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PLANAR 2-HOMOGENEOUS COMMUTATIVE
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Abstract. In this article we prove the following result: if two 2-dimensional

2-homogeneous rational vector fields commute, then either both vector fields
can be explicitly integrated to produce rational flows with orbits being lines

through the origin, or both flows can be explicitly integrated in terms of al-
gebraic functions. In the latter case, orbits of each flow are given in terms of

1-homogeneous rational functions W as curves W (x, y) = const. An exhaustive

method to construct such commuting algebraic flows is presented. The degree
of the so-obtained algebraic functions in two variables can be arbitrarily high.

1. Introduction

In this article, by “smooth”, we mean of class C∞ in Rn, in domains where
rational functions in consideration are defined. Since we are mainly interested in
rational vector fields, these will produce (possibly, ramified) flows in all Rn. If a
plane vector field $ ∂

∂x + % ∂
∂y is not used as a derivation on the space of algebra of

C∞ germs and is given in cartesian coordinates (the second condition will always
be satisfied), we will write a vector field as ($, %).

1.1. Motivation. Let F (x, t) : Rn × R 7→ Rn be a flow with any smooth vector
field. Then it satisfies the translation equation, given by [2, 18, 23, 36]

F (F (x, z), w) = F (x, z + w), x ∈ Rn, z, w ∈ R are small enough.

One should make a distinction between local and global flows [18].
In books on differential geometry, calculus, differential equations and vector

fields (see [18, 23, 31, 36]) one usually considers various vector fields in Rn, given,
for example, by holomorphic or meromorphic functions. A special case of interest,
with a strong algebraic and geometric emphasis, is to consider polynomial vector
fields, or even homogeneous polynomial vector fields; for example, [15]. A closely
related topic is that of algebraic differential equations.

Let us now not limit to the polynomial case, but rather investigate rational
functions as coordinates of vector fields. This introduces methods from birational
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geometry into the subject - for example, Cremona groups [27]. This has a strong
algebro-geometric flavour. Indeed, if ` is a birational transformation of Rn, then
the function

F `(x, t) = `−1 ◦ F (`(x), t)

is also a flow with a rational vector field, which can be directly calculated from `
and the original vector field.

Suppose now, we wish to investigate which n-dimensional rational vector fields
produce flows F , which are:

(i) rational;
(ii) algebraic;
(iii) flows with exactly i, 1 ≤ i ≤ n− 2, independent rational first integrals;
(iv) flows whose orbits are algebraic curves (n − 1 independent rational first

integrals - see [16] for planar polynomial case, and [41] for the exposition
in planar case also);

(v) unramified flows (see [7] and [9, Section 2.1] for the precise definition of the
term unramified flow).

Then exactly the same property is shared by F `. Thus, we may wish to classify
such flows up to birational equivalence. This is a new way of looking at flows with
rational vector field which have an intrinsic arithmetic structure, as itemized above.

We could worry also, for example, not about rational first integrals, but elemen-
tary first integrals, or Liouvillian ones, which are functions that are built up from
rational functions using exponentiation, integration, and algebraic functions. For 2-
dimensional polynomial vector fields, these questions are investigated in [20, 39, 40].

One can also consider 1-dimensional complex case and rational vector fields. For
example, a differential equation ż = R(z) is studied in [13].

1.2. 2-homogeneous case. Now, instead of looking at general rational vector
fields, in a series of papers [5, 6, 7, 8], and in [9, 10, 11, 12] (though more gen-
eral vector fields are dealt with in the last four papers) we embarked on the task
to develop the above program in a special case when a vector field is given by a
collection of 2-homogeneous rational functions.

Indeed, suppose the flow which integrates a fixed n-dimensional rational vector
field, is given by the function F (x, z), x ∈ Rn, z ∈ R. But now, if the vector field
is 2-homogeneous, the time variable can be accommodated within space variables,
in a sense that there exists a function φ : Rn 7→ Rn, such that [5]

F (x, z) =
φ(xz)
z

, x ∈ Rn, z ∈ R.

In this case, instead of the translation equation, we have the projective translation
equation, which was first introduced in [4] and which is the equation of the form

1
z + w

φ
(
x(z + w)

)
=

1
w
φ
(
φ(xz)

w

z

)
, w, z ∈ R. (1.1)

Generally speaking, one can even confine to the case w = 1−z without altering the
set of solutions, though some complications arise concerning ramifications (when
dealing with global flows). In a 2-dimensional case, φ(x, y) = (u(x, y), v(x, y)) is a
pair of functions in two real (or complex) variables. A non-singular solution of this
equation is called a projective flow. Let φz(x) = z−1φ(xz). The non-singularity
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means that a flow satisfies the boundary condition

lim
z→0

φz(x) = x. (1.2)

Then a vector field is given by(
$(x, y), %(x, y)

)
=

d
dz

φ(xz, yz)
z

∣∣∣
z=0

, (1.3)

which, for projective flows, is necessarily a pair of 2-homogeneous functions. For
smooth functions, the functional equation (1.1) and the non-singularity condition
imply a linear first order PDE [5]

ux(x, y)($(x, y)− x) + uy(x, y)(%(x, y)− y) = −u(x, y), (1.4)

and the same PDE for v, with boundary conditions as given by (1.2):

lim
z→0

u(xz, yz)
z

= x, lim
z→0

v(xz, yz)
z

= y. (1.5)

These two PDEs (1.4) with the above boundary conditions are equivalent to (1.1)
for z, w small enough [5].

Alternatively, the whole flow can be described in terms of the system of au-
tonomous ODEs

x′(t) = $
(
x(t), y(t)

)
,

y′(t) = %
(
x(t), y(t)

)
.

Each point under a flow φ possesses the orbit, which is defined by

V (x) = ∪z∈Rφ
z(x) = F (x,R).

The orbits of the flow with the vector field ($, %) are given by W (x, y) = const.,
where the function W can be found from the differential equation

W (x, y)%(x, y) + Wx(x, y)[y$(x, y)− x%(x, y)] = 0, (1.6)

and W is uniquely defined from this ODE and the condition that it is a 1-homo-
geneous function.

Now, we recall the next two definitions from [8].

Definition 1.1. If there exists a positive integer N such that W N (x, y) is a rational
function (then necessarily N -homogeneous), such a smallest positive N is called the
level of the flow, and the flow itself is called an Abelian flow of level N .

The exception is when x%− y$ = 0 (since then the ODE (1.6) is void), in which
case a flow is called level 0 flow. For rational vector fields, such a flow of level 0 is
also rational.

Definition 1.2. We call the flow φ an algebraic projective flow, if its vector field
is rational, and (u, v) is a pair of algebraic functions.

