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WEAK SEPARATION LIMIT OF A TWO-COMPONENT
BOSE-EINSTEIN CONDENSATE

CHRISTOS SOURDIS

Communicated by Peter Bates

Abstract. This article studies of the behaviour of the wave functions of a
two-component Bose-Einstein condensate in the case of weak segregation. This

amounts to the study of the asymptotic behaviour of a heteroclinic connection

in a conservative Hamiltonian system of two coupled second order ODE’s, as
the strength of the coupling tends to its infimum. For this purpose, we apply

geometric singular perturbation theory.

1. Introduction

We consider the heteroclinic connection problem

λ2ü = u3 − u+ Λv2u,

v̈ = v3 − v + Λu2v;
(1.1)

u, v > 0; (1.2)

(u, v)→ (0, 1) as z → −∞, (u, v)→ (1, 0) as z → +∞, (1.3)

for values of the parameter Λ > 1, where for the constant λ we may assume without
loss of generality that λ ≥ 1.

This problem arises in the study of two-component Bose-Einstein condensates
in the case of segregation, see [1] and the references therein, but also in the study
of certain amplitude equations (see [16, 18]).

The heteroclinic connection problem (1.1)-(1.2)-(1.3) always admits a solution
which minimizes the associated enegy in Proposition 5.1 below (see [2, 18]). This
type of heteroclinics enjoy the following monotonicity property:

u̇ > 0, v̇ < 0, (1.4)

(actually this is an implication of their stability, see [2]); in the special case where
λ = 1, it also holds that the function

arctan(v/u) is decreasing (1.5)

2010 Mathematics Subject Classification. 34C37, 34C45, 34C14, 35J61.
Key words and phrases. Geometric singular perturbation theory; heteroclinic connection;

hamiltonian system; Bose-Einstein condensate; phase separation.
c©2018 Texas State University.

Submitted October 10, 2017. Published January 31, 2018.

1



2 C. SOURDIS EJDE-2018/40

and u(z + z0) ≡ v(z0 − z) for some z0 ∈ R (see [18]). Moreover, any solution of
(1.1), (1.3) satisfies u2 + v2 < 1 (see [2]) and the hamiltonian identity

λ2 (u̇)2

2
+

(v̇)2

2
− (1− u2 − v2)2

4
− Λ− 1

2
u2v2 ≡ 0. (1.6)

Remarkably, if there were more general constant coefficients in (1.1), then they
could be absorbed in λ,Λ by a rescaling, as they would have to satisfy a balancing
condition in order for the corresponding heteroclinic solutions to exist.

It was shown recently in [1] that solutions of (1.1)-(1.2)-(1.3) satisfying the mono-
tonicity property (1.4) are unique up to translations; interestingly enough, it was
also shown that the monotonicity of just one of the components is enough to reach
the same conclusion. Even more recently, and after the first version of the cur-
rent paper was completed, it was shown in [8] that solutions of (1.1)-(1.2)-(1.3)
are indeed monotone in the sense of (1.4), and thus there is uniqueness modulo
translations without the need of imposing a-priori a monotonicity assumption.

There are two singular limits associated with (1.1)-(1.2)-(1.3): Λ → +∞ and
Λ → 1+ which are called the strong and the weak separation limit, respectively.
Both limits were studied formally in [4] (see also [20] and [15] for more formal
arguments in the strong and weak separation limits, respectively). In particular, it
was predicted therein that the components of an energy minimizing solution satisfy
uv → 0 and u2+v2 → 1−, at least pointwise, as Λ→ +∞ and Λ→ 1+, respectively.
The strong separation limit was studied rigorously and in great detail recently in
[1]. The scope of the current article is to study rigorously the weak separation limit,
i.e., Λ→ 1+. To the best of our knowledge, the only rigorous result in this direction
is contained in the recent paper [10], where the authors employed Γ-convergence
techniques to obtain a first order asymptotic expansion of the minimal energy.

