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PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS
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Abstract. We discuss a quadrature method for generating bifurcation curves
of positive solutions to some autonomous boundary value problems with non-

linear boundary conditions. We consider various nonlinearities, including posi-

tone and semipositone problems in both singular and nonsingular cases. After
analyzing the method in these cases, we provide an algorithm for the numerical

generation of bifurcation curves and show its application to selected problems.

1. Introduction

We consider the two-point boundary value problem

−u′′(t) = λf(u(t)), t ∈ (0, 1),

u(0) = 0,

u′(1) = −c(u(1))u(1),

(1.1)

where f : (0,∞) → R is a continuously differentiable function which is integrable
on (0, ε) for some ε > 0 and c : [0,∞) → (0,∞) is a continuous function. Positive
solutions to equations of this form, but with linear boundary conditions, have been
well-studied because of their applications in a number of fields, such as combustion
theory, nonlinear heat generation, and population dynamics. See [2, 12, 21], respec-
tively, for such examples. Further, problems with nonlinear boundary conditions
have application in the study of thermal explosions and population dynamics with
density dependent dispersal on the edges (see [19, 4], respectively for the deriva-
tion of such models), and have been the subject of recent mathematical study (see
[3, 5, 8, 9, 11, 16, 20, 22]).

Here, we study positive solutions of (1.1) when the function f satisfies one of
the additional hypotheses,

(H1) f(s) > 0 for all s > 0, or
(H2) there exist unique β, θ > 0 so that f(s) < 0 for s ∈ (0, β), f(s) > 0 for

s ∈ (β,∞), and F (θ) = 0 where F (s) =
∫ s
0
f(r) dr.
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We note that any solution of (1.1) must be symmetric about any point t0 ∈ (0, 1)
where u′(t0) = 0 (see proof of Lemma 2.2). To preserve the unique challenges posed
by the presence of the nonlinear boundary condition, we consider only solutions
where u(1) > 0, which implies that u′(1) < 0. When (H1) is satisfied, solutions to
(1.1) are concave, while when (H2) is satisfied, solutions are convex near t = 0 (and
possibly near t = 1) and are concave otherwise. See Figure 1 for examples.

Solution when f satisfies (H1). Solution when f satisfies (H2)

Figure 1. Shape of solution for positone and semipositone problems.

We further show in Section 2 that each positive solution of (1.1) has a unique
interior maximum, and that if (H2) is satisfied, then ‖u‖∞ ≥ θ.

Of particular interest in this paper is the shape of bifurcation curves. Laetsch
studied such problems in [14] with Dirichlet boundary conditions using a quadrature
method (or time map analysis). The ideas of Laetsch have been been adapted to
problems with a number of different boundary conditions, for example Neumann
boundary conditions (see [18]), mixed boundary conditions (see [1]), and nonlinear
boundary conditions (see [10]). In particular, in [10], the authors study a certain
example of c arising in population dynamics involving density dependent dispersal
on the boundary. The goal of this paper is to expand the ideas in [10] for general
classes of c where f satisfies (H1) or (H2). In particular, we provide more detailed
analysis of the quadrature method for such two-point boundary value problems
involving nonlinear boundary conditions. Namely, we establish the following result.

Theorem 1.1. For f satisfying either (H1) or (H2), there exists a positive solution
u ∈ C2(0, 1)∩C1[0, 1] of (1.1) with ‖u‖∞ = ρ, u(1) = q, and 0 < q < ρ if and only
if ∫ ρ

0

ds√
F (ρ)− F (s)

+
∫ ρ

q

ds√
F (ρ)− F (s)

− c(q)q√
F (ρ)− F (q)

= 0, (1.2)

√
2λ =

c(q)q√
F (ρ)− F (q)

(1.3)

hold. Further, for a (λ, ρ, q) satisfying (1.2) and (1.3), (1.1) has a positive solution
u given by

t
√

2λ =
∫ u(t)

0

ds√
F (ρ)− F (s)

, t ∈ [0, t0),

(1− t)
√

2λ =
∫ u(t)

q

ds√
F (ρ)− F (s)

, t ∈ (t0, 1],
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u(t0) = ρ and u(1) = q, where t0 satisfies

t0 =
∫ ρ

0

ds√
F (ρ)− F (s)

/(∫ ρ

0

ds√
F (ρ)− F (s)

+
∫ ρ

q

ds√
F (ρ)− F (s)

)
.

