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BIFURCATION OF SOLUTIONS FROM INFINITY FOR
CERTAIN NONLINEAR EIGENVALUE PROBLEMS OF

FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS
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Communicated by Paul H. Rabinowitz

Abstract. In this article, we study the global bifurcation from infinity of non-
linear eigenvalue problems for ordinary differential equations of fourth order.

We prove the existence of unbounded continua of solutions emanating from

asymptotically bifurcation points and intervals and having the usual nodal
properties near these points and intervals.

1. Introduction

We consider the nonlinear eigenvalue problem

`y ≡ (py′′)′′ − (qy′)′ + r(x)y = λτy + h(x, y, y′, y′′, y′′′, λ), x ∈ (0, l), (1.1)

y′(0) cosα− (py′′)(0) sinα = 0, y(0) cosβ + Ty(0) sinβ = 0,

y′(l) cos γ + (py′′)(l) sin γ = 0, y(l) cos δ − Ty(l) sin δ = 0,
(1.2)

where λ ∈ R is a spectral parameter, Ty ≡ (py′′)′ − qy′, p is positive, twice contin-
uously differentiable function on [0, l], q is nonnegative, continuously differentiable
function on [0, l], r is real-valued continuous function on [0, l], τ is positive con-
tinuous function on [0, l] and α, β, γ, δ ∈ [0, π/2]. The nonlinear term h has the
form h = f + g, where f and g are real-valued continuous functions on [0, l]× R5,
satisfying the conditions: there exists M > 0 and sufficiently large c0 > 0 such that∣∣f(x, y, s, v, w, λ)

y

∣∣ ≤M,

x ∈ [0, l], y, s, v, w ∈ R, |y|+ |s|+ |v|+ |w| ≥ c0, λ ∈ R;
(1.3)

for any bounded interval Λ ⊂ R

g(x, y, s, v, w, λ) = o(|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → ∞, (1.4)

uniformly for x ∈ [0, l] and λ ∈ Λ.
In nonlinear analysis an important role is played by bifurcation theory of nonlin-

ear eigenvalue problems. The study of bifurcation of nonlinear eigenvalue problems
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has an applied interest since problems of this type arise in almost all fields of nat-
ural science (see, for example, [3, 4, 5, 6, 12, 18]). Recently, in this direction have
been obtained fundamental results for a wide class of eigenvalue problems which
are reflected in [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 18, 21, 22, 24, 25, 26, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 39] and some others.

In studying the global bifurcation of solutions of nonlinear eigenvalue problems
for ordinary differential equations, the nodal properties of the solutions allow a
more detailed analysis of the structure and behavior of connected components of a
set of nontrivial solutions. The oscillatory properties for the eigenfunctions of the
ordinary differential operators of the second and higher orders by various methods
were investigated by Sturm [38], Kellogg [19, 20], Prüfer [27], Gantmakher and
Kerin [15], Karlin [17], Levin and Stepanov [23], Elias [13], Banks and Kurowski
[7].

If the continuous functions f and g on [0, l]× R5 satisfy the conditions

∣∣f(x, y, s, v, w, λ)
y

∣∣ ≤M, x ∈ [0, l], 0 < |y| ≤ 1, |s|, |v|, |w| ≤ 1, λ ∈ R, (1.5)

g(x, y, s, v, w, λ) = o(|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → 0, (1.6)

uniformly for x ∈ [0, l] and λ ∈ Λ, then we can consider bifurcation from y = 0.
Similar problems for Sturm-Liouville equation have been considered before by Ra-
binowitz [30], Berestycki [8], Schmitt and Smith [36], Rynne [33], Ma and Dai
[25]. These authors prove the existence of two families of global continua of solu-
tions in R× C1, corresponding to the usual nodal properties and bifurcating from
the eigenvalues and intervals (in R × {0}, which we identify with R) surrounding
the eigenvalues of the corresponding linear problem. In [3, 4, 5, 6], some elastic-
ity models were studied that include higher-order differential equations and nodal
properties. In these papers, using the nodal properties, were obtained similar global
bifurcation results for the solutions of the considered mathematical models. Sim-
ilar results were also demonstrated in [35] for nonlinear eigenvalue problems for a
special class of ordinary differential equations of 2mth order. But until recently
it was not possible to obtain similar results for the problem (1.1)-(1.2) under the
conditions (1.5) and (1.6).

Note that in nonlinear eigenvalue problems for ordinary differential equations
of fourth order, the nodal properties of the solutions need not be preserved along
continua, so it is not possible to investigate in detail the structure and behavior of
global continua of solutions using the techniques of [30, Theorem 2.3]. Przybycin
[29], Lazer and McKenna [22], Rynne [34, 35], Ma and Thompson [26] obtained re-
sults similar to the results by Rabinowitz [30, Theorem 2.3], for nonlinear eigenvalue
problems of fourth order (in the case of f ≡ 0). In these papers for the nonlinear
term g is used the smallness condition at y = 0 of the form g(x, y, s, v, w, λ) = o(|y|)
to obtain the preservation of nodal properties.

In recent papers by Aliyev [2], the global bifurcation of solutions of problem
(1.1)-(1.2) (in the case of r ≡ 0) under the conditions (1.5) and (1.6) is completely
investigated. To preserve the nodal properties in [2] by using an extension of the
Prüfer transformation, the author constructed sets Sνk , k ∈ N, ν = {+,−}, of
functions in Banach space E = C3[0, l] ∩ B.C. with the usual norm ‖ · ‖3, where
‖y‖i =

∑i
j=0 ‖y(j)‖∞, i ∈ N, ‖y‖∞ = maxx∈[0,l] |y(x)|, B.C. is the set of functions
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satisfying boundary conditions (1.2), that have the nodal properties of eigenfunc-
tions of the linear problem (1.1)-(1.2) with h ≡ 0 and their derivatives [2, §3.1].
In this paper (see also [1]) the existence of two families of unbounded continua of
solutions of problem (1.1)-(1.2) contained in these sets and bifurcating from the
points and intervals of the line of trivial solutions is proved.

If condition (1.3) and (1.4) hold, then we can consider bifurcation from y =
∞. Similar problems for Sturm-Liouville equation have been considered by Toland
[39], Stuart [37], Rabinowitz [31], Przbycin [28], Rynne [32, 33], Ma and Dai [25].
For such problems these authors show the existence of two families of unbounded
continua of solutions bifurcating from the points and intervals in R × {∞} and
having the usual nodal properties in the neighborhood of these points and intervals.
(However, the proofs of these assertions carried out in [25, Theorems 2.2 and 2.3]
and [28, Theorem 2] contain gaps. In these papers the nonlinear term f has a
sublinear growth with respect to y satisfying |y| > c0 and |y′| > c0. It follows
from proofs of these theorems that if the solution (λ, y) is near to the bifurcation
interval (in R × {∞}) corresponding to the kth eigenvalue of the linear Sturm-
Liouville problem and is contained in a connected component of nontrivial solutions
emanating from this interval, then the function y has exactly k − 1 simple zeros
in (0, l). But it is obvious that this function y can not satisfy the conditions
|y| > c0 and |y′| > c0 for k > 1.) It should be noted that only Przybycin [29] for
a special class of nonlinear fourth order eigenvalue problems (in the case of f ≡ 0)
demonstrates a similar result using the smallness condition at y = ∞ of the form
g(x, y, s, v, w, λ) = o(|y|) for the nonlinear term g.

The purpose of this paper is to study the bifurcation of solutions of problem
(1.1)-(1.2) in the cases: (i) f ≡ 0 and for g only the condition (1.4) holds; (ii) f ≡ 0
and for g both of the conditions (1.4) and (1.6) hold; (iii) f 6≡ 0 and for f and g
the conditions (1.3) and (1.4) hold, respectively.

