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COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS
INVOLVING CAPUTO FRACTIONAL DERIVATIVE WITH
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Abstract. In this article we study linear and nonlinear differential equations

involving the Caputo fractional derivative with Mittag-Leffler non-singular ker-

nel of order 0 < α < 1. We first obtain a new estimate of the fractional de-
rivative of a function at its extreme points and derive a necessary condition

for the existence of a solution to the linear fractional equation. The condition

obtained determines the initial condition of the associated fractional initial-
value problem. Then we derive comparison principles for the linear fractional

equations, and apply these principles for obtaining norm estimates of solutions

and to obtain a uniqueness results. We also derive lower and upper bounds
of solutions. The applicability of the new results is illustrated through several

examples.

1. Introduction

Fractional differential equations have been implemented to model various prob-
lems in several fields, [15, 19, 20, 21]. The non-locality of the fractional derivative
makes fractional models more practical than the usual ones, especially for systems
which involve memory. In recent years there are great interests to develop new
types of non-local fractional derivative with non-singular kernel, see [11, 13]. The
idea is to have more types of non-local fractional derivatives, and it is the role of
application that will determine which fractional model is appropriate. The theory
of fractional models is effected by the type of the fractional derivative. Therefore,
several papers have been devoted recently to study the new types of fractional
derivatives and their applications, see [2, 3, 7] for the Caputo-Fabrizio fractional
derivative and [4, 12, 14, 16, 22, 23] for the Abdon-Baleanu fractional derivative.

In this article, we analyze the solutions of a class of fractional differential equa-
tions involving the Caputo fractional derivative with Mittag-Leffler non-singular
kernel of order 0 < α < 1. To the best of our knowledge this is the first theoretical
study of fractional differential equations with fractional derivative of non-singular
kernel. We start with the definition and main properties of the nonlocal fractional
derivative with Mittag-Leffler non-singular kernel. For more details the reader is
referred to [11, 12, 1].
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Definition 1.1. Let f ∈ H1(a, b), a < b, α ∈ (0, 1), the left Caputo fractional
derivative with Mittag-Leffler non-singular kernel is defined by

(ABCaDαf)(t) =
B(α)
1− α

∫ t

a

Eα
[
− α

1− α
(t− s)α

]
f ′(s)ds. (1.1)

where B(α) > 0 is a normalization function satisfying B(0) = B(1) = 1, and Eα[s]
is the well known Mittag-Leffler function. The derivative is known in the literature
by the Abdon-Baleanu fractional derivative.

Definition 1.2. Let f ∈ H1(a, b), a < b, α ∈ (0, 1), the left Riemann-Liouville
fractional derivative with Mittag-Leffler non-singular kernel is defined by

(ABRaDαf)(t) =
B(α)
1− α

d

dt

∫ t

a

Eα
[
− α

1− α
(t− s)α

]
f(s)ds. (1.2)

The associated fractional integral is defined by

(ABaIαf)(t) =
1− α
B(α)

f(t) +
α

B(α)
(aIαf)(t), (1.3)

where (aIαf)(t) is the left Riemann-Liouville fractional integral of order α > 0
defined by

(aIαf)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds.

The following statements hold:

(ABC0D
αf)(t) = (ABR0D

αf)(t)− B(α)
1− α

f(0)Eα[− α

1− α
tα], (1.4)

(ABRaDα AB
aI
αf)(t) = f(t), (1.5)

(ABaIα ABRaDαf)(t) = f(t). (1.6)

The rest of the paper is organized as follows. In Section 2, we present a new
estimate of the fractional derivative of a function at its extreme points. In Section
3, we develop new comparison principles for linear fractional equations and obtain
a norm bound to their solutions. We also, obtain the solution for a class of linear
equations in a closed form, and present a necessary condition for the existence
of their solutions. In Section 4, we consider nonlinear fractional equations. We
obtain a uniqueness result and derive upper and lower bounds to the solution of
the problem. Finally we present some examples to illustrate the applicability of the
obtained results.

