
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 31, pp. 1–20.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

SOLUTIONS FOR p(x)-LAPLACE EQUATIONS WITH
CRITICAL FREQUENCY

XIA ZHANG, CHAO ZHANG, HUIMIN GAO

Communicated by Binlin Zhang

Abstract. This article concerns the p(x)-Laplace equations with critical fre-

quency

− div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u = f(x, u) in RN ,

where 1 < p− ≤ p(x) ≤ p+ < N . We study this equation with the potentials

being zero. By using variational method, we obtain the existence of nonneg-

ative solutions. Moreover, if f(x, t) is odd in t, for any m ∈ N we derive m
pairs of nontrivial solutions.

1. Introduction and statement of main results

Since the variable exponent spaces were thoroughly studied by Kovác̆ik and
Rákosńık [21], they have been used in the previous decades to model various phe-
nomena. In the studies of a class of non-standard variational problems and PDEs,
variable exponent spaces play an important role such as in electrorheological fluids
[27, 28, 29], thermorheological fluids [7], image processing [1, 13, 23] and so on. For
nonlinear problems with variable growth, there have been a great deal of interests
in studying the existence, multiplicity, uniqueness and regularity of solutions, see
[2, 3, 5, 6, 10, 12, 18, 19, 20, 21, 24, 25, 26, 31] and references therein.

In this article, we study the p(x)-Laplace type equation

− div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u = f(x, u) in RN . (1.1)

We are interested in the critical frequency case in the sense that

min
x∈RN

V (x) = 0.

It is worth mentioning that the study of Schrödinger equations with the critical
frequency was first investigated by Byeon and Wang [8, 9]. In the linear case
p(x) ≡ 2, Ding and Lin [16] obtained the existence and multiplicity of solutions
to a class of Schrödinger equations with critical frequency and critical nonlinearity.
For the p(x)-Laplace equation (1.1), there have been many papers dealing with
the case infx∈RN V (x) > 0, which can be found in [4, 5, 18, 19, 24] and references
therein.
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Inspired by the works mentioned above, we will study (1.1) with critical fre-
quency in the frame of variable exponent function spaces, the definitions of which
will be given in Section 2. More precisely, the aim of this paper is to use variational
method to show the existence of solutions for (1.1). The main difficulty is caused by
the loss of the compactness for the embedding W 1,p(x)(RN ) ↪→ Lq(x)(RN ), where
1 ≤ q(x)� p∗(x). We do not expect that the energy functional satisfies the Palais-
Smale condition ((PS) condition for short) at any positive energy level, which makes
the study via variational methods rather complicated. We show that (PS) condition
holds for energy level less than some positive constant. Then, by using Minimax
theorem, we obtain weak solution of (1.1). To this end, we assume the following
conditions:

(A1) V ∈ C(RN ,R) and minx∈RN V (x) = 0;
(A2) There exists a > 0 such that the level set V a = {x ∈ RN : V (x) < a} has

finite Lebesgue measure;
(A3) f ∈ C(RN × R,R). There exists c0 > 0, 1 ≤ q(x) � p∗(x) such that

|f(x, t)| ≤ c0(1 + |t|q(x)−1) for any (x, t) ∈ RN × R, where p∗(x) = Np(x)
N−p(x)

is the critical exponent;
(A4) limt→0

f(x,t)

|t|p+−1 = 0 uniformly in x ∈ RN , where p+ = supx∈RN p(x);

(A5) There exists µ > p+ such that µF (x, t) ≤ f(x, t)t for any (x, t) ∈ RN × R,
where F (x, t) =

∫ t
0
f(x, s) ds;

(A6) There exist c1 > 0, α(x) > 1 such that f(x, t) > c1t
α(x)−1 for any (x, t) ∈

RN × R+.
Now we are in a position to give our main results.

Theorem 1.1. Assume that (A1)–(A6) are fulfilled. If q− > p+, α− > p+ and
α+ < p∗−, the problem (1.1) has a nonnegative nontrivial weak solution u.

Theorem 1.2. Assume that (A1)–(A6) are fulfilled. If the subcritical nonlinearity
f(x, t) is odd in t, problem (1.1) has at least m pairs of nontrivial weak solutions
for any m ∈ N.

The rest of this paper is organized as follows. In Section 2, we collect some basic
properties for variable exponent Sobolev spaces which will be used later. We will
prove the main result in Section 3.

2. Preliminaries

For the convenience of the readers, we recall some definitions and basic properties
of variable exponent spaces. For a deeper treatment on these spaces, we refer to
[15].

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞). For
p ∈ P(Ω), we denote

p+ = sup
x∈Ω

p(x), p− = inf
x∈Ω

p(x).

From now on, we only consider the case

1 ≤ p− ≤ p(x) ≤ p+ < N. (2.1)

Define
‖u‖p(x) = inf

{
t > 0 :

∫
Ω

|u
t
|p(x) dx ≤ 1

}
. (2.2)
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The variable exponent Lebesgue space Lp(x)(Ω) is the class of all functions u such
that

∫
Ω
|tu(x)|p(x) dx < ∞, for some t > 0. Lp(x)(Ω) is a Banach space equipped

with the norm (2.2).

Theorem 2.1. For any u ∈ Lp(x)(Ω), we have
(1) if ‖u‖p(x) ≥ 1, then ‖u‖p−p(x) ≤

∫
Ω
|u|p(x) dx ≤ ‖u‖p+p(x);

(2) if ‖u‖p(x) < 1, then ‖u‖p+p(x) ≤
∫

Ω
|u|p(x) dx ≤ ‖u‖p−p(x).

Theorem 2.2. The dual space of Lp(x)(Ω) is Lp
′(x)(Ω) if and only if p satisfies

(2.1), where p′(x) = p(x)
p(x)−1 . The space Lp(x)(Ω) is reflexive if and only if

1 < p− ≤ p(x) ≤ p+ <∞. (2.3)

Theorem 2.3. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),∫
Ω

|uv| dx ≤ 2‖u‖p(x)‖v‖p′(x).

