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ISOCHRONOUS FAMILIES OF LIMIT CYCLES

ROMINA COBIAGA, WALTER REARTES

Abstract. In this article we present a method for determining if the frequency

of a family of periodic orbits remains constant when a parameter changes.
Two-dimensional systems of ordinary and delayed differential equations are

considered. Several examples are given.

1. Introduction

In dynamic systems with oscillations, it is of great interest to study the frequency
of such oscillations. Clearly this knowledge will be of importance in the development
of applications in engineering and other branches of technology.

For two-dimensional systems, the so-called isochronous centers have been studied
in [4, 5, 10, 14, 13, 17]. These are centers for which all orbits have the same
frequency. Related to isochronous centers are isochronous foci [9, 10, 16]. Here
there are no periodic orbits and the time of return to a transversal cross-section to
the orbit in the focus is studied.

The period of the emergent orbits of certain bifurcations has been studied in
[8]. This is a particular case of a one-parameter dependent family of cycles. Such
families have been studied for example in [6, 15]. Limit cycles of particular equations
have also been studied, see [1].

In [3] it has been proved that, for certain second order equations with delay,
bifurcation branches appearing in a neighborhood of Hopf bifurcation due to the
delay are isochronous.

A central problem is to know when the frequency of the oscillation does not
depend on a parameter of the system. In this work, a methodology is developed
to determine if a periodic orbit in two-dimensional systems of differential equations
and differential equations with delay changes its frequency by varying a parameter.
We call isochronous orbit with respect to the parameter an orbit that behaves this
way. We also call isochronous family of limit cycles a family of this type.

In a similar spirit to that used in applying the theory of Floquet in determining
the stability of a cycle, the problem of determining whether a periodic orbit is
isochronous is reduced to studying a linear system with periodic coefficients. In
this case, the existence of certain periodic solutions of this new system, which we
call auxiliary system, is equivalent to the isochronous character of the orbit.
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2. Auxiliary system

We begin by studying the case in which the periodic orbit is a limit cycle in
a system of differential equations in the plane. Later, we will show the necessary
modifications to treat the case of differential equations with delay.

Consider the following system of ordinary differential equations

x̄′1 = f1(x̄1, x̄2, µ),

x̄′2 = f2(x̄1, x̄2, µ).
(2.1)

Here, µ is a real parameter, x̄1 and x̄2 are functions of the variable t̄, and the
real functions f1 and f2 are sufficiently differentiable. Suppose that this system
has a limit cycle with frequency ω(µ) > 0. Calling x̄µ = (x̄1µ, x̄2µ) the cycle and
f = (f1, f2) the field, we have

x̄′µ = f(x̄µ, µ), where x̄µ(t̄) = x̄µ(t̄+ 2π/ω(µ)). (2.2)

After a change of the independent variable to t = ω(µ)t̄, (2.2) becomes

ω(µ)x′µ = f(xµ, µ), (2.3)

where the 2π-periodic function xµ = (x1µ, x2µ) is continuous in the new variable t.
If we call Ω the space of continuous functions from the unit circle S1 to R2,

then the orbit that is solution of system (2.3) provides a continuous application,
µ 7→ xµ, of some interval I ⊂ R into Ω. Without loss of generality, we can assume
that the orbit surrounds the origin and suppose that it intersects the positive x1-
axis transversely at a point x̂1(µ). An additional condition must be set to define
the xµ family due to the S1-invariance of the periodic orbits. This can be done by
imposing the condition that the orbits cross the x1-axis at time t = 0 (of course for
this construction we can take any straight line that passes through the origin). We
then have

xµ(0) = (x̂1(µ), 0). (2.4)

We assume that the function x̂1(µ) is differentiable with respect to µ. Thus, xµ is
continuous in both µ and t.

Differentiating (2.3) with respect to µ and assuming that the frequency is con-
stant; i.e., ω(µ) = ω0, and therefore ∂ω/∂µ = 0, we obtain the following system of
non-autonomous linear equations

ω0ξ
′
µ =

∂f
∂xµ

ξµ +
∂f
∂µ

, (2.5)

where

ξµ(t) = (ξ1µ(t), ξ2µ(t)) =
(∂x1µ

∂µ
(t),

∂x2µ

∂µ
(t)
)
, (2.6)

and ∂f/∂xµ the Jacobian matrix of f with respect to x1µ and x2µ. The coefficients
are periodic functions of period 2π because they are evaluated on the periodic orbit
xµ. We call this system the auxiliary system.

The variation of the limit cycle with µ is such that at t = 0 it moves horizontally
with velocity

ξµ(0) =
(∂x̂1(µ)

∂µ
, 0
)
. (2.7)

Here, ξµ(0) is on the horizontal axis by the particular choice (2.4) we have taken.
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Next theorem ensures that the problem of studying the isochronous character
of the family of limit cycles of equation (2.1) is transformed into finding periodic
solutions, of period 2π, of system (2.5).

Theorem 2.1. Suppose that system (2.1) has a limit cycle for all points of some
interval I ⊂ R of the parameter µ. Also, suppose that it intersects the horizontal
axis transversely at t = 0. Then, the family is isochronous with respect to µ; i.e.,
the frequency does not depend on the parameter in the interval, if and only if for
some µ = µ0 the limit cycle has frequency ω0, and for all µ in I, system (2.5) has
a periodic solution of period 2π, with initial condition (2.7).