This paper is arranged as follows. In Section 2, we give some statements for
the problem (1.1)-(1.2) under conditions (1.5) and (1.6), which we will need in the
sequel. In Section 3 the existence of two families of unbounded continua of solutions
of problem (1.1)-(1.2) with f ≡ 0 under the condition (1.4), bifurcating from infinity
and having usual nodal properties in a neighborhood of infinity is proved. In Section
4, problem (1.1)-(1.2) with f ≡ 0 is considered when both conditions (1.4) and
(1.5) hold. In Section 5, by extending the approximation technique from [8] and
combining it with the global bifurcation results in [2, 11, 30, 33], we prove the
existence of global sets of solutions of problem (1.1)-(1.2) bifurcating from intervals
(in R× {∞}) which are similar to those obtained in [31, 33].

2. Preliminary results

By [2, Theorem 1.2] the eigenvalues of the linear problem

`(y)(x) = λτ(x)y(x), x ∈ (0, l),
y ∈ B.C. , (2.1)

are real and simple and form an infinitely increasing sequence {λk}∞k=1. Moreover,
for each k ∈ N the eigenfunction yk(x) corresponding to the eigenvalue λk lies in
Sk (therefore yk(x) has k − 1 simple nodal zeros in the interval (0, l)).

Lemma 2.1 ([2, Lemma 2.2]). If y ∈ ∂Sνk , k ∈ N, ν ∈ {+,−}, then y(x) has at
least one zero with multiplicity four on the interval [0, l].
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Let C ⊂ R×E denote the set of solutions of problem (1.1)-(1.2). We say (λ,∞)
is a bifurcation point (or asymptotic bifurcation point) for problem (1.1)-(1.2) if
every neighborhood of (λ,∞) contains solutions of this problem, i.e. there exists a
sequence {(λn, un)}∞n=1 ⊂ C such that λn → λ and ‖un‖3 → +∞ as n → ∞ (we
add the points {(λ,∞) : λ ∈ R} to space R × E). Next for any λ ∈ R, we say
that a subset D ⊂ C meets (λ,∞) (respectively, (λ, 0)) if there exists a sequence
{(λn, un)}∞n=1 ⊂ D such that λn → λ and ‖un‖3 → +∞ (respectively, ‖un‖3 → 0)
as n→∞. Furthermore, we will say that D ⊂ C meets (λ,∞) (respectively, (λ, 0))
through R×Sνk , k ∈ N, ν ∈ {+,−}, if the sequence {(λn, un)}∞n=1 ⊂ D can be chosen
so that un ∈ Sνk for all n ∈ N (in this case we also say that (λ,∞) (respectively,
(λ, 0)) is a bifurcation point of (1.1)-(1.2) with respect to the set R×Sνk ). If I ∈ R
is a bounded interval we say that D ⊂ C meets I ×{∞} (respectively, I ×{0}) if D
meets (λ,∞) (respectively, (λ, 0)) for some λ ∈ I; we define D ⊂ C meets I × {∞}
(respectively, I × {0}) through R× Sνk , k ∈ N, ν ∈ {+,−}, similarly (see [33]).

We suppose that the conditions (1.5) and (1.6) hold. Then we have the following
results.

Theorem 2.2. Let f ≡ 0. Then for each k ∈ N and each ν ∈ {+,−} there exists
a continuum Lνk of solutions of problem (1.1)-(1.2) in (R × Sνk ) ∪ {(λk, 0)} which
meets (λk, 0) and ∞ in R× E.

Lemma 2.3. For each k ∈ N and each ν ∈ {+,−} the set of bifurcation points for
problem (1.1)-(1.2) with respect to the set R× Sνk is nonempty.

Lemma 2.4. If (λ, 0) is a bifurcation point for problem (1.1)-(1.2) with respect to
the set R × Sνk , k ∈ N, ν ∈ {+,−}, then λ ∈ Ik, where Ik = [λk − M

τ0
, λk − M

τ0
],

τ0 = minx∈[0,l] τ(x).

For each k ∈ N and each ν ∈ {+,−}, let D̃ν
k denote the union of all the connected

components Dν
k,λ of C emanating from bifurcation points (λ, 0) ∈ Ik × {0} with

respect to R× Sνk . Let Dν
k = D̃ν

k ∪ (Ik × {0}). Note that Dν
k is a connected subset

of R× E, but D̃ν
k is not necessarily connected in R× E.

Theorem 2.5. For each k ∈ N and each ν ∈ {+,−} the connected component Dν
k

of C lies in (R× Sνk ) ∪ (Ik × {0}) and is unbounded in R× E.

The proofs of Theorem 2.2, Lemmas 2.3 and 2.4 and Theorem 2.5 are similar to
those of [2, Theorem 1.1], [2, Lemmas 5.3, 5.4] and [2, Theorem 1.3], respectively,
by using [2, Theorem 1.2].

3. Global bifurcation from infinity of solutions of problem (1.1)-(1.2)
for f ≡ 0

Throughout this section we assume that only condition (1.4) holds. For any set
A ⊂ R× E we let PR(A) denote the natural projection of A onto R× {0}.

Theorem 3.1. For each k ∈ N and each ν ∈ {+,−} there exists a connected
component Cνk of C which meets (λk,∞) and has the following properties:

(i) there exists a neighborhood Qk of (λk,∞) in R× E such that

Qk ∩ (Cνk\(λk,∞)) ⊂ R× Sνk ;

(ii) either Cνk meets Cν′k′ through R× Sν′k′ for some (k′, ν′) 6= (k, ν), or Cνk meets
(λ, 0) for some λ ∈ R, or PR(Cνk ) is unbounded.
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Proof. Assume that λ = 0 is not an eigenvalue of (2.1). Then problem (1.1)-(1.2)
can be converted to the equivalent integral equation

y(x) = λ

∫ l

0

K(x, t)τ(t)y(t)dt+
∫ 1

0

K(x, t) g(t, y(t), y′(t), y′′(t), y′′′(t), λ)dt, (3.1)

where K(x, t) is the Green’s function for the differential expression `(y) with bound-
ary conditions (1.2). Hence, it is sufficient to search for solution of (1.1)-(1.2) in
R× E.

Let the operator L : E → E be defined by

(Ly)(x) =
∫ l

0

K(x, t)τ(t)y(t)dt,

and G : R× E → E by

(G(λ, y))(x) =
∫ l

0

K(x, t)g(t, y(t), y′(t), y′′(t), y′′′(t), λ)dt.

Hence the problem (3.1) can be rewritten in the following form

y = λLy +G(λ, y). (3.2)

It is clear that L is compact and linear in E and has characteristic values λ1, . . . , λk,
. . . , which are the eigenvalues of the linear problem (2.1). The map G is continuous
on R × E. Using (1.4) and following the corresponding arguments carried out in
the proof of [31, Theorem 2.4], we can show that

G(λ, y) = o(‖y‖3) at y =∞, (3.3)

uniformly on bounded λ-intervals and ‖y‖23G(λ, y
‖y‖23

) ≡ H(λ, y) is compact in E.

For any nontrivial (λ, y) ∈ R × E setting v = y
‖y‖23

, we have ‖v‖3 = 1
‖y‖3 and

y = v
‖v‖23

. Dividing (3.2) by ‖y‖23 yields the equation

v = λLv +H(λ, v). (3.4)

Let H(λ, 0) = 0. By our basic assumptions the operator H : R × E → E is
continuous and satisfy

H(λ, v) = o(‖v‖3) at v = 0, (3.5)

uniformly on bounded λ-intervals.
The transformation (λ, y) → T (λ, y) = (λ, v) which was used in the papers

[31, 33, 37, 39] turns a bifurcation from infinity problem (3.2) into a bifurcation
from zero problem (3.4). By (3.5) the global bifurcation results in [11] and [30] are
applicable to problem (3.4).