It turns out that, in contrast to the strong separation limit, here we can apply
by now standard arguments from geometric singular perturbation theory (see [13]
and the references therein). To this end, we first have to put system (1.1) in
the appropriate slow-fast form. At this point we will rely on the intuition of the
physicists in the aforementioned papers. In this regard, a main observation is
that from (2.3), by letting ε = 0, we find that u2 + v2 = 1 is a slow manifold (or
critical manifold). This motivates the introduction of the polar coordinates in (2.4).
This task will be carried out in Section 2. We will analyze the resulting slow-fast
system using geometric singular perturbation theory in Section 3. Armed with this
analysis, we will prove our main result in Section 4 which provides fine estimates
for a heteroclinic solution of (1.1)-(1.3), as Λ→ 1+, expressed in terms of suitable
polar coordinates. One can then directly go back and estimate the original u, v via
(2.1), (2.2), (2.4) and (2.5). Lastly, in Section 5 we will show that this solution
coincides with the unique (up to translations) minimizing heteroclic connection of
(1.1)-(1.3), and provide an asymptotic expression for its energy.

2. Slow-fast system

We let
ε =
√

Λ− 1, (2.1)

and consider the slow variable
x = εz. (2.2)



EJDE-2018/40 WEAK SEPARATION LIMIT 3

In the rest of the paper, unless specified otherwise, we will assume that ε > 0.
Then, system (1.1) is equivalent to

λ2ε2u′′ = u3 − u+ v2u+ ε2v2u,

ε2v′′ = v3 − v + u2v + ε2u2v,
(2.3)

where ′ = d/dx (the relations (1.2) and (1.3) remain the same). Next, motivated
from [4, 15], we express (u, v) in polar coordinates as

u = R cosϕ, v = R sinϕ, (2.4)

and write (2.3)-(1.2)-(1.3) equivalently as

ε2
[
R′′ −R(ϕ′)2

]
= (R3 −R)

[
1 +

( 1
λ2
− 1
)

cos2 ϕ
]

+ ε2R3
( 1
λ2

+ 1
)

sin2 ϕ cos2 ϕ,

ε2 (Rϕ′′ + 2R′ϕ′) = −
( 1
λ2
− 1
)
(R3 −R) sinϕ cosϕ

+ ε2R3
(

sinϕ cos3 ϕ− 1
λ2

cosϕ sin3 ϕ
)
,

R > 0, 0 < ϕ <
π

2
,

R→ 1 as x→ ±∞, ϕ→ π

2
as x→ −∞, ϕ→ 0 as x→ +∞.

Subsequently, we blow-up the neighborhood near R = 1 by setting

R = 1− ε2w, (2.5)

and get the equivalent problem:

−ε2w′′ − (1− ε2w)(ϕ′)2 = (1− ε2w)(ε2w2 − 2w)
[
1 +

( 1
λ2
− 1
)

cos2 ϕ
]

+ (1− ε2w)3
( 1
λ2

+ 1
)

sin2 ϕ cos2 ϕ,

(1− ε2w)ϕ′′ − 2ε2w′ϕ′ =
(
1− 1

λ2

)
(1− ε2w)(ε2w2 − 2w) sinϕ cosϕ

+ (1− ε2w)3
(

sinϕ cos3 ϕ− 1
λ2

cosϕ sin3 ϕ
)
,

0 < ϕ <
π

2
,

w → 0 as x→ ±∞, ϕ→ π

2
as x→ −∞, ϕ→ 0 as x→ +∞.

Now we can define

w1 = w, w2 = εw′1, ϕ1 = ϕ, ϕ2 = ϕ′1, (2.6)

and write the problem equivalently in the following slow-fast form, with (w1, w2)
being the fast variables and (ϕ1, ϕ2) the slow ones:

εw′1 = w2, (2.7)

εw′2 = −(1− ε2w1)ϕ2
2 − (1− ε2w1)(ε2w2

1 − 2w1)
[
1 +

( 1
λ2
− 1
)

cos2 ϕ1

]
− (1− ε2w1)3

( 1
λ2

+ 1
)

sin2 ϕ1 cos2 ϕ1,

(2.8)

ϕ′1 = ϕ2, (2.9)
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ϕ′2 =
2εw2ϕ2

1− ε2w1
+
(
1− 1

λ2

)
(ε2w2

1 − 2w1) sinϕ1 cosϕ1

+ (1− ε2w1)2
(

sinϕ1 cos3 ϕ1 −
1
λ2

cosϕ1 sin3 ϕ1

)
,

(2.10)

0 < ϕ1 <
π

2
, (2.11)

w1, w2 → 0 as x→ ±∞,

ϕ1 →
π

2
as x→ −∞, ϕ1 → 0 as x→ +∞, ϕ2 → 0 as x→ ±∞.