Algebraic flow is necessarily an Abelian flow of a certain level N .
We note that, among numerous motivations to investigate 2-homogeneous vector

fields separately, one is completely apt in the setting of the current paper; see
Theorem 4.2. Namely, that the property of the flow being algebraic is unambiguous
only if a vector field is 2-homogeneous. See [9, Note 3] for an example where it is
shown that if a vector field is not such, then there are two possibilities what to call
an algebraic flow.
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1.3. Commutativity. Now let use the standard notation in differential geometry,
where a vector field is interpreted as derivation of smooth functions [18, 23]. Let

X =
n∑
i=1

fi
∂

∂xi
, Y =

n∑
i=1

gi
∂

∂xi

be two vector fields in an open domain of Rn. Then the Lie bracket of these two
vector fields is defined by [18, Section 2]

[X,Y ] =
n∑
i=1

(
X(gi)− Y (fi)

) ∂

∂xi
. (1.7)

Vector fields commute, if [X,Y ] = 0. For corresponding flows F and G, this means
that F (G(x, s), t) = G(F (x, t), s), for s, t small enough.

In this article, we amend the items (i) through (v) of Subsection 1.1 with the
following natural problem.

Problem 1.3. In dimension n, describe all maximal collections of commutative ra-
tional vector fields, up to birational equivalence. Can they be explicitly integrated?
What about if we limit vector fields to being s-homogeneous, s ∈ Z, and birational
transformations as being 1-homogeneous?

In this article we fully solve this problem in case n = s = 2; see Proposition 4.1
and Theorem 4.2 in Section 4. In Section 7 we strengthen this Problem. Explicit
integration of commuting vector fields is our new and chief contribution to the
subject. This, yet again, emphasizes the need to consider 2-homogeneous vector
fields separately. As noted in [9, Subsection 7.3], any flow with rational vector in
Rn can be described in terms of a projective flow in Rn+1, so limiting ourselves to
projective flows in higher dimensions is not less general approach than to consider
any rational vector fields, homogeneous or not.

2. Overview

It is impossible to summarize a research on plane vector fields. For example,
there exists around 2000 papers on quadratic vector fields in the plane alone. In
this section we briefly touch few questions related to polynomial or rational vector
fields, and more thoroughly will delve into the subject related to commutativity.

A holomorphic vector field on the manifold M is said to be complete, if for every
P ∈ M , the solution of the differential equation at P is defined for every complex
value of the time variable t. For example, the vector field x2 ∂

∂x is not complete on
R, since the flow it generates, F (x, t) = x

1−xt , is not defined for t = x−1. Meanwhile,
a vector field x ∂

∂x defines a flow F (x, t) = xet, and so is complete in R. In [14],
the author proves that a complete polynomial (where both coordinates are not
simultaneously linear) vector field on C2 has at most one zero. In [1] the authors
study a necessary condition for the integrability of the polynomial vector fields
in the plane by means of the differential Galois Theory. They employ variational
equations around a particular solution to obtained a necessary condition for the
existence of a rational first integral. In [19], the authors present an algorithm
which can be used to check whether a given derivation (vector field) of the complex
affine plane has an invariant algebraic curve. In [21], the remarkable values for
polynomial vector fields in the plane having a rational first integral are investigated
from a dynamical point of view. If H = f/g is a rational first integral for the
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polynomial vector field, then c ∈ C ∪ {∞} is called the remarkable value of H, if
f + cg is a reducible polynomial in C[x, y].

Let us now turn to papers with Lie bracket in mind. In [38] the author proves the
following result. Let us treat polynomial vector fields as derivations D : k[x, y] 7→
k[x, y], where the field k is of characteristic 0. Then if two derivations D1 and D2

commute (this is the same as saying that vector fields commute), then (i) either they
have a common polynomial eigenfunction, i.e. non-constant polynomial f ∈ k[x, y]
such that D1(f) = λf , D2(f) = µf for some λ, µ ∈ k[x, y], or (ii) they are Jacobian
derivations

D1(g) = Du(g) :=

∣∣∣∣∣∂u∂x ∂u
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣ ,
and D2(g) = Dv(g), for all g ∈ k[x, y]. A polynomial eigenfunction of a derivation
is also called a Darboux polynomial. In [33], the author generalize the last result,
proving that n pairwise commuting derivations of the polynomial ring in n variables
over a field of characteristic 0 form a commutative basis of derivations if and only
if they are k-linearly independent and have no common Darboux polynomials.

In [17] the authors consider vector fields which are not necessarily polynomial.
They use methods of linearization and commutation to tackle the isochronisity
problem, and use Darboux polynomials to obtain inverse integrating factor for a
ODE system. Isochronicity - it is when periodic orbits around the center of a vector
field have the same period, like in the vector field (−y, x) case. This is intricately
related to stability. A a vector field is said to have a center at a point P , if there
exists a punctured neighbourhood of P in which every orbit is a closed non-trivial
loop. The linearization is a local diffeomorphism which transforms the system in
question into {ẋ = −y, ẏ = x}. Several examples of commuting polynomial vector
fields are presented. For example,

(−y, x+ 3xy + x3) and (−x− xy − x3,−y − y2 + x2 + x4),

also the (cubic Kolmogorov system)

(−y + 2xy − ax2y, x− x2 + y2 − axy2) and (x− x2 + y2 − axy2, y − 2xy − ay3),

with a ∈ R. MAPLE packages DifferentialGeometry and LieAlgebras check
commutativity for us. More about relations of commutators, Lie bracktets to lin-
earization and isochronisity can be found in [22, 24]. In [34], the authors cite the
classical theorem [34, Theorem 2.1] which allows to integrate the vector field if one
knows another linearly independent field which commutes with it. A posteriori,
note that we will also encounter few aspects of this method. In particular, we will
essentially use the Wrónskian of the system (5.1); see (5.3).

In [26] the authors give a constructive procedure to get the change of variables
that orbitally linearizes a smooth planar vector field on around an elementary sin-
gular point (or a nilpotent singular point) from a given infinitesimal generator of
a Lie symmetry. Recall that a vector field Y is an infinitesimal generator of a
Lie symmetry of a vector field X, if the commutation relation [X,Y ] = ν(x, y)X
holds for some smooth scalar function ν(x, y). Also, the autonomous ODE system
{ẋ = P (x, y), ẏ = Q(x, y)} is said to be orbitally linearizible at the origin (0, 0)
(which is assumed to be a singular point), if there exists a smooth near-identity
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change of coordinates (u(x, y), v(x, y)) = (x+ o(x, y), y+ o(x, y)) in the neighbour-
hood U ⊂ C2 of the origin, which transforms the initial system into

u̇ = λu · h(u, v),

v̇ = µv · h(u, v),

where λ, µ ∈ C, and h(u, v) is a smooth scalar function in U , h(0, 0) 6= 0.