Let C̃ ⊂ R×E be the set of nontrivial solutions of problem (3.4). By construction,
the transformation (λ, y) → T (λ, y) maps C into C̃ and, heuristically, interchanges
points at y = ∞ (respectively, y = 0) with points at v = 0 (respectively, v = ∞).
By [11, Theorem 2] and [30, Lemmas 1.24, 1.27 and Theorem 1.40] for each k ∈ N
and each ν ∈ {+,−} there exists a connected component C̃νk of C̃ with meets (λk, 0)
and has the following properties: (a) there exists a neighborhood Q̃k of (λk, 0) in
R × E such that Q̃k ∩

(
C̃νk\(λk, 0)

)
⊂ R × Sνk ; (b) either C̃νk meets C̃ν′k′ respect to

R×Sν′k′ for some (k′, ν′) 6= (k, ν), or C̃νk is unbounded in R×E (that is, there exists
a sequence (λk,n, vk,n) ∈ C̃νk , n = 1, 2, 3, . . . , such that |λk,n| + ‖vk,n‖3 → +∞ as
n→∞). Then Cνk and Qk are the inverse image T−1(C̃νk ) of C̃νk and T−1(Q̃k) of Q̃k
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under the transformation T respectively. Thus the statements (i) and (ii) of the
theorem follows from properties (a) and (b) of C̃νk respectively (second and third
alternatives in part (ii) of the theorem for correspond, via T , to the various ways
in which Cνk can be unbounded).

Next, using the above ideas, together with an approximation argument (see [31,
p. 468]) we can show that the statements of this theorem are true also in the
degenerate case in which 0 is an eigenvalue of linear problem (2.1). The proof is
complete. �

Remark 3.2. Unlike in the case of bifurcation from zero in Theorem 2.2, for
bifurcation from infinity it need not be the case that Cνk ⊂ (R × Sνk ) ∪ {(λk,∞)},
in Theorem 3.1.

Example 3.3. We consider the following nonlinear eigenvalue problem (see [29])

y(4)(x) = λ(y(x) + 1), x ∈ (0, π), y(0) = y(π) = y′′(0) = y′′(π) = 0. (3.6)

The eigenvalues of the linear eigenvalue problem

y(4)(x) = λy(x) x ∈ (0, π), y(0) = y(π) = y′′(0) = y′′(π) = 0 (3.7)

are λ 6= k4, k ∈ N, and corresponding eigenfunctions are sin kx, k ∈ N.
For λ 6= k4, k ∈ N, the solution of problem (3.6) is unique and given by

yλ(x) = −1 + cos 4
√
λx+

1− cos 4
√
λπ

sin 4
√
λπ

sin 4
√
λx.

If k odd, then yλ(x)→∞ as λ→ k4, and if k is even, then yλ(x)→ −1 + cos kx ≡
yk4(x). In addition to the solution (k4, yk4), the problem (3.6) has also the family
of solutions of the form (k4, yk4 + c sin kx), c ∈ R. Hence, we have

C+1 = {(λ, yλ) : λ ∈ (0, 1)} ∪ {(0, 0)} ∪ {(1,∞)}

and

C−1 =
{

(λ, yλ) : λ ∈ (1, 81)} ∪ {(16, yλ + c sin 2x) : c ∈ R}
∪ {(1,∞)} ∪ {(16,∞)} ∪ {(81,∞)}.

Consequently, C+1 6⊂ ((R × S+
1 ) ∪ {(1,∞)}) and C−1 6⊂ ((R × S−1 ) ∪ {(1,∞)}).

Moreover, C−1 meets Cν2 , ν ∈ {+,−}, as well as C+3 .

Remark 3.4. If for each λ ∈ R there is an x such that g(x, 0, 0, 0, 0, λ) 6= 0 then
the second alternative in part (ii) of the Theorem 3.1 cannot hold.

If we impose some additional conditions on the function g we can obtain stronger
results on the structure of the set of solutions of problem (1.1)-(1.2).

Corollary 3.5. If additionally we assume that

g(x, u, s, v, w, λ) = g1(x, u, s, v, w, λ)u+ g2(x, u, s, v, w, λ)s

+ g3(x, u, s, v, w, λ)v + g3(x, u, s, v, w, λ)w

where g1, g2, g3 and g4 are continuous at (u, s, v, w) = (0, 0, 0, 0), then Cνk\Qk con-
tains a subcontinuum lying in R×Sνk and which is unbounded or meets R = R×{0}.
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Proof. It follows from Theorem 3.1 that (C+k ∩ Qk) ⊂ (R × S+
k ) ∪ {(λk,∞)}. We

denote by H+
k the maximal subcontinuum of C+k lying in R×S+

k . If H+
k is bounded,

then there exists (λ, y) ∈ ∂H+
k ∩ (R × ∂S+

k ). Hence by Lemma 2.1 the function
y has at least one zero of multiplicity 4. Then it follows by [2, Lemma 1.1] that
y ≡ 0. The proof of corollary is complete. �

Example 3.6. Consider the nonlinear eigenvalue problem

y(4)(x) = λy(x) + λg̃(y(x))y(x), 0 < x < l,

y(0) = y′′(0) = y(l) = y′′(l) = 0,
(3.8)

where g̃(t) = −1 if |t| ≤ 1, g̃(t) = 0 if |t| ≥ 2 and g̃(t) is linear if 1 < |t| <
2. Note that problem (3.8) has no nontrivial solution (λ, y) such that ‖y‖3 ≤ 1.
Hence this problem has no bifurcation points respect to the line of trivial solutions.
Consequently, for each k ∈ N and each ν ∈ {+,−} the set Cνk\Qk contains an
unbounded subcontinuum lying in R× Sνk .

The following example shows that the second alternative of Corollary 3.5 holds.

Example 3.7. Now we consider the boundary value problem

y(4)(x) = λ(1 + (1 + y2(x))−1)y(x), 0 < x < l,

y(0) = y′′(0) = y(l) = y′′(l) = 0.
(3.9)

Let (λ̃, ỹ(x)) be a solution of problem (3.9). Then (λ̃, ỹ(x)) is an eigenpair of the
linear spectral problem

y(4)(x) = λ(1 + (1 + ỹ2(x))−1)y(x), 0 < x < l,

y(0) = y′′(0) = y(l) = y′′(l) = 0.
(3.10)

By [2, Theorem 1.2] we have ỹ ∈ ∪∞m=1Sm. Let now ỹ ∈ Sk. Then it follows
by [2, Theorem 1.2] that λ̃ is the k-th eigenvalue of linear problem (3.10). It is
obvious that λ̃ > 0. By the max-min property of eigenvalues [19, Ch. 6, §4]), the
k-th eigenvalue λ̃k of problem (3.10) is determined from the relation

λ̃k = max
V (k−1)

min
y ∈B.C.

{
R̃[y] :

∫ l

0

y(x)ϕ(x)dx = 0, ϕ(x) ∈ V (k−1)
}
, (3.11)

where R̃(y) is the Rayleigh quotient

R̃[y] =

∫ l
0
{y′′2(x)− λ̃ρ̃(x)y2(x)}dx∫ l

0
y2(x)dx

, ρ̃(x) =
1

1 + ỹ2(x)
, (3.12)

and V (k−1) is any arbitrary set of k−1 linearly independent functions ϕj(x) ∈ B.C.,
1 ≤ j ≤ k − 1.

It is obvious that the k-th eigenvalue of problem (3.7) (with π replaced by l) is
characterized as

λk = max
V (k−1)

min
y∈B.C.

{
R[y] :

∫ l

0

y(x)ϕ(x)dx = 0, ϕ(x) ∈ V (k−1)
}
, (3.13)

where

R[y] =

∫ l
0
y′′2(x)dx∫ l

0
y2(x)dx

. (3.14)
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For any choice of V (k−1) from (3.12) and (3.14) we obtain

R[y]− λ̃ ≤ R̃[y] ≤ R[y].