Theorem 1.2. If f satisfies (H1), then for every ρ > 0, there exists a q > 0 so
that (1.2) is satisfied. Similarly, if f satisfies (H2), then for every ρ ≥ θ, there
exists a q > 0 so that (1.2) is satisfied.

To continue our analysis, we assume that f satisfies one of the following hypoth-
esis:

(H3) : (H1) and f(0) > 0,
(H4) : (H1) and lims→0+ f(s) =∞,
(H5) : (H2) and f(0) < 0, or
(H6) : (H2) and lims→0+ f(s) = −∞.
In cases (H3) and (H5) problems are referred in the literature as positone and

semipositone, respectively, where we drop the requirement that f be nondecreasing.
In [17], the author gives an overview of results for positone problems, while also
addressing some difficulties encountered in dealing with semipositone problems.
Semipositone problems were first treated in [6], and continue to be of great interest
to mathematicians due to the difficulty in establishing positivity of solutions, and
to scientists involved in management of natural resources. See [3] and [8] for recent
work on semipositone problems with nonlinear boundary conditions of the form
studied here.

In cases (H4) and (H6) problems are referred in the literature as infinite posi-
tone and infinite semipositone, respectively. For an overview of results for infinite
positone and infinite semipositone problems, see [7] and [15]. For infinite positone
and infinite semipositone problems with nonlinear boundary conditions, see [13]
and [16]. In these cases, we establish the following theorem.

Theorem 1.3. If f satisfies either (H3) or (H4) and s + c(s)s is continuously
differentiable and nondecreasing for all s > 0, then for each fixed ρ > 0, there exists
a unique q > 0 so that (1.2) is satisfied.

Theorem 1.4. If f satisfies either (H5) or (H6), c(s)s is continuously differen-
tiable, and either

(H7) s+c(s)s√
−F (s)

is nondecreasing for s ∈ (0, β) and s + c(s)s is nondecreasing for

all s > 0, or
(H8) (f(s)c(s)s)′ > 2f(s) for s ∈ (0, β) and c(s)s is nondecreasing for all s > 0,

is satisfied, then for each fixed ρ ≥ θ, there exists a unique q > 0 so that (1.2) is
satisfied.

In Section 2, we prove Theorems 1.1-1.4. In Section 3, we provide plots of the
bifurcation curves for some specific problems generated by Mathematica. In Section
4, we present an interesting example and its bifurcation curve where the hypotheses
of Theorem 1.4 are violated and for fixed ρ in a certain range, there exist multiple
values of q satisfying (1.2).

2. Proofs of Theorems 1.1-1.4

Proof of Theorem 1.1. First we establish the following two lemmas needed to
prove our results.
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Lemma 2.1. If f satisfies (H2) and ρ < θ, then a positive solution, u, to (1.1)
with ‖u‖∞ = ρ does not exist for any λ > 0.

Proof: Assume to the contrary that u is a positive solution to (1.1) for some λ > 0
such that ‖u‖∞ = ρ < θ. Note that u′(1) < 0, since we are only interested in
the case where u(1) > 0. Hence, there exists t0 ∈ (0, 1) such that u′(t0) = 0 and
u(t0) = ρ. Now, multiplying the differential equation by u′, we obtain

−
[ (u′(t))2

2
]′ = λ

(
F (u(t))

)′
.

Further, integrating we obtain

(u′(t))2 = 2λ [F (ρ)− F (u(t))] , t ∈ (0, t0). (2.1)

But this implies that (u′(0))2 = 2λF (ρ) < 0, a contradiction. Hence, no such
solution can exist.

Lemma 2.2. Any positive solution u of (1.1) has a unique interior maximum at
some t0 ∈ (0, 1), is strictly increasing on (0, t0), is strictly decreasing on (t0, 1),
and is symmetric about t0.