3. Arithmetic of rational vector fields

In this section we present some examples which show that integration of rational
2-dimensional 2-homogeneous vector fields greatly depend on the fine arithmetic
structure of vector field itself. We put x = (x, y).

3.1. Rational flow. Consider the vector field (3y2, y3x−1). It can be integrated
explicitly, and the outcome is the flow

φ(x, y) =
(
u(x, y), v(x, y)

)
=
( (y2 + x)3

x2
,
y(y2 + x)

x

)
.

This is a rational flow of level 2. The orbits are curves v3u−1 = const.

3.2. Algebraic flow. The flow φ(x) = (u(x, y), v(x, y)) generated by the vector
field (−4x2 + 3xy,−2xy+ y2) is algebraic and is given by the expression [8, Propo-
sition 2]

φ(x, y) =
(
u(x, y), v(x, y)

)
=
(y√4x+ (y − 1)2 + y2 + 2x− y

8x+ 2(y − 1)2
,

y√
4x+ (y − 1)2

)
.

The orbits of this flow are genus 0 curves u−1(u− v)−1v4 = const. So, this is also
level 2 flow.

3.3. Abelian non-algebraic flow. The flow φ(x) = (u(x, y), v(x, y)) generated
by the vector field (2x2 − 4xy,−3xy + y2) is Abelian flow and is given by the
analytic expression [8, Proposition 4]

φ(x) =
( k4/5

(
α(xy )− ς

)
ς(

k
(
α(xy )− ς

)
− 1
)2/5 , ς

k1/5
(
α(xy )− ς

)(
k
(
α(xy )− ς

)
− 1
)2/5). (3.1)

Here ς = ς(x, y) = [x(x− y)2y2]1/5, α is an Abelian integral

α(x) =
1
5

∫ 1
1−x

1

dt
t3/5(t− 1)4/5

,

and k is an Abelian function, the inverse of α. The orbits of this flow are genus 2
curves x(x− y)2y2 = const. In the special case, one has

u(x,−x)
v(x,−x)

= k
(
c− 41/5x

)
, c = α(−1).

The pair of Abelian functions
(
k(z),k′(z)

)
parametrizes (locally) the genus 2 sin-

gular curve 55(1−x)3x4 = y5. In particular, one can give an alternative expression

φ(x) =
(52/3k4/3

(
α(xy )− ς

)
ς

k′ 2/3
(
α(xy )− ς

) ,
52/3k1/3

(
α(xy )− ς

)
ς

k′ 2/3
(
α(xy )− ς

) )
.

As was noted several times in [9], using further tools from the theory of Abelian
functions, like Abel-Jacobi theorem [32], it is possible to present the closed-form
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expression for φ which involves only Abelian functions but not Abelian integrals.
This task is carried out for the icosahedral superflow in detail in [10, 12], where
after the triple reduction, the flow can be described in terms of Abelian functions
over the curve of genus 3. In case the orbits of the flow are elliptic curves (like for
the tetrahedral superflow case in [9], or an unramified flow with the vector field
(x2 − 2xy, y2 − 2xy) in [7]), this further simplification amounts to application of
addition formulas for elliptic functions, either in Weierstrass or Jacobi form. This
also applies to the case when the flow can be described in terms of elliptic curves
via a reduction of hyperelliptic curves into elliptic ones, like for the octahedral
superflow in [9]. Such reduction itself traces its roots from the works of Legendre
in [29].

In the present case of the flow (3.1), the orbits are of genus 2, and thus the
situation is more complicated.

3.4. Non-Abelian flow. The flow φ(x) = (u(x, y), v(x, y)) generated by the vector
field (x2+xy+y2, xy+y2) is non-Abelian integral flow and is given by the expression
[8, Proposition 6](

u(x, y), v(x, y)
)

=
(
ψς exp

(
ψ +

ψ2

2

)
, ς exp

(
ψ +

ψ2

2

))
,

where

ψ = l
(
β
(x
y

)
− ς
)
, ς = exp

(
− x

y
− x2

2y2

)
y,

and where β(x) is the error function

β(x) = −
√
πe√
2

erf
(x+ 1√

2

)
, erf(x) =

2√
π

∫ x

0

e−t
2

dt,

and l is the inverse of β. The orbits of this flow are transcendental curves ς = const.
This is roughly the arithmetic hierarchy of 2-dimensional 2-homogeneous rational

vector fields. The majority of other 2-homogeneous vector fields produce flows
whose orbits are non-arithmetic objects. For example, orbits of the vector field
(
√

2xy,−y2) are curves uy
√

2 = const.

3.5. 3-dimensional case. The situation in higher dimensions is much more di-
verse. In a 3-dimensional case, the flow might be rational, algebraic, Abelian (pos-
sessing two rational first integrals), or confined on an algebraic surface (possessing
exactly one rational first integral), or possessing no rational first integrals at all.
For example, the example of Jouanolou [28] shows that the vector field

(y2, z2, x2)

does not have a rational first integral. For the glimpse into this profound subject,
touching algebraic geometry, constants of derivation, foliations, algebraic leaves,
and so on, we refer to [30, 35, 37].

4. Commutative projective flows

4.1. Main results. And so, now we investigate rational 2-homogeneous vector
fields which commute. It appears that, apart from level 0 flows, this is satisfied
only for special pairs of algebraic flows of level 1. This is rather a remarkable fact.
Nevertheless, one should expect, at least in a 2-dimensional case, this kind of fact
beforehand, since we can easily imagine that two pairs of 2-dimensional algebraic
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functions (u, v) and (a, b) commute, due to some inner dependence, while it is hardly
imaginable that this might happen for functions which have the appearance, for
example, similar to that of (3.1). Indeed, commutativity of vector fields implies,
among other properties, that for corresponding flows, given by (u, v) and (a, b), the
identities u(a, b) = a(u, v), v(a, b) = b(u, v) hold.

As a very simple consequence of the main differential system, we have the fol-
lowing result.

Proposition 4.1. Assume that two projective flows φ(x) 6= (x, y) and ψ(x) 6= (x, y)
with rational vector fields ($, %) and (α, β), respectively, commute. Assume that
y$ − x% = 0. Then yα− xβ = 0. Thus, they are both level 0 rational flows [5].

Conversely, assume J(x, y) and K(x, y) are arbitrary 1-homogeneous rational
functions, and let us define level 0 flows

φ(x, y) =
( x

1− J(x, y)
,

y

1− J(x, y)

)
, ψ(x, y) =

( x

1−K(x, y)
,

y

1−K(x, y)

)
.