The variable exponent Sobolev space W 1,p(x)(Ω) is the class of all functions
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω). W 1, p(x)(Ω) is a Banach space equipped
with the norm

‖u‖1, p(x) = ‖u‖p(x) + ‖∇u‖p(x). (2.4)

By W
1,p(x)
0 (Ω) we denote the subspace of W 1,p(x)(Ω) which is the closure of

C∞0 (Ω) with respect to the norm (2.4). Under the assumption (2.3), W 1, p(x)(Ω)
and W

1,p(x)
0 (Ω) are reflexive. And we denote the dual space of W 1,p(x)

0 (Ω) by
W−1,p′(x)(Ω).

For any p1, p2 ∈ P(Ω), we denote by p1(x)� p2(x) the fact that

inf
x∈Ω

(p2(x)− p1(x)) > 0.

Theorem 2.4. Let Ω be a bounded domain with the cone property. If p ∈ C(Ω̄)
satisfying (2.1) and q is a measurable function defined on Ω with

1 ≤ q(x)� p∗(x) :=
Np(x)
N − p(x)

a.e. x ∈ Ω,

then there is a compact embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Theorem 2.5. Let Ω be a bounded domain with the cone property. If p is Lipschitz
continuous and satisfies (2.1), q is a measurable function defined on Ω with

p(x) ≤ q(x) ≤ p∗(x) a.e. x ∈ Ω,

then there is a continuous embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

In this paper, we use the following subspace of W 1, p(x)(RN ):

X =
{
u ∈W 1, p(x)(RN ) :

∫
RN

V (x)|u|p(x) dx <∞
}

with the norm

‖u‖X = inf
{
t > 0 :

∫
RN

|∇u|p(x) + V (x)|u|p(x)

tp(x)
dx ≤ 1

}
,

where V (x) ≥ 0. By standard arguments, it is clear that X is a uniformly convex
Banach space. The norm ‖u‖X has the following properties:
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Theorem 2.6. For any u ∈ X, we have
(1) if ‖u‖X ≥ 1, then ‖u‖p−X ≤

∫
RN (|∇u|p(x) + V (x)|u|p(x)) dx ≤ ‖u‖p+X ;

(2) if ‖u‖X < 1, then ‖u‖p+X ≤
∫

RN (|∇u|p(x) + V (x)|u|p(x)) dx ≤ ‖u‖p−X .

Lemma 2.7. Assume that hypothesis (A2) is fulfilled. Then the embedding X ↪→
W 1, p(x)(RN ) is continuous.

Proof. For any u ∈ X, we obtain∫
RN

∣∣∇u∣∣p(x)
dx+

∫
RN

V (x)|u|p(x) dx <∞.

Thus
∫

RN
∣∣∇u∣∣p(x)

dx < ∞, which implies
∫

RN
∣∣u∣∣p∗(x)

dx < ∞ (see [15, Theorem
8.3.1]). As ∫

V a

∣∣u∣∣p(x)
dx ≤

∫
V a

1 dx+
∫
V a

∣∣u∣∣p∗(x)
dx,

we obtain ∫
V a

∣∣u∣∣p(x)
dx <∞.

Note that ∫
RN

∣∣∇u∣∣p(x)
dx+

∫
RN

V (x)|u|p(x) dx+ a

∫
V a

∣∣u∣∣p(x)
dx

≥
∫

RN

∣∣∇u∣∣p(x)
dx+ a

∫
RN\V a

∣∣u∣∣p(x)
dx+ a

∫
V a

∣∣u∣∣p(x)
dx,

we derive that ∫
RN

(
∣∣∇u∣∣p(x) +

∣∣u∣∣p(x))dx <∞.

Then u ∈ W 1,p(x)(RN ), i.e. X ⊂ W 1,p(x)(RN ). Define i : X → W 1,p(x)(RN ) as
follows:

i(u) = u.

Take {un} ⊂ X such that ‖un − u‖X → 0 as n → ∞. We get that
∫

RN
∣∣∇un −

∇u
∣∣p(x)

dx → 0 and
∫

RN V (x)
∣∣un − u∣∣p(x)

dx → 0. Then,
∫

RN
∣∣un − u∣∣p∗(x)

dx → 0,
which implies
|un − u|p(x)‖p∗(x)/p(x) → 0.

By Hölder inequality,∫
V a

∣∣un − u∣∣p(x)
dx ≤ 2‖1‖ p∗(x)

p∗(x)−p(x) ,V
a‖un − u|p(x)‖p∗(x)/p(x).

As V a has finite Lebesgue measure, we derive that∫
V a

∣∣un − u∣∣p(x)
dx→ 0.

From, ∫
RN\V a

∣∣un − u∣∣p(x)
dx ≤ 1

a

∫
RN

V (x)
∣∣un − u∣∣p(x)

dx→ 0,

we obtain that un → u in W 1,p(x)(RN ). Thus i is continuous, which implies that
X embeds continuously in W 1,p(x)(RN ). �
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3. Proof of main results

Throughout this section, we assume that conditions (A1)–(A6) are satisfied.
Without loss of generality, we assume that V (0) = minx∈RN V (x) = 0. Now we
give the definition of weak solutions for problem (1.1):

Definition 3.1. We say that u is a weak solution of (1.1) if for any v ∈ X,∫
RN

(|∇u|p(x)−2∇u∇v + V (x)uv) dx =
∫

RN
f(x, u)v dx.

The energy functional associated with (1.1) on X is defined as

I(u) =
∫

RN

1
p(x)

(|∇u|p(x) + V (x)|u|p(x)) dx−
∫

RN
F (x, u) dx.

It is easy to check that I ∈ C1(X, R) and the critical point for I is the weak solution
of problem (1.1).

In the following, let {un} be a (PS)c sequence for functional I, i.e. I(un) → c
and I ′(un) → 0 in X∗, as n → ∞, where X∗ is the dual space of X. Using
(A5) and standard arguments we derive that {un} is bounded in X. Passing to a
subsequence, still denoted by {un}, we assume that un → u weakly in X, un → u

in L
p(x)
loc (RN ), Lq(x)

loc (RN ) and un(x) → u(x) a.e. in RN , as n → ∞. It is easy to
verify that I ′(u) = 0 and I(u) ≥ 0.

Firstly, we will give some results to show that the (PS)c condition holds for
energy level c below some positive constant.