Hence it follows from (3.11) and (3.13) that

λk − λ̃ ≤ λ̃k ≤ λk,

which implies (by virtue of λ̃k = λ̃) that

λk
2
≤ λ̃ ≤ λk.

Thus, we have shown that if (λ̃, ỹ) ∈ R × Sk is a solution of problem (3.9), then
λ̃ ∈ [λk2 , λk]. Hence Cνk lies in [λk2 , λk]× Sνk .

Let {(λk,n, yk,n)}∞n=1 ⊂ R × Sνk be a sequence of solutions of problem (3.9)
converges to (λ̂, 0) in R × E. Setting vn = yk,n

‖yk,n‖3 we obtain that vn satisfies the
relations

v(4)
n (x) = λk,n(1 + (1 + y2

k,n(x))−1)vn(x), 0 < x < l,

vn(0) = v′′n(0) = vn(l) = v′′n(l) = 0.
(3.15)

Since vn is bounded in C3[0, l], 1 + 1
1+y2

k,n
is bounded in C[0, l], it follows from

(3.15) that vn is bounded in C4[0, l]. Therefore, by the Arzelà-Ascoli theorem, we
may assume that vn → v in C3[0, l]; ‖v‖3 = 1. Moreover, v ∈ Sνk = Sνk ∪ ∂Sνk .
Since ‖v‖3 = 1 it follows from [2, Lemma 1.1] that v ∈ Sνk . Passing to the limit as
n→∞ in (3.15) we obtain

v(4)(x) = 2λ̂v(x), 0 < x < l,

v(0) = v′′(0) = v(l) = v′′(l) = 0.

Since v ∈ Sνk it follows from [2, Theorem 1.1] that 2λ̂ is a k-th eigenvalue of the
linear problem

y(4)(x) = λy(x), 0 < x < l,

y(0) = y′′(0) = y(l) = y′′(l) = 0,

which implies that λ̂ = λk
2 . Therefore, Cνk meets R at (λk2 , 0).

Corollary 3.8. If g is as in Corollary 3.5 with gi(x, 0, 0, 0, 0, λ) = 0, i = 1, 2, 3, 4,
and Cνk meets R, then it does so at (λk, 0).

Proof. The point at which Cνk meets R corresponds to an eigenvalue of problem
(2.1). But the only point (λm, 0) which can be the limit of elements (λ, y) with
y ∈ Sνk is (λk, 0). The proof of this corollary is complete. �

It should be noted that this fact is also true in the more general case (see Theorem
4.1).

4. Global bifurcation from zero and infinity of solutions of problem
(1.1)-(1.2) for f ≡ 0

If f ≡ 0 and for g the conditions (1.4) and (1.6) both hold then we can improve
Theorems 2.2 and 3.1 as follows.
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Theorem 4.1. Let f ≡ 0 and the conditions (1.4) and (1.6) both hold. Then
for each k ∈ N and each ν ∈ {+,−} we have Cνk ⊂ R × Sνk and the first part of
alternative (ii) of Theorem 3.1 cannot hold. Furthermore, if Lνk meets (λ,∞) for
some λ ∈ R, then λ = λk. Similarly, if Cνk meets (λ, 0) for some λ ∈ R, then
λ = λk.

Proof. It follows from [2, Lemma 1.1] that if condition (1.4) holds, then C ∩ (R ×
∂Sνk ) = ∅. Hence the sets C ∩ (R × Sνk ) and C\(R × Sνk ) are mutually separated
in R × E (see [40, Definition 26.4]). Thus it follows by [40, Corollary 26.6] that
any component of C must be a subset of one or another of these sets. Since Cνk is a
component of C which intersect R × Sνk , then Cνk must be a subset of R × Sνk , i.e.
Cνk ⊂ R × Sνk . But this shows that the first part of alternative (ii) of Theorem 3.1
cannot hold.

Now suppose that Lνk meets (λ,∞) for some λ ∈ R. Then there exists a sequence
{(λk,n, yk,n)}∞n=1 ⊂ Lνk such that λk,n → λ and ‖yk,n‖3 →∞ as n→∞ and

yk,n = λk,nLyk,n +G(λk,n, yk,n).

Let vk,n = yk,n
‖yk,n‖3 , so ‖vk,n‖3 = 1. Dividing this equality by ‖yk,n‖3 shows that

vk,n satisfies

vk,n = λk,nLvk,n +
G(λk,n, yk,n)
‖yk,n‖3

.

Then it follows from the compactness of operator L and the condition (3.3) that
there exists a subsequence of the sequence {(λk,n, vk,n)}∞n=1 (which we will relabel
as {(λk,n, vk,n)}∞n=1) which converges in R × E to (λ, v). Letting n → ∞ in the
above equality we obtain

v = λLv.

Hence (λ, v) is eigenpair of problem (2.1) and v lies in the closure of Sνk . Since
‖v‖3 = 1 it follows from [2, Lemma 1.1] that v ∈ Sνk . Then by [2, Theorem 1.2] we
have λ = λk and v = νyk. Thus Lνk can only meet (λ,∞) if λ = λk. Similarly is
proved that Cνk can only meet (λ, 0) if λ = λk. The proof is complete. �

The naturally question arises whether or not Lνk intersects Cνk . The following
examples show that, both cases are possible.

Example 4.2. Now we consider the boundary problem

y(4)(x) = λy(x) + λf(x, y(x), y′(x), y′′(x), y′′′(x))y(x), 0 < x < l,

y(0) = y′′(0) = y(l) = y′′(l) = 0,
(4.1)

We assume that f satisfies the following conditions:
(i) there exist positive constants K, d and θ such that

|f(x, u, s, v, w)| ≤ K(|u|+ |s|+ |v|+ |w|)−θ

for all (x, u, s, v, w) ∈ [0, l]× R4 with |u|+ |s|+ |v|+ |w| ≥ d;
(ii) f is continuous in [0, l]× R4 and f(x, 0, 0, 0, 0) = 0 for x ∈ [0, l].

These two conditions ensure that for g(x, u, s, v, w, λ) = λf(x, u, s, v, w) conditions
(1.4) and (1.6) both hold.

Since λ1 > 0 (in this case λ1 = l
π ), for the location of continua Lν1 and Cν1 , ν ∈

{+,−}, we have the following results.
(a) If f(x, u, s, v, w) ≥ 0 for (x, u, s, v, w) ∈ [0, l]×R4 and (λ, y) ∈ L1 ∪ C1, then

0 < λ < λ1. Indeed, if (λ, y) be a solution of (4.1), then multiplying both sides of
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equation in (4.1) by y and integrating this relation from 0 to l, using the formula
for the integration by parts, and taking into account boundary conditions in (4.1),
we obtain∫ l

0

(y′′(x))2dx = λ

∫ l

0

{
1 + f(x, y(x), y′(x), y′′(x), y′′′(x))

}
y2(x)dx,

which implies that λ > 0. If (λ, y) be a solution of (4.1) and y ∈ S1, then

y(4)(x)− λf(x, y(x), y′(x), y′′(x), y′′′(x))y(x) = λy(x), 0 < x < l,

y(0) = y′′(0) = y(l) = y′′(l) = 0,
(4.2)

which implies that λ is the first eigenvalue of the problem

v(4)(x)− λr1(x)v(x) = µv(x), 0 < x < l,

v(0) = v′′(0) = v(l) = v′′(l) = 0,
(4.3)

where r1(x) = f(x, y(x), y′(x), y′′(x), y′′′(x)) ≥ 0. The first eigenvalue of problem
(4.3) can be characterized as

µ1 = min
v∈B.C.

∫ l
0
v′′2(x)dx− λ

∫ l
0
r1(x)v2(x)dx∫ l

0
v2(x)dx

.