Then φ and ψ commute, their vector fields are (xJ(x, y), yJ(x, y)) and
(xK(x, y), yK(x, y)), respectively, and

φ ◦ ψ(x, y) =
( x

1− J(x, y)−K(x, y)
,

y

1− J(x, y)−K(x, y)

)
.

Next, we formulate the main result of this article.

Theorem 4.2. Suppose, two projective flows φ(x) 6= (x, y) and ψ(x) 6= (x, y) with
rational vector fields ($, %) and (α, β) commute. Suppose y$ − x% 6= 0. Then φ
and ψ are level 1 algebraic flows.

Conversely - for any algebraic projective flow φ of level 1, there exists another
algebraic flow ψ of level 1, such that all flows, which commute with φ, are given by
φz ◦ ψw, z, w ∈ R.

Practically commuting projective flows can be constructed as follows.
Let V (x, y) 6= cy be a 1-homogeneous rational function. Let us define algebraic

functions a(x, y) and u(x, y) from the equations

V
(
a(x, y),

y

y + 1

)
= V (x, y), (4.1)

V (x, y)
1− V (x, y)

= V
(
u(x, y), y

)
. (4.2)

Then the projective flows

ψ =
(
a(x, y),

y

y + 1

)
and φ =

(
u(x, y), y

)
commute. Any pair of commutative, level 1 algebraic projective flows can be obtained
from these pairs via conjugation with 1-homogeneous birational plane transforma-
tion.

Finally, the orbits of the projective flow

φz ◦ ψw =
(
uz
(
aw(x, y),

y

1 + wy

)
,

y

1 + wy

)
are given by a 1-homogeneous (in x, y) function

V (x, y)y
zV (x, y) + wy

= const.
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To be clear which branch of algebraic function is chosen, we note that the equal-
ities (4.1), (4.2) and 1-homogeneity of V imply that

V
(a(xz, yz)

z
,

y

yz + 1

)
= V (x, y),

V (x, y)
1− zV (x, y)

= V
(u(xz, yz)

z
, y
)
.

So, we must choose such branches that are compatible with boundary conditions
(1.5); that is, limz→0

u(xz,yz)
z = x, limz→0

a(xz,yz)
z = x.

One of the consequences that the flows (a(x, y), y
y+1 ) and (u(x, y), y) commute

is the identity among algebraic functions

u
(
a(x, y),

y

y + 1

)
= a

(
u(x, y), y

)
.

This can be verified easily; below we set a = a(x, y), u = u(x, y):

V
(
u
(
a,

y

y + 1

)
,

y

y + 1

)
(4.2)
=

V (a, y
y+1 )

1− V (a, y
y+1 )

(4.1)
=

V (x, y)
1− V (x, y)

(4.2)
= V (u, y)

(4.1)
= V

(
a(u, y),

y

y + 1

)
.

The correct choice of branches implies the needed identity.
We will need the following result, proved in two independent ways in [5, 6].

Birational 1-homogeneous maps (1-BIR for short) R2 7→ R2 were described in [5].
They are either non-degenerate linear maps, either birational maps of the form
`P,Q, given by

`P,Q(x, y) =
(xP (x, y)
Q(x, y)

,
yP (x, y)
Q(x, y)

)
, (4.3)

where P,Q are homogeneous polynomials of the same degree, or are a composition
of a linear map and some `P,Q. By a direct calculation, `−1

P,Q(x, y) = `Q,P (x, y). If
φ is a projective flow with rational vector field, and ` is a 1-BIR, then `−1 ◦ φ ◦ `
is also a projective flow with a rational vector field. Let v(φ,x) be a vector field of
the projective flow φ.

The following result describes transformation of the vector field under conjuga-
tion with `P,Q. (Note that we mentioned the general case for such transformations
as a crucial ingredient in dealing with rational vector fields in the middle of Sub-
section 1.1).

Proposition 4.3. Consider `P,Q given by (4.3), and let A(x, y) = P (x, y)Q−1(x, y),
which is a 0-homogeneous function. Suppose that v(φ,x) = ($(x, y), %(x, y)). Then

v(`−1
P,Q ◦ φ ◦ `P,Q; x) =

(
$0(x, y), %0(x, y)

)
,

where
$0(x, y) = A(x, y)$(x, y)−Ay[x%(x, y)− y$(x, y)],

%0(x, y) = A(x, y)%(x, y) +Ax[x%(x, y)− y$(x, y)].
(4.4)

As a corollary,

x%0(x, y)− y$0(x, y) = A(x, y)[x%(x, y)− y$(x, y)]. (4.5)
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4.2. The core of the proof. Our main ideas how to prove Theorem 4.2 are very
transparent and can be described immediately as follows.

First, we write a condition that vector fields of flows φ = (u, v) and ψ = (a, b)
commute. This is tantamount to the property that Lie bracket of both vector fields
vanish. After some transformations we arrive at the linear system of two ODEs. A
trivial case aside (Proposition 4.1), calculation of its Wrónskian shows that both
flows are in fact Abelian flows (flows whose orbits are algebraic curves) of level 1 -
there are two homogeneous rational functions W and V of homogeneity degree 1,
such that W (u, v) = W (x, y), V (a, b) = V (x, y).

But being Abelian flow of level 1, at its turn, implies that with a help of con-
jugation with a proper 1-BIR, the second coordinate of the vector field of the flow
φ can be made identically zero - this is possible only for level 1 Abelian flows.
Suppose, this holds. Now, the differential system is much more simple, and it im-
plies that the second coordinate of the vector field of the flow ψ is equal to cy2.
Since these two vector fields must be non-proportional, it gives c 6= 0; for example,
after conjugation with a homothety we may assume that c = −1. But then the
second variable split, and we have b = y

y+1 . So, without loss of generality, after
performing a 1-BIR conjugation, we can consider φ = (u, y) and ψ = (a, y

y+1 ).
Since V (a, y

y+1 ) = V (x, y), this shows that a is an algebraic function, and from
symmetry considerations we get that u is algebraic function, too - if a projective
flow is 1-BIR conjugate to algebraic flow, a flow itself must be algebraic.

To find when a vector field ($, %) produces algebraic flow of level 1, we need the
following criterion, which follows from results in [6].

Proposition 4.4. Let ($, %) is a pair or 2-homogeneous rational functions, x% −
y$ 6= 0. Let %(x) = %(x, 1), $(x) = $(x, 1). A projective flow with a vector field
($, %) is a level 1 algebraic flow if and only if all the solutions of the ODE

f(x)%(x) + f ′(x)(x%(x)−$(x)) = 1

are rational functions.