2. Estimates of fractional derivatives at extreme points

We start with estimating the fractional derivative of a function at its extreme
points, this result is analogous to the ones obtained in [5] for the Caputo and
Riemann-Liouville fractional derivatives. The applicability of these results were
indicated in ([6]-[10]) by establishing new comparison principles and studying vari-
ous fractional diffusion models. Therefore, the current result can be used to study
fractional diffusion models involving the Caputo and Riemann-Liouville fractional
derivatives with Mittag-Leffler non-singular kernel, and we leave this for a future
work.
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Lemma 2.1. Let a function f ∈ H1(a, b) attain its maximum at a point t0 ∈ [a, b]
and 0 < α < 1. Then

(ABCaDαf)(t0) ≥ B(α)
1− α

Eα[− α

1− α
(t0 − a)α](f(t0)− f(a)) ≥ 0 . (2.1)

Proof. We define the auxiliary function g(t) = f(t0)−f(t), t ∈ [a, b]. Then it follows
that g(t) ≥ 0, on [a, b], g(t0) = g′(t0) = 0 and (ABCaDαg)(t) = −(ABCaDαf)(t).
Since g ∈ H1(a, b), then g′ is integrable and integrating by parts with

u = Eα[− α

1− α
(t0 − s)α], dv = g′(s)ds,

yields

(ABCaDαg)(t0) =
B(α)
1− α

∫ t0

a

Eα[− α

1− α
(t0 − s)α]g′(s) ds

=
B(α)
1− α

(
Eα[− α

1− α
(t0 − s)α]g(s)|t0a

−
∫ t0

a

d

ds
Eα[− α

1− α
(t0 − s)α]g(s)ds

)
=
B(α)
1− α

(
Eα[0]g(t0)− Eα[− α

1− α
(t0 − a)α]g(a)

−
∫ t0

a

d

ds
Eα[− α

1− α
(t0 − s)α]g(s)ds

)
=
B(α)
1− α

(
− Eα[− α

1− α
(t0 − a)α]g(a)

−
∫ t0

a

d

ds
Eα[− α

1− α
(t0 − s)α]g(s)ds

)
.

(2.2)

We recall that for 0 < α < 1, see [17], we have

Eα[−tα] =
∫ ∞

0

e−rtKα(r)dr,

where

Kα(r) =
1
π

rα−1 sin(απ)
r2α + 2rα cos(απ) + 1

> 0.

Thus,

d

ds
Eα[− α

1− α
(t0 − s)α]

=
d

ds
Eα

[
−
(

(
α

1− α
)1/α(t0 − s)

)α]
=

d

ds

∫ ∞
0

e−r(
α

1−α )1/α(t0−s)Kα(r)dr =
∫ ∞

0

d

ds
e−r(

α
1−α )1/α(t0−s)Kα(r)dr

= (
α

1− α
)1/α

∫ ∞
0

re−r(
α

1−α )1/α(t0−s)Kα(r)dr > 0,

(2.3)
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which together with g(t) ≥ 0 on [a, b], will lead to the integral in (2.2) is nonnegative.
We recall here that Eα[t] > 0, 0 < α < 1, see [18], and thus

(ABCaDαg)(t0) ≤ B(α)
1− α

(
− Eα[− α

1− α
(t0 − a)α]g(a)

)
= −B(α)

1− α
Eα[− α

1− α
(t0 − a)α](f(t0)− f(a)) ≤ 0.

(2.4)

The last inequality yields

−(ABCaDαf)(t0) ≤ −B(α)
1− α

Eα[− α

1− α
(t0 − a)α](f(t0)− f(a)) ≤ 0,

which proves the result. �

By applying analogous steps for −f we have the following result.

Lemma 2.2. Let a function f ∈ H1(a, b) attain its minimum at a point t0 ∈ [a, b]
and 0 < α < 1. Then

(ABCaDαf)(t0) ≤ B(α)
1− α

Eα[− α

1− α
t0](f(t0)− f(a)) ≤ 0 . (2.5)

Lemma 2.3. Let a function f ∈ H1(a, b) then it holds that

(ABCaDαf)(a) = 0, 0 < α < 1. (2.6)

Proof. Because Eα[− α
1−α (t − s)] is continuous on [a, b], then it is in L2[a, b]. Ap-

plying the Cauchy-Schwartz inequality we have

|(ABCaDαf)(t)|2 ≤ B2(α)
(1− α)2

∫ t

a

(
Eα[− α

1− α
(t− s)α]

)2

ds

∫ t

a

(
f ′(s)

)2

ds. (2.7)

Since f ∈ H1(a, b) then f ′ is square integrable and it holds that
∫ a
a

(
f ′(s)

)2
ds = 0.