Lemma 3.2. There is a subsequence {unj} of {un} such that for any σ > 0, there
exists rσ > 0, which satisfies

lim sup
j→∞

∫
Bj\Br

|unj |s dx ≤ σ (3.1)

for any r ≥ rσ, where s = p(x) or s = q(x), Br = {x ∈ RN : |x| < r}.

Proof. From Theorem 2.4,
∫
Br
|un|s dx →

∫
Br
|u|s dx as n → ∞, for any r > 0.

Then, there exists nj ∈ N with nj+1 > nj such that∫
Bj

|unj |s dx−
∫
Bj

|u|s dx < 1
j
.

For any σ > 0, there exists rσ > 0 such that for any r ≥ rσ,∫
RN\Br

|u|s dx < σ.

If j > rσ, we have∫
Bj\Br

|unj |s dx =
∫
Bj

|unj |s dx−
∫
Bj

|u|s dx+
∫
Bj\Br

|u|s dx

+
∫
Br

|u|s dx−
∫
Br

|unj |s dx

<
1
j

+ σ +
∫
Br

|u|s dx−
∫
Br

|unj |s dx

for any r ≥ rσ, which implies lim supj→∞
∫
Bj\Br |unj |

s dx ≤ σ. �
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Take ϕ ∈ C∞0 (RN ) such that 0 ≤ ϕ ≤ 1; ϕ(x) = 1 for any |x| ≤ 1 and ϕ(x) = 0
for any |x| ≥ 2. For any j ∈ N, define ϕj(x) = ϕ( 2x

j ). Denote

ûj(x) = ϕj(x)u(x),

we have the following conclusion.

Lemma 3.3. ‖ûj − u‖X → 0 as j →∞.

Proof. We have∫
RN
|∇ûj −∇u|p(x) dx

=
∫

RN
|∇ϕj · u+ ϕj · ∇u−∇u|p(x) dx

≤ 2p+
∫

RN
|∇ϕj |p(x)|u|p(x) dx+ 2p+

∫
RN
|ϕj − 1|p(x)|∇u|p(x) dx.

As |∇ϕj(x)| = | 2j∇ϕ( 2x
j )| ≤ C

j , we obtain∫
RN
|∇ϕj |p(x)|u|p(x) dx→ 0.

Note that |ϕj−1|p(x)|∇u|p(x) ≤ 2p+ |∇u|p(x) ∈ L1(RN ) and |ϕj−1|p(x)|∇u|p(x) → 0
a.e. in RN , as j → ∞, it follows from Lebesgue dominated convergence theorem
that ∫

RN
|ϕj − 1|p(x)|∇u|p(x) dx→ 0,

as j →∞. Then
∫

RN |∇ûj −∇u|
p(x) dx→ 0.

Similarly, we obtain that as j →∞,∫
RN

V (x)|ûj − u|p(x) dx =
∫

RN
V (x)|ϕj − 1|p(x)|u|p(x) dx→ 0.

Thus, ‖ûj − u‖X → 0 as j →∞. �

Lemma 3.4. For any m > 1, δ ∈ (0, 1), there exists L > 0 such that for any ξ,
η ∈ RN , if |ξ − η| ≥ δ(|ξ|+ |η|), then

(|ξ|m−2ξ − |η|m−2η)(ξ − η) ≥ L|ξ − η|m.

Proof. From algebraic inequalities (see [11]) it follows that

(|ξ|m−2ξ − |η|m−2η)(ξ − η) ≥ C |ξ − η|2

(|ξ|+ |η|)2−m , (3.2)

if 1 < m < 2, and

(|ξ|m−2ξ − |η|m−2η)(ξ − η) ≥ C|ξ − η|m, (3.3)

if 2 ≤ m <∞, for any ξ, η ∈ RN . We obtain that if |ξ − η| ≥ δ(|ξ|+ |η|), then

(|ξ|m−2ξ − |η|m−2η)(ξ − η) ≥ L|ξ − η|m.

The result follows. �

Lemma 3.5. For any R > 0, ∇unj → ∇u in (Lp(x)(BR))N as j →∞.
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Proof. Take R > 0. Let v ∈ C∞0 (B2R) such that 0 ≤ v ≤ 1 in B2R and v ≡ 1 in
BR, we obtain

0 ≤
∫
BR

(|∇unj |p(x)−2∇unj − |∇u|p(x)−2∇u)(∇unj −∇u) dx

≤
∫
B2R

(|∇unj |p(x)−2∇unj − |∇u|p(x)−2∇u)(∇unj −∇u)v dx

= 〈I ′(unj ), unjv〉 − 〈I ′(unj ), uv〉 −
∫
B2R

|∇u|p(x)−2∇u(∇unj −∇u)v dx

−
∫
B2R

(
|∇unj |p(x)−2∇unj∇v · unj + V (x)|unj |p(x)v − f(x, unj )unjv

)
dx

+
∫
B2R

(
|∇unj |p(x)−2∇unj∇v · u+ V (x)|unj |p(x)−2unjuv

− f(x, unj )uv
)
dx.

Note that I ′(unj ) → 0 in X∗, we have 〈I ′(unj ), unjv〉 → 0 and 〈I ′(unj ), uv〉 → 0.
As unj → u weakly in X, ∇unj → ∇u weakly in (Lp(x)(RN ))N as j →∞. Then∫

B2R

|∇u|p(x)−2∇u(∇unj −∇u)v dx→ 0.

Using Theorem 2.3, we obtain∣∣ ∫
B2R

(|∇unj |p(x)−2∇unj∇v · unj − |∇unj |p(x)−2∇unj∇v · u) dx
∣∣

≤ C
∫
B2R

|∇unj |p(x)−1|unj − u| dx

≤ C‖|∇unj |p(x)−1‖p′(x)‖unj − u‖p(x),B2R ,

which implies∫
B2R

|∇unj |p(x)−2∇unj∇v · unj dx−
∫
B2R

|∇unj |p(x)−2∇unj∇v · u dx→ 0,

as j →∞. Similarly, we obtain∫
B2R

V (x)|unj |p(x)v dx−
∫
B2R

V (x)|unj |p(x)−2unjuv dx→ 0,∫
B2R

f(x, unj )unjv dx−
∫
B2R

f(x, unj )uv dx→ 0,

thus ∫
BR

(|∇unj |p(x)−2∇unj − |∇u|p(x)−2∇u)(∇unj −∇u) dx→ 0.