On the other hand, a flow φ is algebraic flow of level N if and only if any solution
of the same differential equation can be written in the form f(x) = r(x)+σq1/N (x),
where σ ∈ R, r(x) and q(x) are rational functions, and positive N is the smallest
possible [6].

5. Proof of main results

We will need the following statement, whose proof is immediate.

Proposition 5.1. Let φ and ψ be two projective commuting flows, and ` be a
1-BIR. Then the flows `−1 ◦ φ ◦ ` and `−1 ◦ ψ ◦ ` commute.

To find when two projective flows commute, we apply standard results from
differential geometry claiming that if vector fields are smooth, this happens exactly
when the Lie bracket of both vector fields vanishes [18, 23]. In the particular case
of projective flows, we have the following result.

Proposition 5.2. Let φ(x) = (u, v) and ψ(x) = (a, b) be two projective flows with
smooth vector fields ($, %) and (α, β), respectively. The flows φ and ψ commute if
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and only if φ ◦ ψ is a projective flow again. This happens exactly when

$xα+$yβ = $αx + %αy,

%xα+ %yβ = $βx + %βy.

All we are left is to calculate the Lie bracket [($, %), (α, β)] of these two vector
fields, and equate it to zero. For n = 2 and X = $ ∂

∂x + % ∂
∂y , Y = α ∂

∂x + β ∂
∂y , the

condition [X,Y ] = 0 and (1.7) gives the statement of the Proposition (the same
system is given by [26, Definition 1]).

Let φ, ψ be two commuting projective flows. Since α, β, $, % are 2-homogeneous,
Euler’s identity gives xαx+yαy = 2α, similarly for β,$, %, and so the corresponding
system of Proposition 5.2 can be written as

αx(y$ − x%) = (y$x − 2%)α+ (2$ − x$x)β,

βx(y$ − x%) = y%xα− x%xβ.
(5.1)

Suppose, the pair ($, %) is known, and the pair (α, β) is unknown. Note also that
the first equation can be written as

αy(y$ − x%) = $y(yα− xβ). (5.2)

First, suppose y$ − x% = 0. Then the second equation of system (5.1) gives
%x(yα − xβ) = 0. Assume that yα − xβ 6= 0. Then %x = 0, % = cy2. Equally,
(5.2) gives $ = dx2, and y$ − x% = 0 is satisfied only if c = d = 0, hence we
have an identity flow φ(x) = (x, y). If this is not the case, we must necessarily
have yα − xβ = 0, and this proves Proposition 4.1. Henceforth we may assume
y$ − x% 6= 0, yα− xβ 6= 0.

Recall again that in (5.1), the pair (α, β) is unknown and is to be determined.
One solution of this system is ($, %). Fix (α, β) as a linearly independent solution.
The trace of this linear system of ODEs is equal to

T (x, y) =
2%+ x%x − y$x

x%− y$
=

%

x%− y$
+

d
dx

ln(x%− y$).

It is a (−1)-homogeneous function. Using the differential equation (1.6), we obtain
that the Wrónskian of the above system is equal to, according to Liouville’s formula,

α%− β$ = exp
(∫

T (x, y) dx
)

= W (x, y)(x%− y$). (5.3)

In fact, while integrating, we keep in mind that x is variable, y is constant, only we
make sure that the obtained functions have the same degree of homogeneity: indeed,
the left hand side is 4-homogeneous, (x% − y$) is 3-homogeneous, and W (x, y) is
1-homogeneous. So, (5.3) holds up to a factor of a 0-homogeneous function in y;
hence, a constant factor. Of course, if the equation W (x, y) = const. defines orbits
for the flow φ, so does cW (x, y) = const. for c 6= 0.

From symmetry considerations, if V (x, y) are orbits for the projective flow with
a vector field (α, β), we get

β$ − α% = V (x, y) · (xβ − yα). (5.4)

This, together with (5.3), gives the first crucial corollary:
? If two projective flows with rational vector fields commute, x% − y$ 6= 0,
xβ − yα 6= 0, they are both Abelian flows of level 1.
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From (5.3), expressing α and substituting into the second equation of (5.1), we
obtain

βx(y$ − x%) = y%x
β$

%
+ y%x

x%− y$
%

W − x%xβ.

Or, simplifying, we obtain a non-homogeneous first order linear ODE for the func-
tion β:

βx% = %xβ − y%xW . (5.5)
If % 6= 0, solving this linear ODE, we obtain a solution

β = −%
∫
y%xW

%2
dx. (5.6)

(The constant of integration is a 0-homogeneous function in y; hence, a constant).
We will not need this formula in the proof of the main Theorem, but it has an
advantage that if a vector field ($, %) is known, so we know equation for the orbits
W , then the above allows to find uniquely β, up to a summand proportional to %;
this will be used in Section 6 where several examples are given. This also shows
that if % 6= 0, there exists one vector field (α, β) such that all vector fields that
commute with ($, %) are given by z($, %) + w(α, β). The same conclusion follows
if $ 6= 0. Of course, ($, %) = (0, 0) holds only for the identity flow (x, y).

Now we make one significant simplification, minding that the flows are Abelian
flows of level 1. Let us define

A(x, y) =
y

W (x, y)
.

This is a 0-homogeneous function. We know that W satisfies (1.6). Now, consider
a 1-BIR given by `(x, y) = (xA, yA). Let us use Proposition 4.3. This shows that a
second coordinate of the flow `−1 ◦φ◦` with rational vector field is identically equal
to 0. Here we used essentially the fact that the orbits are given by 1-homogeneous
rational functions.

Thus, let now consider two commuting flows `−1 ◦ φ ◦ ` and `−1 ◦ ψ ◦ `. If we
are interested in these flows up to 1-BIR conjugacy, we can, without the loss of
generality, consider % = 0, $ 6= 0, (u, v) = (u(x, y), y).

In this case, the system in Proposition 5.2 gives

$xα+$yβ = $αx,

βx = 0.

If β = 0, this gives α = C$, and we know that the flow commutes with itself. So
let, without the loss of generality, take β = −y2. So, (a, b) = (a, y

y+1 ). But then
the flow conservation property gives (4.1); that is,

V
(
a,

y

y + 1

)
= V (x, y).

(See also [6]). Therefore, a is an algebraic function, and (a, b) is an algebraic flow.
Yet again from symmetry considerations, (u, v) is also an algebraic flow. Indeed,
1-BIR conjugation does not impact on property of the flow being algebraic. Hence
we have proved the first part of the main Theorem 4.2.