The result is obtained as the first integral in (2.7) is bounded. �

3. Linear equations

We implement the results in Section 1 to obtain new comparison principles for the
linear fractional differential equations of order 0 < α < 1, and to derive a necessary
condition for the existence of their solutions. We then use these principles to obtain
a norm bound of the solution. We also present the solution of certain linear equation
by the Laplace transform.

Lemma 3.1 (Comparison Principle-1). Let a function u ∈ H1(a, b)∩C[a, b] satisfies
the fractional inequality

Pα(u) = (ABCaDαu)(t) + p(t)u(t) ≤ 0, t > a, 0 < α < 1, (3.1)

where p(t) ≥ 0 is continuous on [a, b] and p(a) 6= 0. Then u(t) ≤ 0, t ≥ a.

Proof. Since u ∈ H1(a, b) then by Lemma 2.3 we have (ABCaDαu)(a) = 0. By the
continuity of the solution, the fractional inequality (3.1) yields p(a)u(a) ≤ 0, and
hence u(a) ≤ 0. Assume by contradiction that the result is not true, because u is
continuous on [a, b] then u attains absolute maximum at t0 ≥ a with u(t0) > 0.
Since u(a) ≤ 0, then t0 > a. Applying the result of Lemma 2.1 we have

(ABCaDαu)(t0) ≥ B(α)
1− α

Eα[− α

1− α
(t0 − a)α](u(t0)− u(a)) > 0.
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We have
(ABCaDαu)(t0) + p(t0)u(t0) ≥ (ABCaDαu)(t0) > 0,

which contradicts the fractional inequality (3.1), and completes the proof. �

Corollary 3.2 (Comparison Principle-2). Let u1, u2 ∈ H1(a, b) ∩ C[a, b] be the
solutions of

(ABCaDαu1)(t) + p(t)u1(t) = g1(t), t > a, 0 < α < 1,

(ABCaDαu2)(t) + p(t)u2(t) = g2(t), t > a, 0 < α < 1,

where p(t) ≥ 0, g1(t), g2(t) are continuous on [a, b] and p(a) 6= 0. If g1(t) ≤ g2(t),
then

u1(t) ≤ u2(t), t ≥ a.

Proof. Let z = u1 − u2, then

Pα(z) = (ABCaDαz)(t) + p(t)z(t) = g1(t)− g2(t) ≤ 0, t > a, 0 < α < 1. (3.2)

By Lemma 3.1 we have z(t) ≤ 0, and hence the result follows. �

Lemma 3.3. Let u ∈ H1(a, b) be the solution of

(ABCaDαu)(t) + p(t)u(t) = g(t), t > a, 0 < α < 1, (3.3)

where p(t) > 0 is continuous on [a, b]. Then it holds that

‖u‖[a,b] = max
t∈[a,b]

|u(t)| ≤M = max
t∈[a,b]

{|g(t)
p(t)
|}.

Proof. We have M ≥ | g(t)p(t) |, or Mp(t) ≥ |g(t)| for t ∈ [a, b]. Let v1 = u−M , then

Pα(v1) = (ABCaDαv1)(t) + p(t)v1(t) = (ABCaDαu)(t) + p(t)u(t)− p(t)M
= g(t)− p(t)M ≤ |g(t)| − p(t)M ≤ 0.

Thus by Lemma 3.1 we have v1 = u−M ≤ 0, which implies

u ≤M. (3.4)

Analogously, let v2 = −M − u, then it holds that

Pα(v2) = (ABCaDαv2)(t) + p(t)v2(t)

= −(ABCaDαu)(t)− p(t)u(t)− p(t)M
= −g(t)− p(t)M ≤ −g(t)− |g(t)| ≤ 0.

Thus by Lemma 3.1 we have v2 = −u−M ≤ 0, thus

u ≥ −M. (3.5)

By combining (3.4) and (3.5) we have |u(t)| ≤ M, t ∈ [a, b] and hence the result
follows. �

Lemma 3.4. The fractional initial value problem

(ABCaDαu)(t) = λu+ f(t), t > 0, 0 < α < 1, (3.6)

u(0) = u0. (3.7)

has the unique solution

u(t) =
1

B(α)− λ(1− α)

(
B(α)u0Eα[ωtα] + (1− α)(g(t) ∗ f ′(t) + f(0)g(t))

)
, (3.8)
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in the functional space H1(0, b) ∩ C[0, b], if and only if, λu0 + f(0) = 0, where
ω = λα

B(α)−λ(1−α) , and

g(t) = Eα[ωtα] +
α

1− α
tα−1

Γ(α)
∗ Eα[wtα].