(2.12)

2.1. Analysis at equilibria. It is easy to check that the eigenvalues of the lin-
earization of (2.7)-(2.10) at the equilibria (0, 0, π2 , 0) and (0, 0, 0, 0) that we wish to
connect are

±
√

2
ε
, ± 1

λ
, ±

√
2

λε
, ±1, (2.13)

respectively. Moreover, as associated eigenfunctions we can choose the following:

(
± 1√

2
, 1, 0, 0

)
, (0, 0,±λ, 1),

(
± λ√

2
, 1, 0, 0

)
, (0, 0,±1, 1), (2.14)

respectively.

3. Geometric singular perturbation theoretic analysis

Having put the problem in the standard slow-fast form, we can now start ana-
lyzing it using geometric singular perturbation theory.

3.1. The ε = 0 limit slow system. The slow-fast system (2.7)-(2.10) is in the
so called slow form. Switching back to the variable z (recall (2.2)) gives us the
corresponding fast form. They are equivalent as long as ε is positive, but they
provide different information when we formally set ε = 0. For the problem at hand,
we will only need the information that comes from the slow ε = 0 limit problem,
which is the following:

0 = w2,

0 = −ϕ2
2 + 2w1[1 +

( 1
λ2
− 1
)

cos2 ϕ1]− (
1
λ2

+ 1) sin2 ϕ1 cos2 ϕ1,

ϕ′1 = ϕ2,

ϕ′2 = −2
(
1− 1

λ2

)
w1 sinϕ1 cosϕ1 + sinϕ1 cos3 ϕ1 −

1
λ2

cosϕ1 sin3 ϕ1.

(3.1)

Critical manifold M0. The first two equations of (3.1) define the critical manifold,
which is

M0 =
{
w1 =

ϕ2
2 + ( 1

λ2 + 1) sin2 ϕ1 cos2 ϕ1

2[1 + ( 1
λ2 − 1) cos2 ϕ1]

, w2 = 0, (ϕ1, ϕ2) ∈ R2
}
. (3.2)
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Reduced problem. The last two equations of (3.1) define a flow on the critical man-
ifold M0, which is given by the lifting on M0 of the trajectories of the following
two-dimensional reduced system:

ϕ′1 = ϕ2,

ϕ′2 = −
(
1− 1

λ2

)[ϕ2
2 +

(
1
λ2 + 1

)
sin2 ϕ1 cos2 ϕ1

1 +
(

1
λ2 − 1

)
cos2 ϕ1

]
sinϕ1 cosϕ1

+ sinϕ1 cos3 ϕ1 −
1
λ2

cosϕ1 sin3 ϕ1.

(3.3)

The form of the above system may be discouraging at first sight, but a closer look
reveals that it can be written in the following simple form for ϕ1:

d

dx

{[
1 +

( 1
λ2
− 1
)

cos2 ϕ1

]
(ϕ′1)2

}
=

1
4λ2

d

dx

{
sin2(2ϕ1)

}
. (3.4)

Then, in view of the asymptotic behaviour (2.12), the reduced problem becomes

ϕ′1 = − 1
2λ

sin(2ϕ1)
[
1 +

( 1
λ2
− 1
)

cos2 ϕ1

]−1/2

,

ϕ1 →
π

2
as x→ −∞, ϕ1 → 0 as x→ +∞.

(3.5)

Clearly, the above problem admits a unique solution ϕ1,0 such that ϕ1,0(0) = π
4 .

Moreover, it holds ϕ2,0 = ϕ′1,0 < 0. We note that this limit problem also arose in the
Γ-convergence argument of [10]. The lifting of the orbit (ϕ1,0, ϕ2,0) on the critical
manifoldM0 is called singular heteroclinic orbit or connection. We note that (π2 , 0)
and (0, 0) are saddle equilibria for (3.3) with corresponding eigenvalues ± 1

λ and ±1,
respectively; the associated eigenvectors are (±λ, 1) and (±1, 1), respectively. It is
useful to compare with Subsection 2.1.