We will prove the second part and at the same show how to practically produce
commuting algebraic flows. As we know from [6], any algebraic flow is 1-BIR
conjugate to the flow (a(x, y), y

y+1 ) for a algebraic. Now, let V (x, y) 6= cy be any
1-homogeneous rational function. Let us define a(x, y) from equation (4.1). Then,
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if we choose the correct branch (as explained after the Theorem), (a(x, y), y
y+1 ) is

a projective flow. Its vector field (α, β) satisfies Vxα+ Vyβ = 0, and so is given by

(α, β) =
(y2Vy

Vx
,−y2

)
=
(yV − xyVx

Vx
,−y2

)
=
(yV

Vx
− xy,−y2

)
. (5.7)

Let now a non-proportional vector field ($, %) commutes with (α, β). Similarly as
(5.5), we can prove

β%x = %βx − yβxV .
This follows easily in the same way (express α from (5.4) and plug into the second
equation of (5.1)), or just due to symmetry considerations, minding the ODE (5.5).
Now, β = −y2, and this gives %x = 0. This implies % = cy2. Next, the vector field
($, %) + c(α, β) also commutes with (α, β), so we may assume, without the loss of
generality, % = 0.

Now, we can find $ from (5.4) and (5.7):

$ =
V (xβ − yα) + α%

β
= V

(
x+

α

y

)
(5.7)
= V

(
x+

V

Vx
− x
)

=
V 2

Vx
. (5.8)

This gives a practical way to produce algebraic projective flows which commute.
Moreover, we can finish integrating the vector field ($, %) in explicit terms, since we
have at our disposition the method to integrate any vector field ($, 0). Its integral
is a flow (u(x, y), y), where u is found from the equation [5, p. 307]∫ y

x

y
u(x,y)

dt
$(1, t)

= y.

In this integral, let us make a change t 7→ 1/t. Since $ is 2-homogeneous, this gives∫ u(x,y)
y

x
y

dt
$(t, 1)

= y.

Now, let us use (5.8). This gives∫
dt

$(t, 1)
=
∫

Vx(t, 1) dt
V 2(t, 1)

= − 1
V (t, 1)

.

So,
1

V (xy , 1)
− 1

V (uy , 1)
= y.

Since V is 1-homogeneous, this finally gives the equation for u, as given by (4.2);
that is,

V (x, y)
1− V (x, y)

= V (u, y).

Thus, this gives the explicit formulas in Theorem 4.2. Also, we can double-check
that a vector field is the correct one. Indeed, the last equation can be rewritten as,
after plugging (x, y) 7→ (xz, yz) and dividing by z,

V (x, y)
1− zV (x, y)

= V
(u(xz, yz)

z
, y
)
.

Now differentiation with respect to z and afterwards substitution z = 0 gives,
minding the formula (1.3), the correct value for the first coordinate of the vector
field, given by (5.8).
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Finally, a vector field of the flow φz ◦ ψw is equal to

z($, %) + w(α, β) =
(zV 2

Vx
+
wyV

Vx
− wxy,−wy2

)
= ($̂, %̂).

Let Ŵ be the equation for the orbits of this flow. We are left to solve the ODE
(1.6) for a vector field ($̂, %̂). In this case, it reads

Ŵx

Ŵ
=

wyVx
zV 2 + wyV

=
Vx
V
− Vx

V + wy
z

.

Thus,

Ŵ =
V y

zV + wy
.

While integrating, we keep in mind that Ŵ is 1-homogeneous function in (x, y),
so integration constant is chosen to be ln y − ln z. For (z, w) = (1, 0) we recover
orbits of the flow φ (y = const.), and for (z, w) = (0, 1) we get orbits of the flow ψ
(V (x, y) = const). This finishes the proof of Theorem 4.2.

6. Examples

6.1. Monomials. The simplest case of a 1-homogeneous function V in Theorem
4.2 is a monomial. So let, in the setting of second half of Theorem 4.2,

V (x, y) = xn+1y−n, n ∈ Z \ {−1}.

This gives

ψ(x) =
(
x(y + 1)−

n
n+1 ,

y

y + 1

)
, φ(x) =

( x

(1− xn+1y−n)
1

n+1
, y
)
.

We can check by hand that these two are indeed commutative flows; that is, they
satisfy (1.1), and do commute.

6.2. Superflow. The flow

φ(x) =
(
x+ (x− y)2, y + (x− y)2

)
is rational, hence algebraic, and its orbits are curves x − y = const. We give this
particular example because this flow has many fascinating properties, related to
finite linear groups, infinite linear groups and their Lie algebras. This flow is the
simplest example of a reducible 2-dimensional superflow [9, 10, 11]. More precisely,
the flow has a 6-fold cyclic symmetry generated by the order 6 matrix

γ =
(

ζ 0
ζ + ζ−1 −ζ−1

)
, ζ = e2πi/3.

This show that a flow is a superflow. The full group of symmetries of this flow
is infinite [11]. Since orbits are 1-homogeneous functions, we can apply the main
Theorem. Thus, let ($, %) = ((x − y)2, (x − y)2), and W = x − y. Formula (5.6)
gives β = 2xy − y2, and formula (5.3) gives α = x2 − y2. This vector field can be
easily integrated using methods from [5, 6], and the flow we obtain is given by

ψ(x) =
(x− (x− y)2

(x− y − 1)2
,

y

(x− y − 1)2
)
.
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By a direct calculation, these two flows indeed commute, since

ψw ◦ φz(x) =
(x+ (z − w)(x− y)2

(wx− wy − 1)2
,
y + z(x− y)2

(wx− wy − 1)2
)

= φz ◦ ψw(x).

6.3. A quadratic example. Let ($, %) = (2x2− 3xy, xy− 2y2). This vector field
satisfies the condition of Proposition 4.4. In fact, in [8] we classified all pairs of
quadratic forms which produce algebraic flows (see also correcting remarks in [6]),
and this particular case corresponds to a pair (n,Q) = (1,− 1

2 ). Since the numerator
of Q is 1, this is a flow of level 1. Thus, we have

W (x, y) = x−2(x− y)y2, (α, β) =
(y3

x
,
y3

x

)
.

The system of Proposition 5.2 is satisfied. The method to integrate vector fields with
both coordinates proportional is developed in ([5], Subsection 4.2). The integral of
the vector field (α, β) is the flow

(a, b) =
( (x− y)

√
x2 − 2xy2 + 2y3√

x2 − 2xy2 + 2y3 − y
,

xy − y2√
x2 − 2xy2 + 2y3 − y

)
, V (x, y) = x− y.

Again we double-check that initial conditions (1.2) and PDEs (1.4) are satisfied.
To find u, v we use algebraic identities of Theorem in [6]. This gives

(u− v)v2

u2
=

(x− y)y2

x2
,

1
v

+
u

v2
=

1
y

+
x

y2
+ 2.