Proof. Since u ∈ H1(0, b) we have (ABCaDαu)(0) = 0. Thus, a necessary condition
for the existence of a solution to (3.6) is that

λu0 + f(0) = 0. (3.9)

Applying the Laplace transform to (3.6) and using the fact that

(ABC0D
αu)(t) =

B(α)
1− α

Eα[− α

1− α
tα] ∗ u′(t),

we have

λL(u) + L(f(t)) =
B(α)
1− α

L
(
Eα[− α

1− α
tα] ∗ u′(t)

)
.

Applying the convolution result of the Laplace transform and

L(Eα[− α

1− α
tα]) =

sα−1

sα + α
1−α

, | α

1− α
1
sα
| < 1,

leads to

λL(u) + L(f(t)) =
B(α)
1− α

sα−1

sα + α
1−α

(sL(u)− u(0)). (3.10)

Direct calculations lead to

L(u) =
B(α)u0

B(α)− λ(1− α)
sα−1

sα − ω
+

1− α
B(α)− λ(1− α)

sα + α
1−α

sα − ω
L(f(t)), (3.11)

where ω = λα
B(α)−λ(1−α) . Thus,

u(t) =
B(α)u0

B(α)− λ(1− α)
L−1

( sα−1

sα − ω

)
+

1− α
B(α)− λ(1− α)

L−1
(sα + α

1−α
sα − ω

L(f(t))
)
,

=
B(α)u0

B(α)− λ(1− α)
Eα[ωtα]

+
1− α

B(α)− λ(1− α)
L−1

(sα + α
1−α

sα − ω
L(f(t))

)
.

(3.12)

Let

G(s) =
1
s

sα + α
1−α

sα − ω
=

sα−1

sα − ω
+

α

1− α
1
sα

sα−1

sα − ω
,

then

g(t) = L−1
(
G(s)

)
= Eα[ωt] +

α

1− α
tα−1

Γ(α)
∗ Eα[ωtα].
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Applying the convolution result we have

L−1
(sα + α

1−α
sα − ω

L(f(t))
)

= L−1
(
G(s)sL(f(t))

)
= L−1

(
G(s)[sL(f)− f(0) + f(0)]

)
= L−1

(
G(s)[L(f ′) + f(0)]

)
= L−1

(
G(s)L(f ′) + f(0)G(s)

)
= g(t) ∗ f ′(t) + f(0)g(t).

(3.13)

The result follows by substituting (3.13) in (3.12). �

Corollary 3.5. The fractional differential equation

(ABC0D
αu)(t) = λu, t > 0, 0 < α < 1, (3.14)

has only the trivial solution u = 0, in the functional space H1(0, b) ∩ C[0, b].

Proof. Applying Lemma 3.4 with f(t) = 0, yields

u(t) =
1

B(α)− λ(1− α)
B(α)u0Eα[ωtα].

The necessary condition for the existence of solution yields that u0 = 0, and hence
the result. �

4. Nonlinear equations

In this section we apply the obtained comparison principles to establish a unique-
ness result for a nonlinear fractional differential equation and to estimate its solu-
tion.

Lemma 4.1. Consider the nonlinear fractional differential equation

(ABCaDαu)(t) = f(t, u), t > a, 0 < α < 1, (4.1)

where f(t, u) is a smooth function. If f(t, u) is non-increasing with respect to u
then the above equation has at most one solution u ∈ H1(a, b).

Proof. Let u1, u2 ∈ H1(a, b) be two solutions of the above equation and let z =
u1 − u2. Then

(ABCaDαz)(t) = f(t, u1)− f(t, u2).