Since λ > 0 and r1(x) ≥ 0, x ∈ [0, l], it follows from the above equality that

λ = µ1 < min
v∈B.C.

∫ l
0
v′′2(x)dx∫ l

0
v2(x)dx

= λ1 .

Therefore, for Cν1 , first alternative in part (ii) of Theorem 3.1 cannot hold. Hence
by Theorem 4.1 the set Cν1 must be unbounded in [0, λ1]×E and so must bifurcate
from (λ1, 0). Also by Theorem 2.2 and 4.1 the set Lν1 must approach (λ1,∞). Hence
Lν1 ∩ Cν1 6= ∅.

(b) If f(x, u, s, v, w) ≤ 0 for (x, u, s, v, w) ∈ [0, l]×R4 and (λ, y) ∈ L1 ∪ C1, then
λ > λ1. Indeed, in this case r1(x) ≤ 0, x ∈ [0, l], and consequently, we have

λ = µ1 = min
v∈B.C.

∫ l
0
v′′2(x)dx− λ

∫ l
0
r1(x)v2(x)dx∫ l

0
v2(x)dx

=

∫ l
0
y′′2(x)dx− λ

∫ l
0
r1(x)y2(x)dx∫ l

0
y2(x)dx

>

∫ l
0
y′′2(x)dx∫ l

0
y2(x)dx

≥ min
v ∈B.C.

∫ l
0
v′′2(x)dx∫ l

0
v2(x)dx

= λ1.

Let f(x, u, s, v, w) = f1(u2 + s2 + v2 + w2), where f1(z) = −z if |z| ≤ 1, f1(z) =
−1 if 2 < |z| < 3, f1(z) = − 16

z if |z| ≥ 4 and is continuous for all z. Then
Cν1 = {

(
c2

c2−16 , c sinx
)

: νc ≥ 4} and Lν1 =
{(

1
1−c2 , c sinx

)
: 0 ≤ νc ≤ 1

}
. Thus

Lν1 ∩Cν1 = ∅. Moreover, for each ν ∈ {+,−} the continua Lν1 and Cν1 are unbounded
in R× E and lies in [λ1,∞)× Sν1 .
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5. Global bifurcation from infinity of solutions of problem (1.1)-(1.2)

Throughout this section we assume that f 6≡ 0 and the conditions (1.3) and (1.4)
are satisfied.

Recall that to study the bifurcation from infinity of the solutions of problem
(1.1)-(1.2), as in the papers [31, 33, 37, 39] we use the inversion (λ, y)→ T (λ, y) =
(λ, y
‖y‖23

) which transforms the bifurcation from infinity problem (1.1)-(1.2) to the
corresponding bifurcation from zero problem. But in this case the set {y ∈ E :
|y| + |y′| + |y′′| + |y′′′| ≥ c0} is not transformed to the set of the form {v ∈ E :
|y|+ |y′|+ |y′′|+ |y′′′| ≤ r0} for some sufficiently small r0 > 0. Consequently, it is
impossible to apply Theorem 2.5. Therefore, we need the following result to solve
this problem.

Lemma 5.1. There exists functions f∗, g∗ ∈ C
(
[0, l]× R5

)
such that h can be also

represented in the form h = f∗ + g∗, and f∗, g∗ satisfy the conditions:∣∣f∗(x, u, s, v, w, λ)
u

∣∣ ≤M, (x, u, s, v, w, λ) ∈ [0, l]× R5, u 6= 0; (5.1)

g∗(x, u, s, v, w, λ) = o(|u|+ |s|+ |v|+ |w|), as |u|+ |s|+ |v|+ |w| → ∞, (5.2)

uniformly in x ∈ [0, l] and in λ ∈ Λ, for any bounded interval Λ ⊂ R.

Proof. Let U = (u, s, v, w) ∈ R4 and |U | = |u|+ |s|+ |v|+ |w|. Suppose that ζ(U)
is a continuous function in R4, 0 ≤ ζ ≤ 1, such that

ζ(U) =

{
0 for |U | ≤ c0,
1 for |U | ≥ c0 + κ0,

where κ0 is a sufficiently small fixed positive number. Then we can write

f(x, U, λ) = ζ(U)f(x, U, λ) + (1− ζ(U))f(x, U, λ).

Hence the functions

f1(x, U, λ) = ζ(U)f(x, U, λ) and f2(x, U, λ) = (1− ζ(U))f(x, U, λ)

are continuous in [0, l]× R5 and by (1.3) satisfy the following conditions:∣∣f1(x, U, λ)
u

∣∣ ≤M, (x, U, λ) ∈ [0, l]× R5, u 6= 0; (5.3)

f2(x, U, λ) = 0, (x, U, λ) ∈ [0, l]× R5, |U | ≥ c0 + κ0. (5.4)

We define the functions f∗, g∗ : [0, l]× R5 → R as follows:

f∗ = f1, g∗ = g + f2.

Then the function h is represented in the form h = f∗ + g∗, where f∗ and g∗ are
continuous functions in [0, l]×R5 and by virtue of (1.4), (5.3), and (5.4) satisfy the
conditions (5.1) and (5.2), respectively. The proof is complete. �

Recall that if 0 is not an eigenvalue of the linear problem (2.1), then the nonlinear
problem (1.1)-(1.2) is reduced to the equivalent integral equation

y(x) = λ

∫ 1

0

K(x, t) τ(t)y(t)dt+
∫ 1

0

K(x, t)f∗(t, y(t), y′(t), y′′(t), y′′′(t), λ)dt

+
∫ 1

0

K(x, t)g∗(t, y(t), y′(t), y′′(t), y′′′(t), λ) dt.

(5.5)
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Let

F ∗(λ, y)(x)) =
∫ 1

0

K(x, t)f∗(t, y(t), y′(t), y′′(t), y′′′(t), λ)dt, (5.6)

G∗(λ, y)(x) =
∫ 1

0

K(x, t)g∗(t, y(t), y′(t), y′′(t), y′′′(t), λ)dt. (5.7)

Note that F ∗ : R×E → E is completely continuous, G∗ : R×E → E is continuous
and satisfies the condition

G∗(λ, y) = o(‖y‖3) at y =∞, (5.8)

uniformly on bounded λ-intervals. Also, the operator H∗ : (λ, y)→ ‖y‖23 g∗(λ,
y
‖y‖23

)
is compact.

By Lemma 5.1 and (5.5)-(5.7), problem (1.1)-(1.2) can be rewritten in the equiv-
alent form

y = λLy + F ∗(λ, y) +G∗(λ, y). (5.9)

Along with (2.1) we consider the linear spectral problem

`y(x) + ϕ(x)y(x) = λτ(x)y(x), x ∈ (0, l),
y ∈ B.C. , (5.10)

where ϕ(x) ∈ C[0, 1]. We need the following result which is basic in the sequel.

Lemma 5.2. For each k ∈ N it holds

|µk − λk| ≤ K/τ0, (5.11)

where µk is the kth eigenvalue of problem (5.10), K = supx∈[0,l] |ϕ(x)|.

The proof of this lemma is similar to that of [2, Lemma 4.1].

Remark 5.3. Since the class of continuous functions C[0, 1] is dense in L1[0, 1],
Lemma 5.2 also holds for ϕ(x) ∈ L1[0, 1].

To study the bifurcation from infinity of solutions of (1.1)-(1.2), we consider the
approximate problem

`y = λτ(x)y +
f∗(x, ‖y‖ε3y, ‖y‖ε3y′, ‖y‖ε3y′′, ‖y‖ε3y′′′, λ)

‖y‖2ε3
+ g∗(x, y, y′, y′′, y′′′, λ), x ∈ (0, l),

y ∈ B.C. ,

(5.12)

where ε ∈ (0, 1].