Some handwork gives the solution

(u, v) =
(

xy
√

1− 2x+ 2y + x2

(x+ y + 2y2)(1− 2x+ 2y)
,

y2
√

1− 2x+ 2y + xy

(x+ y + 2y2)
√

1− 2x+ 2y

)
.

Once again, we double check that the PDEs (1.4) and initial conditions (1.2) are
satisfied. It is not that straightforward to check that indeed, these two flows do
commute! As mentioned in the introduction, MAPLE confirms this. For the conve-
nience of the reader, MAPLE code to verify these claims is contained in [3]. Thus,
as a particular example, we prove the following result.

Proposition 6.1. The flow

φ(x) =
(

xy
√

1− 2x+ 2y + x2

(x+ y + 2y2)(1− 2x+ 2y)
,

y2
√

1− 2x+ 2y + xy

(x+ y + 2y2)
√

1− 2x+ 2y

)
,

with the vector field (2x2 − 3xy, xy − 2y2) and orbits u−2(u − v)v2 = const., and
the flow

ψ(x) =
( (x− y)

√
x2 − 2xy2 + 2y3√

x2 − 2xy2 + 2y3 − y
,

xy − y2√
x2 − 2xy2 + 2y3 − y

)
,

with the vector field (y
3

x ,
y3

x ) and orbits u − v = const., commute. All projective
flows which commute with φ are given by φz ◦ ψw, z, w ∈ R. The orbits of the flow
(U, V ) = φz ◦ ψw are given by

(U − V )V 2

zU2 − wV 2
=

(x− y)y2

zx2 − wy2
= const.
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The statement that the orbits are, for example, u−2(u − v)v2 = const., is
a slight abuse of notation which means the following. Let u(xz, yz)z−1 = uz,
v(xz, yz)z−1 = vz. What we mean is that

(uz)−2(uz − vz)(vz)2 ≡ x−2(x− y)y2,

and is independent of z. The flow φ is locally well-defined - if (x, y) is replaced with
(zx, zy), where z is sufficiently small, we take the branch of the square root which
is equal to x at z = 0. For the flow ψ we assume√

x2 − 2xy2 + 2y3 = x

√
1− 2y2

x
+

2y3

x2
,

and similar convention holds for (x, y) 7→ (zx, zy).

6.4. A cubic example. Consider the vector field (2x2 + xy, xy+ 2y2). Yet again,
this vector field satisfies the conditions of Proposition 4.4 (MAPLE does it for us),
so it produces algebraic flow of level 1. Indeed, in the setting of [8, Theorem 3],
(n,Q) = (1, 1

2 ). Moreover, this vector field is symmetric with respect to conjugation
with a 1-BIR involution i(x, y) = (y, x), and so is the flow.

Let A = y(y−3x)
6x2 . Then formulas in Proposition 4.3 give a vector field(4xy2 − y3 − 9x2y

6x
,−y2

)
.

The orbits of the flow with the latter vector field are given by

V (x, y) =
(3x− y)y3

(x− y)3
= const.

So, for V is given as above, we are now in the position of the second part of
Theorem 4.2, and can give the final answer in terms of Cardano formulas. Returning
back to the vector field (2x2 + xy, xy + 2y2), that is, performing backwards 1-BIR
(xA−1, yA−1), gives the following result.

Proposition 6.2. The flow φ(x, y) =
(
u(x, y), v(x, y)

)
, where

u(x, y) =

(
3

√
x+ y

√
y−3x+6x2

x−3y+6y2 + 3

√
x− y

√
y−3x+6x2

x−3y+6y2

)
x(x− y)

3
√
x− 3y + 6y2 · (y − 3x+ 6x2)

− 2x2

y − 3x+ 6x2
,

and v(x, y) = u(y, x), with the vector field (2x2 + xy, xy + 2y2), and orbits u2(u−
v)−3v2 = const., and the flow ψ(x) =

(
a(x, y), b(x, y)

)
, where the third degree

algebraic functions a, b are found from

(9ax− 8x2 − 3ay)x2y2

a(ay − 3ax+ 3x2)2
= x− 3y − 6y2, b =

a2(y − 3x)
x2

+ 3a,

(we choose the branch of the function “a” which satisfies the boundary condition)
with the vector field

(α, β) =
(
− xy3

(x− y)2
,

3xy3 − 2y4

(x− y)2
)
, (6.1)

and orbits a2

3a−b = const., commute. All projective flows which commute with φ are
given by φz ◦ ψw, z, w ∈ R. The orbits of the flow (U, V ) = φz ◦ ψw are given by

U2V 2

z(V − U)3 + wV 2(3U − V )
=

x2y2

z(y − x)3 + wy2(3x− y)
= const.



EJDE-2018/138 COMMUTATIVE RATIONAL VECTOR FIELDS 17

The MAPLE code which again checks the last Proposition can be found at [3].
As mentioned, v(x, y) = u(y, x). MAPLE formally verifies that the PDE (1.4) is
satisfied without even specifying which of the branches of radicals we are using.
Also the flow conservation property is satisfied. However, it is known that if a
third degree polynomial has three distinct real roots, then Cardano formulas must
involve complex numbers ([42], chapter on Galois theory). So, the choice of the
branch and thus making sure that the boundary conditions (1.2) are satisfied are
not so explicit if one uses the expression for u given in Proposition 6.2. Numerical
computations show that for x − 3y > 0, y − 3x > 0, the boundary conditions are
satisfied if we use positive value for the square root and real values for cubic roots,
due to an algebraic identity:

lim
z→0

u(xz, yz)
z

=

(
3

√
x+ y

√
y−3x
x−3y + 3

√
x− y

√
y−3x
x−3y

)
x(x− y)

3
√
x− 3y · (y − 3x)

− 2x2

y − 3x
≡ x.

Of course, such identities should not come as a surprise: they arise all the time when
a cubic polynomial has a root we know in advance - for example, write Cardano
formulas for a polynomial (x− 1)(x2 + px+ q).

The algebraic function a(x, y) satisfies the third degree equation

F (a, x, y) := (9ax− 8x2− 3ay)x2y2 + (3y+ 6y2− x)a(ay− 3ax+ 3x2)2 = 0, (6.2)

and the function b is given by

b =
a2(y − 3x)

x2
+ 3a;

the latter follows from the flow conservation property. The polynomial F (a, x, y)
is irreducible over C[a, x, y]. To double-check that the integral of the vector field
(α, β) is (a, b), we will now verify the boundary condition (1.2) and the PDE (1.4).
Let az(x, y) = a(xz,yz)

z . Then putting (x, y) 7→ (xz, yz) in (6.2), we obtain

(9azx− 8x2 − 3azy)x2y2 = (x− 3y − 6y2z)az(azy − 3azx+ 3x2)2.