3.2. Locally invariant manifold Mε.

3.2.1. Normal hyperbolicity of M0. The critical manifold M0 corresponds to a
two-dimensional manifold of equilibria for the ε = 0 limit fast system (recall the
discussion in the beginning of Subsection 3.1). The associated linearization at such
an equilibrium point is

0 1 0 0
2 + 2

(
1
λ2 − 1

)
cos2 ϕ1 0 0 0

0 0 0 0
0 0 0 0

 .

The eigenvalues of this matrix are ±
√

2 + 2
(

1
λ2 − 1

)
cos2 ϕ1 and zero (double).

Therefore, as there are no other eigenvalues on the imaginary axis besides of zero
whose multiplicity is equal to the dimension ofM0, we infer that the critical man-
ifold M0 is normally hyperbolic.

3.2.2. Persistence ofM0 for 0 < ε� 1. SinceM0 is normally hyperbolic and a C∞

graph over the (ϕ1, ϕ2) plane, as a particular consequence of Fenichel’s first theorem
(see [9], [12] or [13, Ch. 3]), we deduce that, given an integer m ≥ 1 and a compact
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subset K of the (ϕ1, ϕ2) plane, there are functions hi(ϕ1, ϕ2, ε) ∈ Cm (K × [0,∞)),
i = 1, 2, and an ε0 > 0 so that for ε ∈ (0, ε0) the graph Mε over K described by

w1 =
ϕ2

2 +
(

1
λ2 + 1

)
sin2 ϕ1 cos2 ϕ1

2
[
1 +

(
1
λ2 − 1

)
cos2 ϕ1

] + εh1(ϕ1, ϕ2, ε), w2 = εh2(ϕ1, ϕ2, ε), (3.6)

is locally invariant under (2.7)-(2.10). In passing, we note that this property also
follows by appending the equation ε̇ = 0 to the equivalent fast form of (2.7)-(2.10),
applying the usual center manifold theorem at each equilibrium on M0 × {0}, and
then taking slices for ε fixed (see [5, Ch. 2]). As a center-like manifold, Mε is
generally not unique. We choose the compact set K to be the closure of a smooth
domain that contains the heteroclinic connection (ϕ1,0, ϕ2,0) of the reduced system
(3.3). The equilibria (0, 0, π2 , 0) and (0, 0, 0, 0) of (2.7)-(2.10) lie on Mε, that is

hi
(π

2
, 0, ε

)
= 0, hi (0, 0, ε) = 0, i = 1, 2, ε ∈ [0, ε0). (3.7)

This is because every invariant set of (2.7)-(2.10) in a sufficiently small ε-indepen-
dent neighborhood of M0 must be on Mε.

3.2.3. Equivariant aspects of Mε. In this subsection, we will discuss some symme-
try properties of Mε that are inherited from (2.7)-(2.10). We point out that these
properties will only be used in order to get precise exponents in the exponential
decay rates in (4.1). More precisely, we will just use that Mε may be assumed to
be tangential to M0 at either one of the equilibria that we wish to connect (see
(3.9) below). Therefore, depending on the reader’s preference, this subsection may
be skipped at first reading.

We observe that if (w1, w2, ϕ1, ϕ2) solves (2.7)-(2.10), then so do

(w1, w2,−ϕ1,−ϕ2) and (w1, w2, π − ϕ1,−ϕ2). (3.8)

Then, by further assuming that K is symmetric with respect to the lines ϕ1 = 0,
ϕ1 = π

2 and ϕ2 = 0, the invariant manifoldMε can be constructed so that the flow
on it preserves at least one of these two properties. More precisely, we may assume
that one of the following identities holds:

hi (−ϕ1,−ϕ2, ε) = hi (ϕ1, ϕ2, ε) or hi (π − ϕ1,−ϕ2, ε) = hi (ϕ1, ϕ2, ε) , (3.9)

for i = 1, 2 and ε ∈ [0, ε0). In any case, we can always assume hi(·, ·, ε), i = 1, 2, to
be even with respect to ϕ2.