Lemma 5.4. Let δ > 0 be the sufficiently small fixed number. Then for each k ∈ N
there exists sufficiently large R∗k > 0 such that for given any ε ∈ (0, 1] problem (5.12)
has no nontrivial solution (λ, y) which satisfied the conditions dist {λ, Ik} > δ,
y ∈ Sνk , ν ∈ {+,−}, and ‖y‖3 > R∗k.

Proof. On the contrary assume that there exists ε0 ∈ (0, 1] and sufficiently large
n0 ∈ N such that for any n ≥ n0 problem (3.3) for ε = ε0 has a nontrivial solution
(λn, yn) satisfying dist{λn, Ik} > δ, yn ∈ Sνk , ν ∈ {+,−}, and ‖yn‖3 > n.
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For each n ≥ n0, we have

`yn = λnτ(x)yn +
f∗(x, ‖yn‖ε03 yn, ‖yn‖

ε0
3 y
′
n, ‖yn‖

ε0
3 y
′′
n, ‖yn‖

ε0
3 y
′′′
n , λn)

‖yn‖2ε03

+ g∗(x, yn, y′n, y
′′
n, y
′′′
n , λn), x ∈ (0, l),

yn ∈ B.C.

(5.13)

We define a function ϕn(x), n ≥ n0, x ∈ [0, l], as follows:

ϕn(x)

=

−
f∗
(
x,‖yn‖

ε0
3 yn(x),‖yn‖

ε0
3 y′n(x),‖yn‖

ε0
3 y′′n(x),‖yn‖

ε0
3 y′′′n (x),λn

)
‖yn‖

2ε0
3 yn(x)

if yn(x) 6= 0,

0 if yn(x) = 0.

Then from (5.13) it follows that (λn, yn), n ≥ n0 solves the nonlinear problem

`y + ϕn(x)y = λτ(x)y + g∗(x, y, y′, y′′, y′′′, λ), x ∈ (0, l),
y ∈ B.C.

(5.14)

From (5.1) we have |ϕn(x)| ≤ M
‖yn(x)‖ε03

≤M , n ≥ n0, x ∈ [0, l]. Since yn(x), n ≥ n0,
has a finite number of zeros on (0, l) and is bounded on the closed interval [0, l],
Remark 5.3 shows that the result of Lemma 5.2 also holds for the linear problem

`y + ϕn(x)y = λτ(x)y, x ∈ (0, l),
y ∈ B.C. (5.15)

Then it follows from (5.11) that the k-th eigenvalue λk,n of the linear problem (5.15)
lies in Ik. By [9, Ch. 4, §3, Theorem 3.1] for each n ≥ n0 the point (λk,n,∞) is
a unique asymptotic bifurcation point of (5.14) which corresponds to a continuous
branch of solutions that meets this point through R×Sνk . Hence for each sufficiently
large n > n0 we can assign a small δn > 0 such that δn < δ and |λn − λk,n| < δn.
Then it follows that dist{λn, Ik} < δ, contradicting dist{λn, Ik} > δ. The proof is
complete. �

Lemma 5.5. For any sufficiently small ε > 0 there exists sufficiently large ρε > 0
such that for λ ∈ Λ, ‖y‖3 > ρε,

|g∗(x, y, y′, y′′, y′′′, λ)| < ε‖y‖3, x ∈ [0, l]. (5.16)

Proof. It follows from (5.2) that for any sufficiently small ε > 0 there exists
sufficiently large %ε > 0 such that for x ∈ [0, l], λ ∈ Λ, (u, s, v, w) ∈ R4, and
|u|+ |s|+ |v|+ |w| > %ε the following relation holds

|g∗(x, u, s, v, w, λ)| < ε(|u|+ |s|+ |v|+ |w|). (5.17)

Moreover, by continuity of g∗ there exists Kε > 0 such that for x ∈ [0, l], λ ∈ Λ and
|u|+ |s|+ |v|+ |w| ≤ %ε,

|g∗(x, u, s, v, w, λ)| ≤ Kε. (5.18)

Let ρε > %ε such that Kε
ρε
< ε and y ∈ E such that ‖y‖3 > ρε. Introduce the sets

A1,ε ⊂ [0, l], A2,ε ⊂ [0, l] (A1,ε ∪A2,ε = [0, l]) defined the following way:

A1,ε = {x ∈ [0, l] : |y(x)|+ |y′(x)|+ |y′′(x)|+ |y′′′(x)| ≤ %ε},
A2,ε = {x ∈ [0, l] : |y(x)|+ |y′(x)|+ |y′′(x)|+ |y′′′(x)| > %ε}.
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If x ∈ A1,ε, λ ∈ Λ, then it follows from (5.18) that

|g∗(x, y(x), y′(x), y′′(x), y′′′(x), λ)| ≤ Kε =
Kε

ρε
ρε < ε ‖y‖3.

Moreover, if x ∈ A2,ε, λ ∈ Λ, then it follows from (5.17) that

|g∗(x, y(x), y′(x), y′′(x), y′′′(x), λ)| < ε
(
|y(x)|+ |y′(x)|+ |y′′(x)|+ |y′′′(x)|

)
≤ ε ‖y‖3.

The proof is complete. �

Let p0 = minx∈[0,l] p(x). For k ∈ N we define the numbers

rk = p−1
0

{
2‖p‖2 + ‖q‖1 + ‖r‖∞ + (|λk|+M/τ0 + 1)‖τ‖∞ +M/R∗k

}
.

Lemma 5.6. Let δ > 0 and εk > 0, k ∈ N, be a sufficiently small fixed num-
ber, and εk < p0

2le(rk+1)l . Then for each k ∈ N there exists a sufficiently large
Rk > max{R∗k, ρεk} such that for any R > Rk problem (1.1)-(1.2) has a solution
(λνR,k, v

ν
R,k) which satisfies conditions dist{λνR,k, Ik} ≤ δ, vνR,k ∈ Sνk , ν ∈ {+,−},

and ‖vνR,k‖3 = R.

Proof. Using (5.9) we can write (5.12) in an equivalent form as follows:

y = λLy + ‖y‖−2ε
3 F ∗(λ, ‖y‖ε3 y) +G∗(λ, y). (5.19)

By (5.1) it follows from (5.6) that

‖F ∗(λ, ‖y‖ε3y)‖3 ≤ C1‖y‖1+ε3 . (5.20)

where C1 = c1M and c1 depends on bounds for K,Kx,Kxx and Kxxx.
In view of (5.20) we have

‖y‖−2ε
3 F ∗(λ, ‖y‖ε3 y) = o(‖y‖3) as ‖y‖3 →∞, (5.21)

uniformly in λ ∈ Λ. Then by (5.8) and (5.21) it follows from Theorem 3.1 that
for each k ∈ N and each ν ∈ {+,−} there exists an unbounded component Cνk,ε of
solutions of (5.19) (or (5.12)) which meets (λk,∞) and there exists a neighborhood
Qk,ε of (λk,∞) such that Qk,ε ∩ (Cνk,ε\(λk,∞)) ⊂ R × Sνk and either Cνk,ε\Qk,ε
is bounded in R × E in which case Cνk,ε\Qk,ε meets R or Cνk,ε\Qk,ε is unbounded
in R × E. Moreover, if Cνk,ε\Qk,ε is unbounded and has a bounded projection on
R, then this set meets (λσ

′

k′ ,∞) through R × Sν′k′ for some (k′, σ′) 6= (k, σ). Hence
by Lemma 5.4 it follows that for any ε ∈ (0, 1) and each R > max{R∗k, ρεk} there
exists a solution (λνR,k,ε, v

ν
R,k,ε) ∈ R×E of (5.12) such that dist{λνR,k,ε, Ik} ≤ δ and

‖vνR,k,ε‖3 = R. Following the proof of Lemma 5.4 one can show that there exists
sufficiently large Rk > max{R∗k, ρεk} such that vνR,k,ε ∈ Sνk , ν ∈ {+,−}, for any
R > Rk.