Since for z = 0, a0 = x satisfies the above, we choose the branch for az such that
for z = 0, az = x. We are left to verify the PDE for a:

ax(x, y)(α(x, y)− x) + ay(x, y)(β(x, y)− y) = −a.
From (6.2), we have

ax = −Fx
Fa
, ay = −Fy

Fa
.

So, the following as if must hold:

−Fx(a, x, y)
Fa(a, x, y)

·
(
α(x, y)− x

)
− Fy(a, x, y)
Fa(a, x, y)

·
(
β(x, y)− y

)
+ a

?= 0.

However, calculations with MAPLE show that the left hand side of the above,
which is a rational function in three variables a, x, y, is not identically zero - it is
quite a lengthy expression that involves the powers of a up to a5. Nevertheless, a
is algebraically dependent on x, y, and the numerator can be reduced. And indeed,
MAPLE confirms that

−Fx
Fa

(α− x)− Fy
Fa

(β − y) + a ≡ 0 mod F (a, x, y).
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Note that we have already encountered an analogous phenomenon in [7] while deal-
ing with elliptic flows. So, this implicitly satisfies the PDE (1.4).

One last remark. The vector field ($, %) = (2x2 + xy, xy + 2y2) is invariant
under conjugation with a linear involution i0(x, y) = (y, x). This shows that if
a vector field (α, β), given by (6.1), commutes with ($, %), so does a vector field
i0 ◦ (α, β) ◦ i0(x, y). However, this vector field is not equal to (α, β). There is no
contradiction to uniqueness property, since we know that there must exist c, d ∈ R
such that

c(2x2 + xy, xy + 2y2) + d
(
− xy3

(x− y)2
,

3xy3 − 2y4

(x− y)2
)

=
(3x3y − 2x4

(x− y)2
,− x3y

(x− y)2
)
.

This indeed holds for c = d = −1.

7. Higher dimensions

The problem of describing various aspects of projective flows in dimension n ≥ 3,
starting from continuous (not necessarily smooth) flows on a single point compacti-
fication of Rn, symmetry, quasi-flows, rational flows, flows over finite fields, Abelian,
algebraic and integral flows, are all open. See [7, 8] for a list of 10 problems. This
list is continued in [6, 9, 10, 11]; note that the theory of superflows in dimension 3
is close to a finish. In relation to the topic of the current paper, in Subsection 1.3
we posed another problem, which we will now strengthen.

Based on results in dimension 2, we can construct families of n pairwise com-
muting projective flows with rational vector fields. Indeed, we will illustrate this
in dimension 3, and the same construction - direct sum of flows - works in any
dimension.

7.1. Extension of a commuting pair of flows. Let φ = (u, v) and ψ = (a, b)
be 2-dimensional commuting algebraic flows. Then let us define the set of flows

φ(x, y, z) =
(
u(x, y), v(x, y), z

)
,

ψ(x, y, z) =
(
a(x, y), b(x, y), z

)
,

ξ(x, y, z) =
(
x, y,

z

1− z
)
.

(7.1)

(Here z, of course, is no longer a “time” parameter. The use of the same notation φ
and ψ for 2-dimensional flows and their 3-dimensional extensions should not cause
a confusion). These three are algebraic pairwise commuting flows. In particular, as
the most basic example, let us consider

φ(x, y, z) =
( x

1− x
, y, z

)
,

ψ(x, y, z) =
(
x,

y

1− y
, z
)
,

ξ(x, y, z) =
(
x, y,

z

1− z
)
.

A very simple argument shows that this is the maximal collection - any flow which
commutes with all three is necessarily of the form

η(x, y, z) =
( x

1− px
,

y

1− qy
,

z

1− rz

)
= φp ◦ ψq ◦ ξr, p, q, r ∈ R are fixed.
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Indeed, suppose a smooth flow

η =
(
u(x, y, z), v(x, y, z), t(x, y, z)

)
with a rational 2-homogeneous vector field commutes with φ, ψ, and ξ. Then η
commutes with ξr for any r ∈ R - vanishing of Lie brackets is a homogeneous
condition on vector fields. Writing down, this means that

u
(
x, y,

z

1− rz

)
= u(x, y, z), for any r.

So, u is independent of z. Equally, u is independent of y, and so u(x, y, z) = x
1−px

for a certain p ∈ R. The same reasoning works for the functions v and t.
A bit more generally, a similar argument shows that (7.1) is a maximal collection.

Indeed, for any 3-dimensional projective flow η which commutes with ξ, the first two
coordinates of η must be independent of z, and therefore the first two coordinates
of the vector field of η, based on the results of the current paper, are a linear
combination of vector fields of 2-dimensional flows (u, v) and (a, b).

7.2. Commutative rational flows. Another family of flows was given in [4] in
relation to continuous flows on a single point compactification of Rn. With com-
mutativity in mind, we can now shed a new light on this particular example.

Indeed, let Q(x) be an arbitrary non-zero quadratic form in n variables with real
coefficients, and let B(x,y) = Q(x + y) − Q(x) − Q(y) be the associated bilinear
form. Then we know that for any a ∈ Rn, the n-dimensional rational function

φa,Q(x) =
aQ(x) + x

Q(x)Q(a) +B(x,a) + 1

(numerator is a vector, denominator is a scalar) is a projective flow with a vector
field aQ(x)− xB(x,a) [4]. Moreover [4, Proposition 2],

φa,Q ◦ φb,Q(x) = φa+b,Q(x).

So, for Q fixed and a varying, these flows mutually commute, and their composition
produces a new projective flow, in correspondence with the results of the current
paper. Since all possible vectors a form a vector space of dimension n, there are
exactly n linearly independent vector fields in this family.

Further, let J(x) be a 1-homogeneous rational function in dimension n. Then
the flow

φJ(x) =
x

1− J(x)
(once again, numerator is a vector, denominator is a scalar) is a direct analogue of
level 0 rational flows. Such a flow can be called level 0 rational flow in dimension
n, and all such flows commute; see Proposition 4.1.

With all these examples in mind, we therefore strengthen the problem posed in
the end of Subsection 1.3 as follows.

Problem 7.1. Let n ≥ 3 be an integer. Describe maximal sets of pairwise commut-
ing smooth projective flows with rational vector fields in dimension n. Is it following
true? If in this set there exists at least one flow not of the form φJ(x), and the set
is n-dimensional, then this set is generated by n linearly independent vector fields,
and all flows in this set can be explicitly integrated in terms of algebraic functions.
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[25] I. A. Garćıa, J. Giné, S. Maza; Linearization of smooth planar vector fields around singular
points via commuting flows, Commun. Pure Appl. Anal., 7(6) (2008), 1415–1428.
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