This follows from the way that Mε is constructed (see [12]), which we briefly
recall. Firstly, one appropriately modifies the last two equations of (2.7)-(2.10) out-
side of K and constructs a unique, three-dimensional, positively invariant center-
stable manifold for that modified system (note that the last relation on page 67
of the aforementioned reference should be with the opposite sign). Similarly, one
constructs a unique, three-dimensional, negatively invariant, center-unstable man-
ifold for an analogous extension of (2.7)-(2.10). It is easy to see that these two
modifications can be performed while preserving one of the symmetries in (3.8).
In turn, as a consequence of their uniqueness, the corresponding center-stable and
center-unstable manifolds inherit the chosen symmetry. In particular, so does their
intersection over K, namely Mε. For related arguments, we refer the interested
reader to [6, Sec. 5.7] and [11, Ap. B].

Let us henceforth assume that the locally invariant manifoldMε enjoys the first
symmetry in (3.8), that is the first relation in (3.9) holds. However, as we will see,
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the second relation in (3.9) will be a-posteriori satisfied along the heteroclinic orbit
on Mε that we will construct in Theorem 4.1 below.

4. Main result

We are now all set for our main result.

Theorem 4.1. For each ε > 0 sufficiently small, there is a heteroclinic orbit
(w1,ε, w2,ε, ϕ1,ε, ϕ2,ε) of (2.7)-(2.10) connecting the equilibria (0, 0, π/2, 0) and
(0, 0, 0, 0) which lies on Mε. More precisely, the following estimates hold:

w1,ε =
ϕ2

2,ε +
(

1
λ2 + 1

)
sin2 ϕ1,ε cos2 ϕ1,ε

2[1 +
(

1
λ2 − 1

)
cos2 ϕ1,ε]

+O(ε) min{e 2x
λ , e−2x},

w2,ε = O(ε) min{e 2x
λ , e−2x},

ϕi,ε = ϕi,0 +O(ε) min{e xλ , e−x}, i = 1, 2,

(4.1)

uniformly in R, as ε→ 0. Moreover, it holds

ϕ2,ε < 0. (4.2)

Proof. In light of the analysis in Subsection 2.1, each of the two equilibria has a
two-dimensional (global) stable and unstable manifold, which is tangent at that
point to the corresponding two-dimensional eigenspace in (2.14). Let us call them
W s
ε (0, 0, π2 , 0), Wu

ε (0, 0, π2 , 0) and W s
ε (0, 0, 0, 0), Wu

ε (0, 0, 0, 0). The first two eigen-
values in each relation of (2.13) correspond to motion normal to Mε, while the
latter two correspond to motion on Mε. The dynamical system within Mε there-
fore has a saddle point at each of these equilibria, with one-dimensional stable
and unstable manifolds given by W s

ε (0, 0, π2 , 0) ∩ Mε, Wu
ε (0, 0, π2 , 0) ∩ Mε and

W s
ε (0, 0, 0, 0)∩Mε, Wu

ε (0, 0, 0, 0)∩Mε. Our goal is to show that Wu
ε (0, 0, π2 , 0)∩Mε

and W s
ε (0, 0, 0, 0) ∩Mε meet. Thus, since they are one-dimensional, they have to

coincide.
We begin by deriving the equations on Mε. By (3.6), the flow of (2.7)-(2.10)

on Mε is determined by a smooth, for ε ∈ [0, ε0), O(ε)-regular perturbation of
the reduced system (3.3). We will refer to this as the ε-reduced system. Thanks
to (3.7), the points (π2 , 0) and (0, 0) are saddles for the ε-reduced system with
associated linearized eigenvalues and eigenfunctions given by smooth O(ε)-regular
perturbations, for ε ∈ [0, ε0), of the corresponding ones at the end of Subsection
3.1. Actually, as we have assumed the validity of the first condition in (3.9), the
corresponding linearization at (0, 0) is independent of ε ∈ [0, ε0). Our interest will
be in the unstable manifoldWu

ε (π2 , 0) of (π2 , 0) and in the stable manifoldW s
ε (0, 0) of

(0, 0). In fact, these are the projections to the (ϕ1, ϕ2) plane of Wu
ε (0, 0, π2 , 0)∩Mε

and W s
ε (0, 0, 0, 0) ∩Mε, respectively.