Proof: Let t0 ∈ (0, 1) be such that ‖u‖∞ = u(t0) = ρ. Suppose there exists
another local maximum. Then there must be a local minimum at some t1 ∈ (0, 1),
at which u′′(t1) ≥ 0, which implies that u(t1) ≤ β. Let E(t) = λF (u(t)) + 1

2 (u′(t))2

for t ∈ (0, 1). A simple calculation will show that E′(t) = 0, and hence E(t) is
constant on [0, 1]. But E(t0) = λF (ρ) ≥ 0 while E(t1) = λF (u(t1)) < 0, and hence
we have a contradiction. Therefore, t0 is the unique critical point and from (2.1),
we easily see that

u′(t) =

{√
2λ[F (ρ)− F (u(t))] > 0, t ∈ (0, t0),

−
√

2λ[F (ρ)− F (u(t))] < 0, t ∈ (t0, 1).
(2.2)

Further, note that both w1(t) = u(t0 + t) and w2(t) = u(t0 − t) satisfy

−w′′(t) = λf(w(t)), t ∈ (0, 1),

w(0) = ρ,

w′(0) = 0.

Hence, by Picard’s Theorem, we have w1(t) = w2(t) which implies that u is sym-
metric about t0.

We now begin the proof of Theorem 1.1 by showing first that if u ∈ C2(0, 1) ∩
C1[0, 1] is a positive solution to (1.1) with ‖u‖∞ = u(t0) = ρ and u(1) = q, then λ,
ρ, and q must satisfy (1.2) and (1.3). We note here that the improper integral in
(1.2) is convergent since f(ρ) > 0.

Integrating (2.2), we obtain

t
√

2λ =
∫ u(t)

0

ds√
F (ρ)− F (s)

; t ∈ (0, t0), (2.3)

(1− t)
√

2λ =
∫ u(t)

q

ds√
F (ρ)− F (s)

; t ∈ (t0, 1). (2.4)
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Setting t = t0, we obtain

t0
√

2λ =
∫ ρ

0

ds√
F (ρ)− F (s)

, (2.5)

(1− t0)
√

2λ =
∫ ρ

q

ds√
F (ρ)− F (s)

. (2.6)

Adding (2.5) and (2.6), we obtain

√
2λ =

∫ ρ

0

ds√
F (ρ)− F (s)

+
∫ ρ

q

ds√
F (ρ)− F (s)

,

and hence from (2.5) we obtain

t0 =
∫ ρ

0

ds√
F (ρ)− F (s)

/(∫ ρ

0

ds√
F (ρ)− F (s)

+
∫ ρ

q

ds√
F (ρ)− F (s)

)
. (2.7)

Further, using the boundary conditions and (2.2), we obtain

−u′(1) = c(q)q =
√

2λ [F (ρ)− F (q)].

Hence (1.2) and (1.3) are satisfied.
Next, if λ, ρ, and q satisfy (1.2) and (1.3), let t0 be defined by (2.7), and define

u : [0, 1]→ [0, ρ] via (2.3) and (2.4) for t ∈ (0, t0)∪ (t0, 1) with u(0) = 0, u(t0) = ρ,
u(1) = q. Note that u is well defined on (0, t0) since both∫ u

0

ds√
F (ρ)− F (s)

,

and t
√

2λ increase from 0 to ∫ ρ

0

ds√
F (ρ)− F (s)

,

as u increases from 0 to ρ and t increases from 0 to t0, respectively. Also, u is well
defined on (t0, 1) since both ∫ u

q

ds√
F (ρ)− F (s)

,

and (1− t)
√

2λ decrease from ∫ ρ

q

ds√
F (ρ)− F (s)

,

to 0 as u decreases from ρ to q and t increases from t0 to 1, respectively. Now,
define H : (0, t0)× (0, ρ)→ R by

H(`, v) =
∫ v

0

ds√
F (ρ)− F (s)

− `
√

2λ.

Clearly H is C1, H(t, u(t)) = 0; t ∈ (0, t0) and

Hv |(t,u(t))=
1√

F (ρ)− F (u(t))
6= 0.
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Hence, by the Implicit Function Theorem, u is C1 on (0, t0). Similarly, u is C1 on
(t0, 1), and from (2.3)-(2.4), we get

u′(t) =

{√
2λ[F (ρ)− F (u(t))], t ∈ (0, t0),

−
√

2λ[F (ρ)− F (u(t))], t ∈ (t0, 1).
(2.8)

Differentiating (2.8) again, we get

−u′′(t) = λf(u(t)), t ∈ (0, t0) ∪ (t0, 1).

But u(t0) = ρ and f is continuous, and hence u ∈ C2(0, 1) ∩ C1[0, 1]. Further,
(2.8) implies that −u′(1) =

√
2λ[F (ρ)− F (q)], and hence by (1.3) we have u′(1) +

c(u(1))u(1) = 0. Thus u is a solution of (1.1).