Let R > Rk be fixed. Since {vνR,k,ε ∈ E : 0 < ε ≤ 1} is a bounded subset
of C3[0, 1], the functions f∗ and g∗ are continuous in [0, 1] × R5, satisfying the
conditions (5.1) and (5.2), and the set {λνR,k,ε ∈ R : 0 < ε ≤ 1} is bounded in R,
it follows from (5.12) that {vνR,k,ε ∈ E : 0 < ε ≤ 1} is also bounded in C4[0, 1].
Hence it is precompact in E by the Arzelà-Ascoli theorem.

Let {εn}∞n=1 ⊂ (0, 1) be a sequence such that εn → 0 and (λνR,k,εn , v
ν
R,k,εn

) →
(λνR,k, v

ν
R,k) as n → ∞. Taking the limit (as n → ∞) in (5.12) we see that
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(λ νR,k, v
ν
R,k) is a solutions of (1.1)-(1.2), i.e. the following relations hold:

`vνR,k = λ νR,k τ(x)vνR,k + f∗(x, vνR,k, (v
ν
R,k)′, (vνR,k)′′, (vνR,k)′′′, λνR,k)

+ g∗(x, vνR,k, (v
ν
R,k)′, (vνR,k)′′, (vνR,k)′′′, λνR,k),

vνR,k ∈ B.C. .
(5.22)

Since vνR,k,εn ∈ S
ν
k it follows that vνR,k ∈ Sνk = Sνk ∪ ∂Sνk . If vνR,k ∈ ∂Sνk , then

by Lemma 2.1 there exists ς ∈ [0, l] such that vνR,k(ς) = (vνR,k)′(ς) = (vνR,k)′′(ς) =

(vνR,k)′′′(ς) = 0. Let wνR,k = vνR,k
‖vνR,k‖3

. Then we have ‖wνR,k‖ = 1. Dividing (5.22)

by ‖vνR,k‖3 shows that wνR,k satisfies the equation

`wνR,k = λ νR,k τ(x)wνR,k +
f∗(x, vνR,k, (v

ν
R)′, (vνR,k)′′, (vνR,k)′′′, λνR,k)
‖vνR,k‖3

+
g∗(x, vνR,k, (v

ν
R,k)′, (vνR,k)′′, (vνR,k)′′′, λνR,k)
‖vνR,k‖3

.

(5.23)

By the relations (5.1) and (5.16) we get∣∣f∗(x, vνR,k, (vνR,k)′, (vνR,k)′′, (vνR)′′′, λνR,k)
‖vνR,k‖3

∣∣ ≤ M

R∗k
|wνR,k|, (5.24)

∣∣g∗(x, vνR,k, (vνR,k)′, (vνR,k)′′, (vνR,k)′′′, λνR,k)
‖vνR,k‖3

∣∣ < εk. (5.25)

In view of (5.24) and (5.25), it is easy to we see from (5.23) that

|(wνR,k)(4)| ≤ rk
(
|wνR,k|+ |(wνR,k)′|+ |(wνR,k)′′|+ |(wνR,k)′′′|

)
+ p−1

0 εk. (5.26)

Let the norm of zνR,k = (wνR,k, (w
ν
R,k)′, (wνR,k)′′, (wνR,k)′′′) in R4 be

|zνR,k| = |wνR,k|+ |(wνR,k)′|+ |(wνR,k)′′|+ |(wνR,k)′′′|.

Then it follows from (5.26) that

|(zνR,k)′| ≤ (rk + 1)|zνR,k|+ p−1
0 εk.

Integrating both sides of this inequality from ς to x we obtain∣∣∫ x

ς

|(zνR)′(t)| dt
∣∣ ≤ (rk + 1)

∣∣∫ x

ς

|zνR(t)| dt
∣∣+ p−1

0 lεk. (5.27)

By |zνR,k(ς)| = 0 it follows from (5.27) that

|zνR,k(x)| =
∣∣∫ x

ς

(zνR,k)′(t)dt
∣∣ ≤ (rk + 1)

∣∣∫ x

ς

|zνR,k(t)| dt
∣∣+ p−1

0 lεk. (5.28)

Using Gronwall’s inequality, from (5.28) we obtain

|zνR,k(x)| ≤ p−1
0 lεke

(rk+1)l <
1
2
, x ∈ [0, l],

which yields the inequality ‖wνR,k‖3 ≤ 1
2 , contradicting ‖wνR,k‖3 = 1. Therefore,

vνR,k 6∈ ∂Sνk which implies that vνR,k ∈ Sνk . The proof is complete. �

Corollary 5.7. The set of asymptotic bifurcation points of problem (1.1)-(1.2) with
respect to the set R × Sνk is nonempty. Moreover, if (λ,∞) is a bifurcation point
for (1.1)-(1.2) with respect to the set R× Sνk , then λ ∈ Ik.
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For each k ∈ N and each ν ∈ {+,−} we define the set Dνk ⊂ C to be the union
of all the components of C which meet Ik × {∞} through R × Sνk . It follows from
Corollary 5.7 that this set is nonempty. The set Dνk may not be connected in R×E,
but the set Dνk ∪ (Ik × {∞}) is connected in R× E.

Remark 5.8. By [2, Lemma 1.1], if (λ, y) is a nontrivial solution of problem (1.1)-
(1.2) in the case when the nonlinear terms f and g satisfies the conditions (1.5) and
(1.6), respectively, and (λ, y) ∈ ∂Sνk , then y ≡ 0. It is clear from the proof of Lemma
5.6 that this assertion does not hold for problem (1.1)-(1.2) under the conditions
(1.3) and (1.4). Consequently, the set Dνk , k ∈ N, ν ∈ {+,−}, can intersect the set
Dν′k′ for some (k′, ν′) 6= (k, ν) outside of the set {(λ, y) ∈ R × E : dist{λ, Ik} ≤
δ, ‖y‖3 > Rk} (see Remark 5.10).

The main result of this article is the following theorem.

Theorem 5.9. For each k ∈ N and each ν ∈ {+,−} for the set Dνk at least one of
the followings holds:

(i) Dνk meets Ik′ × {∞} through R× Sν′k′ for some (k′, ν′) 6= (k, ν);
(ii) Dνk meets R for some λ ∈ R;
(iii) PR(Dνk) is unbounded.

In addition, if the union Dk = D+
k ∪ D

−
k does not satisfy (ii) or (iii) then it must

satisfy (i) with k′ 6= k.

Proof. For any (λ, v) ∈ R×E, v 6= 0, we define the functions f̃(λ, v), g̃(λ, v) ∈ C[0, l]
as follows:

f̃(λ, v)(x) =

{
‖v‖23f∗

(
x, v(x)‖v‖23

, v
′(x)
‖v‖23

, v
′′(x)
‖v‖23

, v
′′′(x)
‖v‖23

, λ
)
, if v(x) 6= 0,

0 if v(x) = 0,

g̃(λ, v)(x) =

{
‖v‖23 g∗

(
x, v(x)‖v‖23

, v
′(x)
‖v‖23

, v
′′(x)
‖v‖23

, v
′′′(x)
‖v‖23

, λ
)
, if v(x) 6= 0,

0 if v(x) = 0,

for x ∈ [0, l]. Because f∗, g∗ ∈ C([0, l]× R5), by (5.1) and (5.17) it follows that the
functions f̃ , g̃ : R×E → C[0, l] are continuous and satisfy the following conditions:

‖f̃(λ, v)‖∞ ≤M‖v‖∞; (5.29)

‖g̃(λ, v)‖∞ = o(‖v‖3), as ‖v‖3 → 0, (5.30)

uniformly in λ ∈ Λ for any bounded interval Λ ⊂ R.
If (λ, y) ∈ R×E, ‖y‖3 6= 0, then dividing (1.1)-(1.2) by ‖y‖23 and setting v = y

‖y‖23
we obtain

`(v)(x) = λτ(x)v(x) + f̃(λ, v)(x) + g̃(λ, v)(x), x ∈ (0, l),
v ∈ B.C.