The manifolds Wu
ε (π2 , 0) and W s

ε (0, 0) depend smoothly on ε ∈ [0, ε0) (see for
instance [17, Ch. 9]). From now on, with this notation, we will only refer to the
parts of these invariant manifolds that shadow the heteroclinic orbit (ϕ1,0, ϕ2,0).
Then, Wu

ε (π2 , 0) and W s
ε (0, 0) intersect the line φ1 = π

4 at the points (π4 , φ
−
2,ε) and

(π4 , φ
+
2,ε), respectively, such that

φ±2,ε − ϕ2,0(0) = O(ε) as ε→ 0, (4.3)

(recall Subsection 3.1). Let
(
w−1,ε, w

−
2,ε,

π
4 , φ

−
2,ε

)
and

(
w+

1,ε, w
+
2,ε,

π
4 , φ

+
2,ε

)
, respec-

tively, be their lifting to Mε for ε ∈ [0, ε0). The values w±i,ε, i = 1, 2, depend
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smoothly on ε ∈ [0, ε0); in particular, it holds

w±i,ε − wi,0 = O(ε), i = 1, 2, as ε→ 0, (4.4)

where (w1,0, w2,0) is the image of
(
π
4 , ϕ2,0(0)

)
on the graph of M0. We will show

that
w−i,ε = w+

i,ε, i = 1, 2, and φ−2,ε = φ+
2,ε, (4.5)

provided that ε > 0 is sufficiently small.
Notice that we want to determine uniquely three variables, although (3.6) fur-

nishes only two equations. The third equation will be provided by the hamiltonian
identity (1.6) (see also [3] for a related argument in a simpler problem). Taking
into account (2.1), (2.2), (2.4), (2.5), and dividing by ε2/2, we find that the identity
(1.6) becomes

0 = λ2
[
ε2w2

2 cos2 ϕ1 + (1− ε2w1)2ϕ2
2 sin2 ϕ1 + εw2(1− ε2w1) sin 2ϕ1

]
+ ε2w2

2 sin2 ϕ1 + (1− ε2w1)2ϕ2
2 cos2 ϕ1 − εw2(1− ε2w1) sin 2ϕ1

− ε2

2
(2w1 − ε2w2

1)2 − 1
4

(1− ε2w1)4 sin2 2ϕ1,

(4.6)

which is valid along trajectories of (2.7)-(2.10) on either one of W s/u
ε

(
0, 0, π2 , 0

)
or

W
s/u
ε (0, 0, 0, 0), for ε > 0. Moreover, it will be important in the sequel to observe

that, thanks to (3.4), the above identity continues to hold for ε = 0, i.e., along
(ϕ1,0, ϕ2,0).

We consider the smooth map F : R2 ×K × [0,∞)→ R3 defined by

F


w1

w2

ϕ1

ϕ2

ε

 =

w1 −
ϕ2

2+( 1
λ2 +1) sin2 ϕ1 cos2 ϕ1

2[1+( 1
λ2−1) cos2 ϕ1]

− εh1(ϕ1, ϕ2, ε)

w2 − εh2(ϕ1, ϕ2, ε)
H(w1, w2, ϕ1, ϕ2, ε)

 ,

where H is the function defined by the righthand side of (4.6). We observe that

F
(
w±1,ε, w

±
2,ε,

π

4
, φ±2,ε, ε

)
= (0, 0, 0), ε ∈ (0, ε0). (4.7)

Furthermore, it holds

F
(
w1,0, w2,0,

π

4
, φ2,0(0), 0

)
= (0, 0, 0). (4.8)

Moreover, it follows readily that

∂w1,w2,ϕ2F


w1

w2

ϕ1

ϕ2

0

 =

1 0 − ϕ2
1+( 1

λ2−1) cos2 ϕ1

0 1 0
0 0 λ2ϕ2 sin2 ϕ1 + ϕ2 cos2 ϕ1

 . (4.9)

In particular, this matrix is invertible at the point
(
w1,0, w2,0,

π
4 , ϕ2,0(0), 0

)
. Thus,

recalling (4.8), we deduce by the implicit function theorem that there exists δ > 0
such that, for ϕ1 ∈

(
π
4 − δ,

π
4 + δ

)
and ε ∈ [0, δ), the equation

F (w1, w2, ϕ1, ϕ2, ε) = (0, 0, 0)

has at most one solution (w1, w2, ϕ2) such that |wi − wi,0| < δ, for i = 1, 2, and
|ϕ2 − ϕ2,0(0)| < δ. Hence, applying this property for ϕ1 = π

4 , we infer from
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(4.3), (4.4) and (4.7) that the desired relation (4.5) is true, provided that ε > 0 is
sufficiently small.