Similarly to the proof of [12, Theorem 3.1], BR is divided into two parts:

BR,1 = {x ∈ BR : p(x) < 2}, BR,2 = {x ∈ BR : p(x) ≥ 2}.
We could verify that ∫

BR,1

|∇unj −∇u|p(x) dx→ 0,∫
BR,2

|∇unj −∇u|p(x) dx→ 0.
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Thus, we obtain ∫
BR

|∇unj −∇u|p(x) dx→ 0,

i.e. ∇unj → ∇u in (Lp(x)(BR))N for any R > 0. Moreover, up to a subsequence,
we assume that ∇unj → ∇u a.e. in RN . �

Lemma 3.6. (1)

|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)− |∇ûj |p(x)−2∇ûj → 0

in (Lp
′(x)(RN ))N ;

(2)

V (x)
1

p′(x)
(
|unj |p(x)−2unj − |unj − ûj |p(x)−2(unj − ûj)− |ûj |p(x)−2ûj

)
→ 0

in Lp
′(x)(RN ), as j →∞.

Proof. For any ξ ∈ (Lp(x)(RN ))N , define

Ij(ξ) =
∫

RN

(
|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

− |∇ûj |p(x)−2∇ûj
)
ξ dx.

Then, Ij belongs to (Lp
′(x)(RN ))N , which is the dual space of (Lp(x)(RN ))N . To

derive (1), it suffices to verify that Ij → 0 in (Lp
′(x)(RN ))N , as j →∞.

As |∇u|p(x) ∈ L1(RN ), it follows that for any ε ∈ (0, 1), there exists R0 > 0 such
that if R ≥ R0, ∫

RN\BR
|∇u|p(x) dx ≤ min{εp+ , ε

p−
p−−1 } < 1.

Also, ûj → u in X implies that
∫

RN |∇ûj − ∇u|
p(x) dx → 0. There exists j0 > 0

such that for any j ≥ j0,∫
RN\BR0

|∇ûj |p(x) dx ≤ min
{
εp+ , ε

p−
p−−1

}
< 1.

Using Theorem 2.1, we obtain ‖∇ûj‖p(x),RN\BR0
< ε and

|∇ûj |p(x)−1‖p′(x),RN\BR0
< ε.

For any δ > 0, denote

Cδ,j =
{
x ∈ RN \BR0 :

∣∣ |∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)
∣∣

≥ δ(|∇unj |p(x)−1 + |∇unj −∇ûj |p(x)−1)
}

and
Aj = RN \ (BR0 ∪ Cδ,j),

we have ‖∇ûj‖p(x),Cδ,j < ε, ‖∇ûj‖p(x),Aj < ε and
|∇ûj |p(x)−1‖p′(x),Cδ,j < ε.

Next, we split the integral in Ij(ξ) on the sets BR0 , Cδ,j and Aj and denote

I1
j (ξ) =

∫
BR0

(
|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

− |∇ûj |p(x)−2∇ûj
)
ξ dx,
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I2
j (ξ) =

∫
Cδ,j

(
|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

− |∇ûj |p(x)−2∇ûj
)
ξ dx

and

I3
j (ξ) =

∫
Aj

(
|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

− |∇ûj |p(x)−2∇ûj
)
ξ dx.

By Holder’s inequality, we obtain

|I1
j (ξ)| ≤ 2| |∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

− |∇ûj |p(x)−2∇ûj‖p′(x),BR0
‖ξ‖p(x),BR0

.

By Lemma 3.5, we have ∇unj → ∇u in (Lp(x)(BR0))N and ∇unj → ∇u a.e. in
BR0 . Then{∥∥∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)− |∇ûj |p(x)−2∇ûj

∣∣p′(x)}
is equi-integrable in L1(BR0). Using Vitali’s theorem, we derive∫

BR0

∥∥∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

− |∇ûj |p(x)−2∇ûj
∣∣p′(x)

dx→ 0,

as j →∞, which implies∥∥ |∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)− |∇ûj |p(x)−2∇ûj
∥∥
p′(x),BR0

→ 0.

Thus, for any ε > 0, there exists j1 ≥ j0 such that if j ≥ j1,

|I1
j (ξ)| ≤ Cε‖ξ‖p(x),BR0

.

Note that

|I2
j (ξ)| ≤ 2‖∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)‖p′(x),Cδ,j

× ‖ξ‖p(x),Cδ,j + 2
∥∥|∇ûj |p(x)−1

∥∥
p′(x),Cδ,j

‖ξ‖p(x),Cδ,j .

Using Lemma 3.4, we obtain∫
Cδ,j

∥∥∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)
∣∣p′(x)

dx

≤ C
∫
Cδ,j

(|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj))∇ûj dx

≤ C
∥∥|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

∥∥
p′(x)
‖∇ûj‖p(x),Cδ,n

≤ Cε
∥∥|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)

∥∥
p′(x)

.

As {|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2∇(unj − ûj)} is bounded in the space
(Lp

′(x)(RN ))N , we obtain

|I2
j (ξ)| ≤ Cε‖ξ‖p(x),Cδ,j .
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It follows from Theorem 2.3 that

|I3
j (ξ)| ≤

∫
Aj

(
δ(|∇unj |p(x)−1 + |∇unj −∇ûj |p(x)−1)|ξ|+ |∇ûj |p(x)−1|ξ|

)
dx

≤ Cδ
∥∥|∇unj |p(x)−1 + |∇unj −∇ûj |p(x)−1

∥∥
p′(x)
‖ξ‖p(x)

+ C‖ |∇ûj |p(x)−1‖p′(x), Aj‖ξ‖p(x)

≤ Cδ‖ξ‖p(x) + Cε‖ξ‖p(x).

Taking δ = ε, we obtain
|I3
j (ξ)| ≤ Cε‖ξ‖p(x).

From the above discussion, we obtain

|Ij(ξ)| ≤ Cε‖ξ‖p(x),

which implies Ij → 0 in (Lp
′(x)(RN ))N , as j → ∞. Thus, conclusion (1) follows.