(5.31)

Note that ‖v‖3 = 1
‖y‖3 and y = v

‖v‖23
. Thus the transformation (λ, y) → T (λ, y) =

(λ, v) turns a bifurcation from infinity problem (1.1)-(1.2) into a bifurcation from
zero problem (5.31). It should be noted that Theorem 2.5 cannot be directly ap-
plied to problem (5.31) in view of Remark 5.8. As equation in (5.31) contains the
nonlinear term f̃ satisfying (5.29) problem (5.31) is not always linearizable in a
neighborhood of zero. Hence we also cannot immediately apply standard global
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bifurcation theory to prove our theorem, as was done in [11, 30]. To deal with this
problem alongside (5.31) we will consider the approximating problem

`(v)(x) = λτ(x)v(x) + f̃(λ, ‖v‖ε3v)(x) + g̃(λ, v)(x), x ∈ (0, l),
v ∈ B.C.,

(5.32)

where ε ∈ (0, 1]. It follows from the above definitions that (5.32) is equivalent to
(5.12). For fixed ε ∈ (0, 1] by (5.29) we have

‖f̃(λ, ‖v‖ε3v)‖∞ = o(‖v‖3) as ‖v‖3 → 0, (5.33)

so the global bifurcation results in [2, 11, 30] are applicable to problem (5.32). Also,
from the proof of Lemma 5.6 it is obvious that (5.32) approximates (5.31) as ε→ 0,
in a suitable sense. We now choose some fixed arbitrary k0 ∈ N and we will prove
the theorem for k = k0 and ν = + (the case of ν = − is considered similarly).

For any k ∈ N, ν ∈ {+,−} and δ,R, % > 0, let

Uνk (δ,R) = {(λ, y) ∈ R× E : dist{λ, Ik} ≤ δ, y ∈ Sνk , ‖y‖3 > R},

Ũνk (δ, %) = {(λ, v) ∈ R× E : dist{λ, Ik} ≤ δ, v ∈ Sνk , ‖v‖3 < %}.
It follows from Lemma 5.6 and Corollary 5.7 that Uνk (0, R) ⊂ Dνk for R = Rk.

Let C̃ ⊂ R× E be the set of nontrivial solutions of (5.31). By construction, the
transformation (λ, y) → T (λ, y) maps C into C̃ and Uνk (δ,R) into Ũνk (δ, %), where
% = 1

R . Let D̃+
k0

be the union of all the components of C̃ which meet Ik0 × {0}
through R × S+

k0
. Then D̃+

k0
= T−1(D+

k0
). Thus to prove the theorem it suffices

to show that the set D̃+
k0

either meets some interval Ik × {0} through R × Sνk
with (k, ν) 6= (k0,+) or is unbounded in R × E (the alternatives (ii) and (iii) of
this theorem for D+

k0
correspond, via T , to the various ways in which D̃+

k0
can be

unbounded).
Now suppose that the assertion of the theorem for D̃+

k0
is not true. Then D̃+

k0
is

bounded and hence we can choose a compact interval Λ0 ⊂ R such that PR(D̃+
k0

)∪
Ik0 is in the interior of Λ0 and Λ0 contains only finitely many intervals Ik with
∂Λ0 ∩ Ik = ∅.

For any δ, % > 0, let

W+
0 (δ, %) = ∪(k,ν) 6=(k0,+)Ũ

ν
k (δ, %)

The set W+
0 (δ, %) is open in R× E, and we denote by W+

0 (δ, %) the closure of this
set. Since Λ0 contains only finitely intervals Ik it follows from Lemmas 5.4 and 5.6
that there exist δ0, %0 > 0 such that

D̃+
k0
∩W+

0 (δ0, %0) = ∅. (5.34)

By following the arguments in [33, Theorem 3.1, p. 151] we can find a neighbor-
hood Q̃+ of D̃+

k0
such that

Ũ+
k0

(δ0, %0) ⊂ Q̃+, Q̃+ ∩W+
0 (δ0, %0) = ∅, ∂Q̃+ ∩ C̃ = ∅. (5.35)

By [30, Theorem 1.3], [11, Theorem 2] and Theorem 2.2 for each fixed ε ∈ (0, 1]
there exists a component D̃+

k0
(ε) ⊂ R×E of nontrivial solutions of problem (5.32)

such that D̃+
k0

(ε) meets (λk0 , 0) through R × S+
k0

and is either D̃+
k0

(ε) unbounded
in R × E or D̃+

k0
(ε) meets (λk, 0) through R × Sνk for some (k, ν) 6= (k0,+). Then

the component D̃+
k0

(ε) intersects both Q̃+ and (R × E)\Q̃+ which implies that
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D̃+
k0

(ε) ∩ ∂Q̃+ 6= ∅. Thus, there exists (λε, vε) ∈ D̃+
k0

(ε) ∩ ∂Q̃+ for all ε ∈ (0, 1].
Since Q̃+ is bounded in R × E, problem (5.32) shows that the set {(λε, vε) ∈
R × E : 0 < ε ≤ 1} is bounded in R × C4[0, l]. Therefore, we can find a sequence
{εn}∞n=1 ⊂ (0, 1) such that εn → 0 and (λεn , vεn) converges in R× E to a solution
(λ̃, ṽ) of (5.31). If ṽ = 0, then by Theorem 3.1 it follows from the proof of Lemma
5.4 that for sufficiently large n ∈ N, (λεn , vεn) ∈ W+

0 (δ0, %0) which contradicts
(5.35). Hence ṽ 6= 0, and consequently, (λ̃, ṽ) ∈ ∂Q̃+ ∩ C̃ that also contradicts
(5.35). The proof is complete. �

Remark 5.10. Unlike Theorem 2.5 for bifurcation from zero, it need not be case
Dνk ⊂ (R× Sνk ) ∪ (Ik × {∞}) in Theorem 3.1 (a counterexample for f ≡ 0 is given
in Example 3.3).
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[27] H. Prüfer; Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen,

Math. Ann., 95 (1926), 499-518
[28] J. Przybycin; Bifurcation from infinity for the special class of nonlinear differential equations,

J.Differential Equations 65(2) (1986), 235-239.

[29] J. Przybycin; Some applications of bifurcation theory to ordinary differential equations of the
fourth order, Ann. Polon. Math., 53 (1991), 153-160.

[30] P. H. Rabinowitz; Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7

(1971), 487-513.
[31] P. H. Rabinowitz; On bifurcation from infinity, J. Differential Equations, 14 (1973), 462-475.

[32] B. P. Rynne; Bifurcation from infinity in nonlinear Sturm-Liouville problems with different

linearizations at ”u = ±∞”, Appl. Anal., 67 (1997), 233-244.
[33] B. P. Rynne; Bifurcation from zero or infinity in Sturm-Liouville problems which are not

linearizable, J. Math.Anal. Appl., 228 (1998), 141-156.

[34] B. P. Rynne; Infinitely many solutions of superlinear fourth order boundary value problems,
Topol. Methods Nonlinear Anal., 19(2) (2002), 303-312.

[35] B. P. Rynne; Global bifurcation for 2mth-order boundary value problems and infinitely many
solutions of superlinear problems, J. Differential Equations, 188(2) (2003), 461-472.

[36] K. Schmitt H. L. Smith; On eigenvalue problems for nondifferentiable mappings, J. Differ-

ential Equations, 33(3) (1979), 294-319.
[37] C. A. Stuart; Solutions of large norm for non-linear Sturm-Liouville problems, Quart. J. of

Math. (Oxford), 24(2) (1973), 129-139.
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