Let (w1,ε, w2,ε, ϕ1,ε, ϕ2,ε) denote the heteroclinic connection of (2.7), (2.12) on
Mε which passes through the point

(
w+

1,ε, w
+
2,ε,

π
4 , φ

+
2,ε

)
at x = 0. We will first

establish the validity of properties (2.11) and (4.2). For this purpose, we recall
that the trajectory curve of (ϕ1,ε, ϕ2,ε) on the (ϕ1, ϕ2) phase plane is given by
Wu
ε

(
π
2 , 0
)
∩W s

ε (0, 0), and varies smoothly for ε ≥ 0 small. The asserted properties
now follow at once from the fact that the limiting curve Wu

0

(
π
2 , 0
)
∩W s

0 (0, 0) is
contained in the half-strip S =

{
0 ≤ ϕ1 ≤ π

2 , ϕ2 ≤ 0
}

, and touches the boundary of
S only at (0, 0) and

(
π
2 , 0
)

in a non-tangential manner (keep in mind the linearized
analysis from the end of Subsection 3.1).

We next turn our attention to the last relation in (4.1). We will first show it for
x ≥ 0. To this end, we will need the preliminary estimates

ϕi,ε(x) = (−1)i−1a+ (1 + o(1)) e−x, i = 1, 2, as x→ +∞, (4.10)

where the constant a+ > 0 is independent of small ε > 0, and these limits hold
uniformly with respect to ε. The above relation follows directly from the refined
version of the stable manifold theorem in [7, Thm. 4.3, Ch. 13]; recall that the lin-
earization of the ε-reduced system at (0, 0) has eigenvalues ±1 for ε ≥ 0 small. The
latter property about the linearized problem implies that the pair Ψε = (ψ1,ε, ψ2,ε),
where

ψi,ε =
ϕi,ε − ϕi,0

ε
, i = 1, 2,

satisfies

Ψ′ε = AΨε +O
(
ε|Ψε|2

)
+O

(
ϕ2

1,ε + ϕ2
2,ε

)
, x ≥ 0;

Ψε(0) = O(1), Ψε(∞) = 0,

with the obvious notation, uniformly as ε → 0, where A is the aforementioned
linearized matrix (recall also (4.3)). Then, using (4.10) to estimate the last term
in the righthand side and working as in the previously mentioned stable manifold
theorem in [7], we obtain that

|Ψε(x)| ≤ Ce−x, x ≥ 0,

for some constant C > 0 independent of small ε > 0, which implies the validity of
the last relation of (4.1) for x ≥ 0. In turn, the corresponding estimates in the first
two relations of (4.1) follow at once via the second identity in (3.7) and the first
one in (3.9).

The sole obstruction in showing the corresponding estimates for x ≤ 0 is that
the linearization of the ε-reduced system at (π/2, 0) may not be independent of ε
(recall that we could only choose one of the symmetries in (3.8)). Nevertheless, this
can be surpassed easily by noting that the constructed heteroclinic connection of
(2.7)-(2.10) on Mε should also be on an analogous invariant manifold M̃ε which
enjoys the second symmetry in (3.8) (recall the concluding remark in Subsection
3.2.2), provided that ε > 0 is sufficiently small. Then, the arguments for x ≤ 0
go through as before. In passing, we note that the graphs of Mε and M̃ε over K
have the same expansion in powers of ε up to any order (see [13, Ch. 3] for more
details). The proof is complete. �
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Remark 4.2. We suspect that the calculation in (4.9) provides the required non-
degeneracy condition in [14, Sec. 5] which allows to choose Mε so that the corre-
sponding ε-reduced system is hamiltonian (in p = cosϕ1, q = sinϕ1).