Proof of Theorem 1.2. Define

J(ρ, q) :=
∫ ρ

0

ds√
F (ρ)− F (s)

+
∫ ρ

q

ds√
F (ρ)− F (s)

− c(q)q√
F (ρ)− F (q)

,

and note that if (H1) is satisfied, then for every fixed ρ > 0, there exists a q > 0 so
that J(ρ, q) = 0 since

J(ρ, 0) = 2
∫ ρ

0

ds√
F (ρ)− F (s)

> 0 and lim
q→ρ

J(ρ, q) = −∞.

Hence, ρ, q satisfy (1.2). Similarly, if (H2) is satisfied, then the claim holds for all
ρ > θ. For ρ = θ, we again have

lim
q→θ

J(θ, q) = −∞,

and observe that

lim
q→0

J(θ, q) = 2
∫ θ

0

ds√
−F (s)

− lim
q→0+

c(q)q√
−F (q)

= 2
∫ θ

0

ds√
−F (s)

− lim
q→0+

c(q)q√
−qf(z)

= 2
∫ θ

0

ds√
−F (s)

> 0

for some z ∈ (0, q). Hence, there exists q > 0 satisfying (1.2) for all ρ ≥ θ.

Proof of Theorem 1.3. Let ρ > 0 be fixed. The existence of q > 0 satisfying (1.2)
follows from Theorem 1.2. As for the uniqueness of q, a straightforward calculation
will show

Jq(ρ, q) = −2[1 + (c(q)q)′](F (ρ)− F (q)) + f(q)c(q)q

2 (F (ρ)− F (q))
3
2

(2.9)

Since f(q) > 0 and 1 + (c(s)s)′ = (s + c(s)s)′ > 0 by assumption, Jq(ρ, q) < 0 for
all q > 0, and hence there cannot be two values of q such that J(ρ, q) = 0.
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Proof of Theorem 1.4. Let ρ ≥ θ be fixed. The existence of q > 0 satisfying
(1.2) again follows from Theorem 1.2.

If (H7) holds, then for s ∈ (0, β),(
ln
(s+ c(s)s√
−F (s)

))′
≥ 0.

A straightforward calculation will show that this implies that

1 + (c(s)s)′

s+ c(s)s
≥ −f(s)

2(−F (s))
, (2.10)

and we observe from (2.10) that for s ∈ (0, β),

1 + (c(s)s)′

c(s)s
≥ 1 + (c(s)s)′

s+ c(s)s
≥ −f(s)

2(−F (s))
≥ −f(s)

2(F (ρ)− F (s))
. (2.11)

Hence, using (2.11), we conclude that

2[1 + (c(s)s)′](F (ρ)− F (s)) + f(s)c(s)s > 0, (2.12)

for s ∈ (0, β). Since f(s) ≥ 0 for all s ∈ [β,∞), it is easy to see that the inequality
(2.12) also holds for s ∈ [β, ρ). Therefore, by (2.9), we have Jq(ρ, q) < 0 for all
q > 0, and the result follows.

If (H8) holds, then let

g(s) = 2(F (ρ)− F (s)) + f(s)c(s)s,

and observe that g is continuous on [0, ρ], g(0) = 2F (ρ) ≥ 0, and g′(s) > 0 for s ∈
(0, β) by (H8). Hence, g(s) > 0 on (0, β]. Now, (c(s)s)′ ≥ 0 implies 1+(c(s)s)′ ≥ 1,
and therefore, Jq(ρ, q) < 0 for q ∈ (0, β]. For q ∈ (β, ρ), since f(s) > 0 for all
s ∈ (β, ρ), it easily follows that Jq(ρ, q) < 0 for all q > 0 from (2.9), and the result
follows.