Similarly, we can get the proof of (2). �

Lemma 3.7. For any j ∈ N, denote u1
nj = unj − ûj. Then I(u1

nj )→ c− I(u) and
I ′(u1

nj )→ 0 in X∗, as j →∞.

Proof. As unj → u weakly in X and ûj → u in X, we obtain∫
RN
|∇ûj |p(x)−2∇ûj(∇unj −∇ûj) dx→ 0.

Note that the set {|∇unj |p(x)−2∇unj} is bounded in (Lp
′(x)(RN ))N , and that

|∇unj |p(x)−2∇unj → |∇u|p(x)−2∇u a.e. in RN , thus

|∇unj |p(x)−2∇unj → |∇u|p(x)−2∇u weakly in (Lp
′(x)(RN ))N ,

which implies
∫

RN |∇unj |
p(x)−2∇unj∇ûj dx →

∫
RN |∇u|

p(x) dx. It follows from
Lemma 3.6 that∫

RN

(
|∇unj |p(x)−2∇unj − |∇unj −∇ûj |p(x)−2(∇unj −∇ûj)− |∇ûj |p(x)−2∇ûj

)
× (∇unj −∇ûj) dx→ 0,

which implies∫
RN
|∇unj −∇ûj |p(x) dx

=
∫

RN
|∇unj |p(x) dx−

∫
RN
|∇unj |p(x)−2∇unj∇ûj dx+ o(1)

=
∫

RN
|∇unj |p(x) dx−

∫
RN
|∇u|p(x) dx+ o(1).

Similarly, we obtain∫
RN

V (x)|unj − ûj |p(x) dx =
∫

RN
V (x)|unj |p(x) dx−

∫
RN

V (x)|u|p(x) dx+ o(1).

Similar to the proof of Brezis-Lieb lemma, it is easy to get∫
RN

(F (x, unj )− F (x, unj − ûj)− F (x, ûj)) dx→ 0,
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as j →∞. We obtain

I(u1
nj ) = I(unj )− I(u) + o(1) = c− I(u) + o(1)

Thus, I(u1
nj )→ c− I(u), as j →∞.

Note that∥∥I ′(u1
nj )− I

′(unj ) + I ′(ûj)
∥∥ = sup

‖v‖X=1,v∈X

∣∣〈I ′(u1
nj )− I

′(unj ) + I ′(ûj), v〉
∣∣.

Take v ∈ X with ‖v‖X = 1. It follows from Hölder inequality that∣∣〈I ′(u1
nj )− I

′(unj ) + I ′(ûj), v〉
∣∣

=
∣∣∣ ∫

RN

(
(|∇u1

nj |
p(x)−2∇u1

nj − |∇unj |
p(x)−2∇unj + |∇ûj |p(x)−2∇ûj)∇v

+ V (x)(|u1
nj |

p(x)−2u1
nj − |unj |

p(x)−2unj + |ûj |p(x)−2ûj)v
)
dx

+
∫

RN
(f(x, unj )− f(x, unj − ûj)− f(x, ûj))v

)
dx
∣∣∣

≤ 2
∥∥|∇u1

nj |
p(x)−2∇u1

nj − |∇unj |
p(x)−2∇unj + |∇ûj |p(x)−2∇ûj

∥∥
p′(x)
‖∇v‖p(x)

+ 2
∥∥V (x)

1
p′(x) (|u1

nj |
p(x)−2u1

nj − |unj |
p(x)−2unj + |ûj |p(x)−2ûj)

∥∥
p′(x)
‖V

1
p(x) v‖p(x)

+
∫

RN
|(f(x, unj )− f(x, unj − ûj)− f(x, ûj))v| dx.

We have ∣∣ ∫
RN

(f(x, unj )− f(x, unj − ûj)− f(x, ûj))v dx
∣∣

≤
∫
Br

|f(x, unj )− f(x, unj − ûj)− f(x, ûj)| · |v| dx

+
∫

RN\Br
|f(x, unj )− f(x, unj − ûj)− f(x, ûj(x))| |v| dx

for any r ≥ rσ, where rσ is from Lemma 3.2.
By (A3) and (A4), for any t > 0 we obtain

|f(x, t)| ≤ C(|t|p(x)−1 + |t|q(x)−1).

Note that ûj → u and unj → u in Lp(x)(Br) and Lq(x)(Br), respectively, we could
verify that ∫

Br

|f(x, unj )− f(x, unj − ûj)− f(x, ûj)| · |v| dx→ 0 (3.4)

uniformly in v ∈ X with ‖v‖X ≤ 1. Also,∫
RN\Br

|f(x, unj )− f(x, unj − ûj)− f(x, ûj)| · |v| dx

=
∫
Bj\Br

|f(x, unj )− f(x, unj − ûj)− f(x, ûj)| · |v| dx

≤C
∫
Bj\Br

(|unj |p(x)−1 + |ûj |p(x)−1 + |unj |q(x)−1 + |ûj |q(x)−1) |v| dx.
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For any σ > 0, by (3.1) and the Hölder inequality we obtain

lim sup
j→∞

∫
Bj\Br

(|unj |p(x)−1 + |unj |q(x)−1) · |v| dx

≤ lim sup
j→∞

2
∥∥|unj |p(x)−1

∥∥
p′(x),Bj\Br

‖v‖p(x),Bj\Br

+ lim sup
j→∞

2
∥∥|unj |q(x)−1

∥∥
q′(x),Bj\Br

‖v‖q(x),Bj\Br

≤ C
(
σ
p−−1
p− + σ

q−−1
q−

)
.

(3.5)

As ûj → u in X, ûj → u in Lp(x)(RN ) and Lq(x)(RN ). Then

lim sup
j→∞

∫
RN\Br

(|ûj |p(x)−1 + |ûj |q(x)−1) · |v| dx

=
∫

RN\Br
(|u|p(x)−1 + |u|q(x)−1) · |v| dx

≤ 2
∥∥|u|p(x)−1

∥∥
p′(x),RN\Br

‖v‖p(x),RN\Br

+ 2
∥∥|u|q(x)−1

∥∥
q′(x),RN\Br

‖v‖q(x),RN\Br

≤ C
(
σ
p−−1
p− + σ

q−−1
q−

)
.