Applying the mean value theorem we have

f(t, u1)− f(t, u2) =
∂f

∂u
(u∗)(u1 − u2),

for some u∗ between u1 and u2. Thus,

(ABCaDαz)(t)− ∂f

∂u
(u∗)z = 0. (4.2)

Since −∂f∂u (u∗) > 0, then z(t) ≤ 0, by Lemma 3.1. Also,(4.2) holds true for −z and
thus −z ≤ 0, by virtue of Lemma 3.1. Thus, z = 0 which proves that u1 = u2. �
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Lemma 4.2. Consider the nonlinear fractional differential equation

(ABCaDαu)(t) = f(t, u), t > a, 0 < α < 1, (4.3)

where f(t, u) is a smooth function. Assume that

λ2u+ h2(t) ≤ f(t, u) ≤ λ1u+ h1(t), for all t ∈ (a, b), u ∈ H1(a, b),

where λ1, λ2 < 0. Let v1 and v2 be the solutions of

(ABCaDαv1)(t) = λ1v1 + h1(t), t > a, 0 < α < 1, (4.4)

and
(ABCaDαv2)(t) = λ2v2 + h2(t), t > a, 0 < α < 1 . (4.5)

Then v2(t) ≤ u(t) ≤ v1(t), t ≥ a.

Proof. We shall prove that u(t) ≤ v1(t) and by applying analogous steps one can
show that v2(t) ≤ u(t). By subtracting (4.4) from (4.3) we have(

ABC
aD

α(u− v1)
)
(t) = f(t, u)− λ1v1 − h1(t)

≤ λ1u+ h1(t)− λ1v1 − h1(t) = λ1(u− v1).

Let z = u− v1. Then
(ABCaDαz)(t)− λ1z(t) ≤ 0.

Since λ1 > 0, it follows that z ≤ 0, by Lemma 3.1, which completes the proof. �

We now present some examples to illustrate the obtained results.

Example 4.3. Consider the nonlinear fractional initial value problem

(ABC0D
αu)(t) = e−u − 2, t > 0, 0 < α < 1,

u(0) = − ln(2).
(4.6)

Since e−u − 2 ≥ −u− 1, letting v be the solution of

(ABC0D
αv)(t) = −v − 1, t > 0, 0 < α < 1, (4.7)

we have v(t) ≤ u(t) by Lemma 4.2. The solution of (4.7) is given by (3.8) with
λ = −1, and f(t) = −1. Thus,

u(t) ≥ v(t)

= − 1
B(α) + 1− α

(
B(α)Eα[wtα] + (1− α)(Eα[wtα] +

α

1− α
tα−1

Γ(α)
∗ Eα[wtα]

)
,

where ω = − α
B(α)+1−α . We recall that (4.7) has a solution only if v(0) = −1.

Example 4.4. Consider the nonlinear fractional initial value problem

(ABC0D
αu)(t) = e−u − 1

2
u2, t > 0, 0 < α < 1,

u(0) = u0,
(4.8)

where u0 is the unique solution of e−u0 = 1
2u

2
0. By the Taylor series expansion of

f(u) = e−u, one can easily show that e−u − 1
2u

2 ≤ 1− u. Let v be the solution of

(ABC0D
αv)(t) = −v + 1, t > 0, 0 < α < 1, (4.9)

then v(t) ≥ u(t) by virtue of Lemma 4.2. The solution of (4.9) is given by (3.8)
with λ = −1, and f(t) = 1. Thus,

u(t) ≤ v(t)
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=
1

B(α) + 1− α
(
B(α)Eα[wtα] + (1− α)(Eα[wtα] +

α

1− α
tα−1

Γ(α)
∗ Eα[wtα]

)
,

where ω = − α
B(α)+1−α . We recall that (4.9) has a solution only if v(0) = 1.

Moreover, applying the result of Lemma 3.3 we have ‖v‖ ≤ 1, and hence ‖u‖ ≤ 1.

Example 4.5. Consider the nonlinear fractional initial value problem

(ABC0D
αu)(t) = −eu(3 + cos(u)) + 4e−t, t > 0, 0 < α < 1,

u(0) = 0.
(4.10)

Let h(u) = −eu(3 + cos(u)), since h′′(u) = eu(−3 + 2 sin(u)) ≤ 0, by the Taylor
series expansion method one can easily show that h(u) ≤ h(0) + h′(0)u = −4− 4u.
Let v be the solution of

(ABC0D
αv)(t) = −4v − 4 + 4e−t, t > 0, 0 < α < 1,

v(0) = 0,
(4.11)

then v(t) ≥ u(t) by Lemma 4.2. The solution of (4.11) is given by (3.8) where
λ = −4, and f(t) = −4 + 4e−t. Applying Lemma 3.3 we have

‖u‖ ≤ ‖v‖ ≤ |−4 + 4e−t

4
| = 1− e−t, t > 0.
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