(t, s) = 0.5 cos2(s), g(x) = 0.1x. The IVP for (4.5) with zero initial function has
a zero solution. Condition (H1) is satisfied with a0 = 0.1; while (H2) is satisfied
with m0 = 0.01, M0 = 1 (see Figure 1). (H4) is satisfied since τ(t) = t

1+t ∈ [0, 1].
(H5) is satisfied with λ(t) = 0.25

t+10 . Since 0.5
∫ t

t−1
cos2(s)ds = 1

8 (2 + sin(2 − 2t) +
sin(2t)) inequality (4.1) is reduced to 2M0a(t) = ς(t) = 1.4

1.01−| cos(t+0.7)| − 1 ≥
1.01

∫ t

t−1
B(t, s)ds+ 4λ(t) = ξ(t) and it is not satisfied for t ≥ 0 (see Figure 3).

Figure 1. Functions a(t) and 0.1 (left); functions xf(x) and
0.01x2 (right).

Figure 2. Functions ξ(t) and ς(t) (left); function η(t) (right).

Now, consider the function p(t) = (1 + cos2t). The graph of the fractional

derivative η(t) =
RL
t0

D0.9
t (1+cos2t)

1+cos2t with t0 = 0 is given on Figure 2. Also, the
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inequality

2M0a(t)

= ς(t) =
1.4

1.01− | cos(t+ 0.7)|
− 1

≥
∫ t

t−1

B(t, s)ds+m0(1 + cos2t)
∫ t

t−1

B(t, s)
(1 + cos2s)

ds+
RL
0 D0.9

t (1 + cos2t)
1 + cos2t

+ λ(t)(3 +
p(t)

p(t− τ(t))
)

=
1
8

(2 + sin(2− 2t) + sin(2t)) + 0.5m0(1 + cos2 t)
∫ t

t−1

cos2 s
(1 + cos2 s)

ds

+
RL
0 D0.9

t (1 + cos2t)
1 + cos2t

+
0.25
t+ 10

(
3 +

(1 + cos2t)
(1 + cos2(t− t

1+t ))

)
= η(t)

(4.6)

holds (see Figure 3), i.e. (4.3) is satisfied for t0 = 0.

Figure 3. Functions ς(t) and η(t) (left); functions 2 0.7
1−| cos(t+0.7)|

and ξ(t) (right).

By Theorem 4.4, the zero solution of (4.5) is stable with respect to the initial
time t0 = 0. Note if a(t) = 0.7

1.01−| cos(t+0.7)| , then the inequality (4.1) is satisfied
(see Figure 3) and by Theorem 4.1 the zero solution of (4.5) is uniformly stable.
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