(3.6)

From (3.4)-(3.6), we have

lim sup
j→∞

∫
RN
|f(x, unj )− f(x, unj − ûj)− f(x, ûj)| · |v| dx

≤ C
(
σ
p−−1
p− + σ

q−−1
q−

)
uniformly in v ∈ X with ‖v‖X ≤ 1. Let σ → 0,

lim sup
j→∞

∫
RN
|f(x, unj )− f(x, unj − ûj)− f(x, ûj)| · |v| dx = 0.

As I ′(unj )→ 0 and I ′(ûj)→ I ′(u) = 0, we obtain I ′(u1
nj )→ 0, as j →∞. �

Next, we show that I satisfies the (PS)c condition for energy level c below some
positive constant.

Theorem 3.8. There exists c̃ > 0 such that for any c ∈ (0, c̃), unj → u in X as
j →∞.

Proof. From (A3), we have( f(x, t)
|t|p+−1

) q(x)
q(x)−p+ 1

f(x, t)|t|
≤ c0(1 + |t|q(x)−1)

p+
q(x)−p+ |t|−(p+−1)

q(x)
q(x)−p+

−1

≤ C + C|t|−(p+−1)
q(x)

q(x)−p+
−1
.

(3.7)

By (A4), for any δ > 0, there exists tδ ∈ (0, 1) such that for any |t| < tδ,
|f(x, t)/|t|p+−1| < δ; Also, for any |t| > tδ, from (3.7) we obtain that∣∣f(x, t)

tp+−1

∣∣ q(x)
q(x)−p+ ≤ Cδ|f(x, t)t|.
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We have∫
RN

f(x, u1
nj )u

1
nj dx

=
∫
{x∈RN :|u1

nj
|<tδ}

f(x, u1
nj )u

1
nj dx+

∫
{x∈RN :|u1

nj
|≥tδ}

f(x, u1
nj )u

1
nj dx.

For the first term on the right-hand side, we obtain∣∣ ∫
{x∈RN :|u1

nj
|<tδ}

f(x, u1
nj )u

1
nj dx

∣∣ ≤ ∫
{x∈RN :|u1

nj
|<tδ}

∣∣∣ f(x, u1
nj )

|u1
nj |p+−1

∣∣∣ |u1
nj |

p+ dx

< δ

∫
{x∈RN :|u1

nj
|<tδ}

|u1
nj |

p+ dx

< δ

∫
{x∈RN :|u1

nj
|<tδ}

|u1
nj |

p(x) dx.

(3.8)

For the second term, ∣∣ ∫
{x∈RN :|u1

nj
|≥tδ}

f(x, u1
nj )u

1
nj dx

∣∣
≤
∫
{x∈RN :|u1

nj
≥tδ}

∣∣∣ f(x, u1
nj )

|u1
nj |p+−1

∣∣∣|u1
nj |

p+ dx

≤
∥∥ f(x, u1

nj )
|u1
nj |p+−1

∥∥
q(x)

q(x)−p+
‖|u1

nj |
p+‖ q(x)

p+

.

(3.9)

Note that

I(u1
nj )−

1
p+
〈I ′(u1

nj ), u
1
nj 〉

= c− I(u) + o(1)

=
∫

RN

( 1
p(x)

− 1
p+

)
|∇u1

nj |
p(x) +

( 1
p(x)

− 1
p+

)
V (x)|u1

nj |
p(x)

−
∫

RN
(F (x, u1

nj )−
1
p+
f(x, u1

nj )u
1
nj ) dx

≥
( 1
p+
− 1
µ

) ∫
RN

f(x, u1
nj )u

1
nj dx,

which implies ∫
{x∈RN :|u1

nj
|≥tδ}

∣∣∣ f(x, u1
nj )

|u1
nj |p+−1

∣∣∣ q(x)
q(x)−p+ dx

≤ Cδ
∫
{x∈RN :|u1

nj
|≥tδ}

|f(x, u1
nj )u

1
nj | dx

≤ Cδ
µp+

µ− p+
(c− I(u) + o(1)).

(3.10)

As

〈I ′(u1
nj ), u

1
nj 〉 =

∫
RN

(|∇u1
nj |

p(x) + V (x)|u1
nj |

p(x)) dx−
∫

RN
f(x, u1

nj )u
1
nj dx
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= o(1)

and ∥∥|u1
nj |

p+
∥∥
q(x)
p+

=
∥∥u1

nj

∥∥p+
q(x)
≤ C

∥∥u1
nj

∥∥p+
X
,

by (3.8)-(3.10), we have∫
RN

(|∇u1
nj |

p(x) + V (x)|u1
nj |

p(x)) dx

=
∫

RN
f(x, u1

nj )u
1
nj dx+ o(1)

≤ δ
∫
{x∈RN :|u1

nj
|<tδ}

|u1
nj |

p(x) dx+ C‖u1
nj‖

p+
X

[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+

]
.

As V a has finite Lebesgue measure, we obtain limR→∞ |V a \BR| = 0. Then, for
any η ∈ (0, 1), there exists R1 > 0 such that |V a \ BR| < η for any R ≥ R1. We
have ∫

RN
(a− V (x))|u1

nj |
p(x) dx ≤

∫
V a

(a− V (x))|u1
nj |

p(x) dx

=
∫
V a\BR1

(a− V (x))|u1
nj |

p(x) dx

+
∫
V a

T
BR1

(a− V (x))|u1
nj |

p(x) dx.

By Hölder’s inequality,∣∣ ∫
V a\BR1

(a− V (x))|u1
nj |

p(x) dx
∣∣ ≤ ∫

V a\BR1

2a|u1
nj |

p(x) dx

≤ 2a
∥∥|u1

nj |
p(x)
∥∥

q(x)
q(x)−p+

‖1‖ q(x)
p+

,V a\BR1

≤ Cη
p+
q+ .