3. Application of the method to some examples

Below, we provide several examples of bifurcation diagrams which are numeri-
cally generated in Mathematica. The general procedure is outlined below.

begin
N = 1000;
pts = {};
ρstep = (ρmax − ρmin)/N ;
for i := 0 to N

ρ = ρmin + i ∗ ρstep;
q = FindRoot[J(ρ, s), s];
λ = (c(q) ∗ q)2/(2[F (ρ)− F (q)]);
pts = AppendTo[pts, {λ, ρ}]

end
ListPlot[pts]

end
We apply this algorithm to (1.1) with the following nonlinearities,

f(u) = eu, (3.1)

f(u) = e
6u

6+u , (3.2)
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f(u) =
u− 1√
u
, (3.3)

f(u) = u3 − 10u2 + 40u− 10, (3.4)

with the nonlinearity in the boundary condition fixed as c(s) = 1
s+1 for each prob-

lem. Note that the nonlinearities (3.1) and (3.2) are both positone and that s+c(s)s
is nondecreasing. Hence, the result of Theorem 1.3 holds. Bifurcation diagrams for
these problems are shown in Figure 2.

Bifurcation Curve for (3.1) Bifurcation Curve for (3.2)

Figure 2. Bifurcation diagrams for some positone problems.

The nonlinearities (3.3) and (3.4) are infinite semipositone and semipositone,
respectively, and satisfy (H8). Hence, the results of Theorem 1.4 apply. Bifurcation
diagrams for these problems are shown in Figure 3.

It is well known that the shape of bifurcation curves depends on characteristics
of the nonlinearity f (see [17]). The nonlinearities (3.2) and (3.3) are both sublinear
at infinity, while the nonlinearities (3.1) and (3.4) are both superlinear at infinity.
Furthermore, the nonlinearities in (3.2) and (3.4) give rise to what are referred to in
the literature as S-shaped and reverse S-shaped bifurcation curves. See [2] and [6]
for early work on S-shaped and reverse S-shaped bifurcation curves, respectively.

Bifurcation Curve for (3.3) Bifurcation Curve for (3.4)

Figure 3. Bifurcation diagrams for some semipositone problems.

Of particular interest in the semipositone problems (3.3) and (3.4) is the shape
of the solution when ρ = θ. As we exhibit in Figures 4 and 5, our computations
illustrate that solutions to (3.3) or (3.4) with ‖u‖∞ = θ also satisfy u′(0) = 0.
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Bifurcation curve ends when
(λ, ρ) ≈ (8.71082, 3)

Solution plot with (λ, ρ) ≈
(8.71082, 3). in the case u′(0) ≈
6× 10−2

Figure 4. Behavior of solutions at endpoint of bifurcation curve
for a sublinear infinite semipositone problem.

Bifurcation curve ends when
(λ, ρ) ≈ (0.357438, 0.547992)

Solution plot with (λ, ρ) ≈
(0.357438, 0.547992). In this
case, u′(0) ≈ 8× 10−8

Figure 5. Behavior of solutions at endpoint of bifurcation curve
for a superlinear semipositone problem.

4. Multiplicity generated by s+ c(s)s oscillation

In the case that (s∗ + c(s∗)s∗)′ < 0 for some s∗ ∈ [0,∞), Theorems 1.3 and
1.4 do not apply. In such cases, it is possible that for some fixed ρ ≥ θ, there
are multiple values of q > 0 so that (1.2) is satisfied. Below, we provide such an
example. Consider the problem

−u′′(t) = λ
(
(u(t))2 − 3

)
, t ∈ (0, 1),

u(0) = 0,

u′(1) = −
(

1
2

(u(1)− 10)2 + 1
)
u(1),

(4.1)

and note that though s+c(s)s√
−F (s)

is nondecreasing on (0,
√

3), s + c(s)s is decreasing

on the interval (20− 2
√

22
3

,
20 + 2

√
22

3

)
.
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Applying the method from the previous section, we now need to consider the pos-
sibility that for a fixed ρ ≥ θ, there may exist multiple q values so that (1.2) is
satisfied.

Figure 6. A bifurcation curve of (4.1).

In Figure 6, we provide the numerically generated bifurcation curve, and observe
that the oscillation of s + c(s)s has introduced multiplicity of solutions for some
range of λ. In particular, if we track q values as we plot the bifurcation diagram,
we observe numerical evidence of some correspondence to changes in the sign of
(s+ c(s)s)′.

Bifurcation Curve for (4.1) Graph of s+ c(s)s

Figure 7. Correspondence between shape of the bifurcation dia-
gram and shape of s+ c(s)s.

Many problems related to the existence, uniqueness, and exact multiplicity of
solutions to (1.1) remain open. Our aim in this paper has been to provide a quadra-
ture method framework for addressing such problems, proofs of some results related
to solutions of (1.2), and numerically generated bifurcation curves, which may mo-
tivate further inquiry.
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