Remark 4.3. From the invariance of Mε and the equation w2 = εw′1, via the
second equation of (3.6), we obtain that

w2,ε

ε
= −2

(
1− 1

λ2

)
ϕ2,ε sinϕ1,ε cosϕ1,ε

ϕ2
2 +

(
1
λ2 + 1

)
sin2 ϕ1,ε cos2 ϕ1,ε

[1 +
(

1
λ2 − 1

)
cos2 ϕ1,ε]2

+
ϕ2,ε

[1 +
(

1
λ2 − 1

)
cos2 ϕ1,ε]

(
sinϕ1 cos3 ϕ1 −

1
λ2

cosϕ1 sin3 ϕ1

)
+

1
2
(
1 +

1
λ2

)
ϕ2,ε

sin 2ϕ1,ε − 4 cosϕ1,ε sin3 ϕ1,ε

1 +
(

1
λ2 − 1

)
cos2 ϕ1,ε

+O(ε) min{e 2x
λ , e−2x},

uniformly in R as ε → 0. Analogously, we can refine the w1 component of the
constructed heteroclinic. Then, plugging these refinements in the ε-reduced system,
we can refine the ϕ1, ϕ2 components too (by the solution of a linear inhomogeneous
problem), and so on. We note, however, that formally the correct spatial decay
in the above relation should be min{e 3x

λ , e−3x}. This observation points in the
direction thatMε should be close beyond all orders of ε toM0 at the two equilibria
(recall the proofs of the corresponding decay estimates in (4.1) and the concluding
remark in the proof of Theorem 4.1).

5. Further properties of the constructed heteroclinic connection

5.1. Variational characterization. In view of (4.2) and the comments leading
to (1.5), we expect that the corresponding solution to (1.1)-(1.3), provided by The-
orem 4.1 via the transformations (2.1), (2.2), (2.4), (2.5) and (2.6), minimizes the
associated energy. By the uniqueness result of [1] that we mentioned in the intro-
duction, to verify this, it suffices to show that one of its components satisfies the
corresponding monotonicity property in (1.4). For this purpose, we note that

u′ = −εw2 cosϕ1 − (1− ε2w1)ϕ2 sinϕ1.

Hence, by virtue of (4.1) and (4.2), given any fixed interval I, it holds u′ > 0 in I for
sufficiently small ε > 0. We infer that u′ > 0 outside of I by means of (4.10) (and
the analogous relation for x ≤ 0). Alternatively, similarly to [1], we just have to fix
a sufficiently large I so that we can apply the maximum principle componentwise
in the linear elliptic system for u′, v′ in R \ I (note that such an interval can be
chosen to be independent of ε).

5.2. Energy expansion. By exploiting the above observation and making mild
use of the estimates in Theorem 4.1, we are in position to give an asymptotic
expression for the minimal energy of the heteroclinic connection problem (1.1)-(1.3)
as Λ → 1+. The limiting value of the minimal energy, appropriately renormalized
(so that it does not converge to zero), was identified rigorously very recently in [10],
using the variational technique of Γ-convergence. We recover their result but also
provide a rate of convergence to this minimal value.
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Proposition 5.1. Let σΛ = infX EΛ(u, v), where

EΛ(u, v) =
∫ ∞
−∞

[
λ2 (u̇)2

2
+

(v̇)2

2
+

(1− u2 − v2)2

4
+

Λ− 1
2

u2v2
]
dz,

X =
{

(u, v) ∈W 1,2
loc (R)×W 1,2

loc (R) satisfying (1.3)
}
.

It holds

σΛ =
1
3

1− λ3

1− λ2
(Λ− 1)1/2 +O (Λ− 1) as Λ→ 1+,

with the obvious meaning for λ = 1.

Proof. It follows from (4.6), paying attention to the comment leading to it, that

σΛ =
1
4

(∫ ∞
−∞

sin2(2ϕ1,0)dx
)

(Λ− 1)1/2 +O (Λ− 1) as Λ→ 1+,

where ϕ1,0 is the prescribed solution of (3.5). It therefore remains to compute the
above integral. Using (3.4), we find that∫ ∞

−∞
sin2 (2ϕ1,0) dx =− 2λ

∫ ∞
−∞

sin (2ϕ1,0)
[
1 +

( 1
λ2
− 1
)

cos2 ϕ1,0

]1/2
ϕ′1,0dx

=2λ
∫ 1

0

[
1 +

( 1
λ2
− 1
)
t
]1/2

dt

=
4
3

1− λ3

1− λ2
,

which implies the assertion of the proposition. �
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