(3.11)

As u1
nj → 0 weakly in X, u1

nj → 0 in Lp(x)(BR1), as j → ∞. Then, for the above
η > 0, there exists j2 ∈ N such that for any j ≥ j2,∣∣ ∫

V a∩BR1

(a− V (x))|u1
nj |

p(x) dx
∣∣ ≤ 2a

∫
BR1

|u1
nj |

p(x) dx ≤ 2aη. (3.12)

Then,∫
RN

(
|∇u1

nj |
p(x) +

1
2
V (x)|u1

nj |
p(x) +

a

2
|u1
nj |

p(x)
)
dx

=
∫

RN

(
f(x, u1

nj )u
1
nj +

a

2
|u1
nj |

p(x) − 1
2
V (x)|u1

nj |
p(x)
)
dx+ o(1)

≤ δ
∫
{x∈RN :|u1

nj
|<tδ}

|u1
nj |

p(x) dx+ C‖u1
nj‖

p+
X

[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+

]
+ Cη

p+
q+ + aη + o(1).
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Letting η → 0, we have∫
RN

(
|∇u1

nj |
p(x) +

1
2
V (x)|u1

nj |
p(x) +

a

2
|u1
nj |

p(x)
)
dx

≤ δ
∫
{x∈RN :|u1

nj
|<tδ}

|u1
nj |

p(x) dx+ C‖u1
nj‖

p+
X

[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+

]
+ o(1).

Taking δ = a/2, we obtain∫
RN

(
|∇u1

nj |
p(x) +

1
2
V (x)|u1

nj |
p(x)
)
dx

≤ C‖u1
nj‖

p+
X

[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+

]
+ o(1).

Suppose that u1
nj 9 0 in X. If ‖u1

nj‖X < 1, then

‖u1
nj‖

p+
X ≤ C‖u

1
nj‖

p+
X

[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+ + o(1)

]
.

Then

1 ≤ C
[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+ + o(1)

]
.

(3.13)

Let j →∞. From I(u) ≥ 0 we have

1 ≤ C
[
(Cδ

µp+

µ− p+
(c− I(u)))

q−−p+
q− + (Cδ

µp+

µ− p+
(c− I(u)))

q+−p+
q+

]
≤ C

[
(Cδ

µp+

µ− p+
c)

q−−p+
q− + (Cδ

µp+

µ− p+
c)

q+−p+
q+

]
:= A1

(
c
q−−p+
q− + c

q+−p+
q+

) (3.14)

If ‖u1
nj‖X ≥ 1 and

‖u1
nj‖

p−
X ≤ C‖u

1
nj‖

p+
X

[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+ + o(1)

]
,

(3.15)

then

1 ≤ C‖u1
nj‖

p+−p−
X

[
(Cδ

µp+

µ− p+
(c+ o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c+ o(1)))

q+−p+
q+ + o(1)

]
.
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Besides,

I(u1
nj )−

1
µ
〈I ′(u1

nj ), u
1
nj 〉 ≥

µ− p+

µp+
‖u1

nj‖
p−
X ,

which implies ‖u1
nj‖

p−
X ≤

µp+
µ−p+ (c− I(u) + o(1)). We get

1 ≤ C
[ µp+

µ− p+
(c− I(u) + o(1))

] p+−p−
p−

[
(Cδ

µp+

µ− p+
(c− I(u) + o(1)))

q−−p+
q−

+ (Cδ
µp+

µ− p+
(c− I(u) + o(1)))

q+−p+
q+ + o(1)

]
.

(3.16)

Let j →∞,

1 ≤ C
( µp+

µ− p+
c
) p+−p−

p−
[
(Cδ

µp+

µ− p+
c)

q−−p+
q− + (Cδ

µp+

µ− p+
c)

q+−p+
q+

]
:= A2

(
c
p+−p−
p−

+
q−−p+
q− + c

p+−p−
p−

+
q+−p+
q+

) (3.17)

Choosing c̃ > 0 such that for any c ∈ (0, c̃),

A1

(
c
q−−p+
q− + c

q+−p+
q+

)
≤ 1,

A2

(
c
p+−p−
p−

+
q−−p+
q− + c

p+−p−
p−

+
q+−p+
q+

)
≤ 1.

From (3.14) and (3.17), if c ∈ (0, c̃), we obtain a contradiction, which implies
u1
nj → 0 in X. �

The next result shows that I has a Mountain Pass geometry.

Theorem 3.9. For any δ > 0, there exists tδ > 0 and φδ ∈ X such that I(tδφδ) < 0.

Proof. Recall that

inf
{∫

RN
|∇φ|p− dx : φ ∈ C∞0 (RN ), ‖φ‖α+ = 1

}
= 0. (3.18)

Then, for any δ > 0 we can choose φδ ∈ C∞0 (RN ) such that 0 ≤ φδ ≤ 1, ‖φδ‖α+ = 1,∫
RN |∇φδ|

p− dx < δ and suppφδ ⊂ Brδ .
Taking t > 1, from (A6) we obtain

I(tφδ) =
∫

RN

tp(x)

p(x)
(|∇φδ|p(x) + V (x)|φδ|p(x)) dx−

∫
RN

F (x, tφδ) dx

<
tp+

p−

∫
RN

(|∇φδ|p(x) + V (x)|φδ|p(x)) dx− c1tα−
∫

RN
|φδ|α(x) dx.

(3.19)

As α− > p+, there exists tδ > 0 such that I(tδφδ) < 0. �

Theorem 3.10. There exist r > 0 and 0 < ρ < ‖tδφδ‖X such that I(u) ≥ r for
any u ∈ X with ‖u‖X = ρ and I(u) > 0 for any u ∈ X with ‖u‖X < ρ, where tδ
and φδ are from Theorem 3.9.

Proof. By (A3) and (A4), for any λ′ > 0, there exists C > 0 such that

|F (x, t)| ≤ λ′|t|p+ + C|t|q(x). (3.20)



EJDE-2018/31 p(x)-LAPLACE EQUATIONS 17

We take c2, c3 > 0, which are the embedding constant of X ↪→ Lp+(RN ), Lq(x)(RN ),
respectively. For any u ∈ X with ‖u‖X ≤ min{1, 1

c2
, 1
c3
}, we derive

I(u) ≥
∫

RN

1
p+

(|∇u|p(x) + V (x)|u|p(x)) dx−
∫

RN
(λ′|u|p+ + C|u|q(x)) dx

≥ 1
p+
‖u‖p+X − λ

′‖u‖p+p+ − C‖u‖
q−
q(x)

≥ 1
p+
‖u‖p+X − λ

′c2‖u‖p+X − C‖u‖
q−
X .

Taking λ′ < 1/(2c2p+), we obtain

I(u) ≥ 1
2p+
‖u‖p+X − C‖u‖

q−
X .

As q− > p+, there exist r > 0 and 0 < ρ < min{1, 1
c2
, 1
c3
, ‖tδφδ‖X} such that

I(u) ≥ r for any u ∈ X with ‖u‖X = ρ and I(u) > 0 for any u ∈ X with
‖u‖X < ρ. �

Next, we verify that, problem (1.1) has a nonnegative solution.

Proof of Theorem 1.1. (1) For any t > 0, it follows from (3.19) that

I(tφδ) <
tp+

p−

(
δ +

∫
RN

V (x)|φδ|p(x) dx
)
− c1tα−

≤
( p+

α−

) p+
α−−p+

( 1
p−

) α−
α−−p+ α− − p+

α−

(δ +
∫

RN V (x)|φδ|p(x) dx)
α−

α−−p+

c

p+
α−−p+
1

As V (0) = minx∈RN V (x) = 0, there exists x0 > 0 such that for any |x| < x0,
|V (x)| ≤ δ

‖φδ‖
p−
p−

. Then∫
RN

V (x)|φδ|p(x) dx ≤
∫

RN
V (x)|φδ|p− dx < δ.

We have

I(tφδ) ≤
( p+

α−

) p+
α−−p+

( 1
p−

) α−
α−−p+ α− − p+

α−
c

p+
p+−α−
1 (2δ)

α−
α−−p+ .

Denote
c = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = tδφδ}. Then

inf
‖u‖X=ρ

I(u) > I(0) > I(tδφδ)

and
0 < r ≤ c ≤ I(ttδφδ)

≤
( p+

α−

) p+
α−−p+

( 1
p−

) α−
α−−p+ α− − p+

α−
c

p+
p+−α−
1 (2δ)

α−
α−−p+ .

(3.21)

By the Mountain Pass Theorem, there exists {un}n ⊂ X such that

I(un)→ c, I ′(un)→ 0 in X∗, as n→∞.
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For any δ > 0 with

(
p+

α−
)

p+
α−−p+ (

1
p−

)
α−

α−−p+
α− − p+

α−
c

p+
p+−α−
1 (2δ)

α−
α−−p+ < c̃,

by Theorem 3.8, there is a subsequence {unj} such that unj → u in X. Thus
I(u) = c and I ′(u) = 0, i.e. u is a nontrivial weak solution of problem (1.1).

(2) u is nonnegative. In fact, it suffices to consider the following functionals on
X:

I+(u) = I(u) =
∫

RN

1
p(x)

(|∇u|p(x) + V (x)|u|p(x)) dx−
∫

RN
F (x, u+) dx.

Similar to the discussion in (1), we could verify that problem (1.1) has a nonnegative
weak solution u. �

Now we establish the existence ofm pairs of solutions of (1.1) using the Lusternik-
Schnirelman theory of critical points. Let Σ(X) be the family of sets F ⊆ Σ(X)\{0}
such that F is closed in X and symmetric with respect to 0, i.e. x ∈ F implies
−x ∈ F . For F ∈ Σ(X), we define the genus of F to be k, denoted by gen(F ) = k,
if there is a continuous and odd map ψ : F → Rk \{0} and k is the smallest integer
with this property. The definition of genus here, which was introduced by Coffman
[14], is equivalent with the the Krasnoselski original genus.

Denote by Γ∗ the set of all odd homeomorphisms g ∈ C(X,X) such that g(0) = 0
and g(B1) ⊆ {u ∈ X : Iε(u) ≥ 0}. We denote by Γm the set of all compact subsets F
of X which are symmetric with respect to the origin and satisfies gen(F ∩g(∂B1)) ≥
m for any g ∈ Γ∗. We refer to [11] for more details.

Proof of Theorem 1.2. From (3.18), for any m ∈ N, we take φjδ ∈ C∞0 (RN ) such
that suppφjδ ⊂ Brm,δ , ‖φ

j
δ‖α+ = 1,∫

RN
|∇φjδ|

p− dx < δ,

for any j = 1, 2, . . . ,m and suppφiδ ∩ suppφ
j
δ = ∅ for any i 6= j.

Define the m-dimensional subspace F δm = span{φjδ : j = 1, 2, . . . ,m}. For any
δ > 0 with ( p+

α−

) p+
α−−p+

( 1
p−

) α−
α−−p+ α− − p+

α−
c

p+
p+−α−
1 (2δ)

α−
α−−p+ < c̃,

where c̃ is from Theorem 3.8. Then, for any u ∈ F δm with u =
∑m
j=1 tjφ

j
δ, by (A6)

we obtain

I(u) ≤ 1
p−

∫
RN

(|∇u|p(x) + V (x)|u|p(x)) dx− c1
∫

RN
|u|α(x) dx

=
m∑
j=1

( 1
p−

∫
RN

t
p(x)
j (|∇φjδ|

p(x) + V (x)|φjδ|
p(x)) dx

− c1
∫

RN
t
α(x)
j |φjδ|

α(x) dx
)

≤ m
( p+

α−

) p+
α−−p+

( 1
p−

) α−
α−−p+ α− − p+

α−
c

p+
p+−α−
1 (2δ)

α−
α−−p+ .

(3.22)
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As F δm is a finite-dimensional space and ‖ · ‖α+ is also a norm on F δm, ‖ · ‖α+ and
‖ · ‖X are equivalent. By the first inequality in (3.22), we obtain I(u) → −∞, as
u ∈ F δm with ‖u‖X →∞. Then, there exists Rm > ρ such that for any u ∈ F δm: if
‖u‖X ≥ Rm, I(u) < 0.

For any 1 ≤ j ≤ m, let
cj = inf

F∈Γm
max
u∈F

I(u),

we have r ≤ c1 ≤ c2 ≤ · · · ≤ cm ≤ supu∈F δm I(u) ≤ c̃. From Theorem 3.8, I satisfies
(PS)cj condition. Thus, cj is a critical value of I and uj is a critical point of I with
I(uj) = cj . As f(x, t) is odd in t, we derive that −uj is also a critical point of I.
Then I has at least m pairs of nontrivial solutions. �
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