Proof. Suppose that system (2.1) has a family of isochronous cycles in some interval
of the parameter µ; that is, it has a periodic solution x̄µ = (x̄1µ, x̄2µ) of constant
frequency ω(µ) = ω0. Then, system (2.3) becomes

ω0x′µ = f(xµ, µ), (2.8)

with xµ = (x1µ, x2µ) periodic of period 2π. Differentiating with respect to µ, we
obtain that functions (2.6) verify equations (2.5). Therefore, ξµ = ∂xµ/∂µ is the
periodic solution of period 2π sought.

Conversely, suppose that, for each µ, system (2.5) has a solution ξµ of period
2π with initial condition (2.7). Take µ = µ0 in the interval I and xµ0 the periodic
solution corresponding to that parameter value. Define xµ as follows:

xµ = xµ0 +
∫ µ

µ0

ξν dν. (2.9)

As can be easily verified, this xµ is solution of (2.3) with the appropriate initial
conditions and with ω(µ) = ω0 constant. �

Once system (2.5) is constructed, the next step is to find the periodic solution
of period 2π that verifies condition (2.7). To find this orbit we proceed to compute
a line determined by the end points, at time t = 2π, of the trajectories beginning
on the axis ξ1. This line can provide us with a method to ensure that the desired
limit cycle does not exist. If the cycle exists, this line helps us to find it for a fixed
value of µ.

Linear system (2.5) can be written as

ξ′(t) = A(t)ξ(t) + b(t). (2.10)

If we know a principal fundamental matrix solution, Φ(t), of the associated homo-
geneous system we have the following expression for the solution

ξ(t) = Φ(t)c+ Φ(t)
∫ t

0

Φ−1(s)b(s)ds, (2.11)

where c is a constant initial condition.
As a consequence of linearity, the orbits that begin at the axis ξ1; that is,

ξ(0) = Φ(0)c = c = (ξ01, 0), (2.12)

are found in time t = 2π on a same line in the plane ξ1-ξ2. Calling (ξ1(2π), ξ2(2π)) =
(ξ∗1 , ξ

∗
2) the end point of the path in the plane ξ1-ξ2, these points obey the parametric

equation as a function of ξ01,
ξ∗1 = Φ11ξ01 + γ1,

ξ∗2 = Φ21ξ01 + γ2,
(2.13)
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where

(γ1, γ2)T = Φ(2π)
∫ 2π

0

Φ−1(s)b(s)ds, (2.14)

and Φij are the components of the matrix Φ(2π).
Because all the trajectories of system (2.5) that start at the ξ1-axis end at the

same line at t = 2π, then by plotting two of them we can determine this line. In
cases where it does not cut the ξ1-axis, we can ensure that the family of cycles is
not isochronous. This situation can occur when the line is horizontal at a nonzero
value of the variable ξ2 (see Figure 1). However, crossing the ξ1-axis does not
guarantee the existence of periodic orbits as shown in the following examples. In
this case, it is enough to find the orbit that starts from that crossing point to check
its periodicity. In this work, all the trajectories of the auxiliary system have been
found by means of numerical simulations.

Remark 2.2. We note that in finding the periodic orbit in the ξ1-ξ2 plane we not
only prove that the family of orbits is isochronous, but we also find how the cycle
changes in the direction of the x1-axis as µ varies. As stated above, this axis could
be changed by anyone through the origin, with a suitable synchronization of the
family of cycles. Moreover, a direction that does not pass through the origin can
be chosen by using as a line of synchronization a differentiable curve that passes
through the origin and divides the plane into exactly two regions.

Remark 2.3. The concept of isochronous family of limit cycles could be general-
ized, in principle, for the case where the cycles are in a center. In this case we would
call them isochronous family of periodic orbits in a center. We must explain that
this concept has nothing to do with that of isochronous center, where the different
orbits, for a same value of the parameter, have the same frequency. In addition, a
family of the type studied in this work can be built in almost any center, with the
only condition that the frequency of the orbits varies from orbit to orbit, as will
be seen below. This construction could be of importance in applications in control
theory.

Suppose that a system as (2.1) has a center. We will also suppose that the center
is structurally stable. Without loss of generality, we can assume that the orbit is
around the origin. Then, we can suppose, as in the case of limit cycles, that at
t = 0 a particular periodic orbit crosses the x1-axis at the point x̂1. The frequency
of this orbit depends on the parameter µ and on the point x̂1. We call x̄µ,x̂1 that
orbit. It satisfies the equation

x̄′µ,x̂1
= f(x̄µ,x̂1 , µ), where x̄µ,x̂1(t̄) = x̄µ,x̂1(t̄+ 2π/ω). (2.15)

Analogously to the case of limit cycles, if we call ω(µ, x̂1) to the frequency, then
we can write

ω(µ, x̂1)x′µ,x̂1
= f(xµ,x̂1 , µ). (2.16)

The frequency of this cycle depends on the value of µ = µ0 and on the point
x̂1 = x10 where it crosses the x1-axis. If the frequency changes by varying x̂1; that
is,

∂ω

∂x̂1
(µ0, x10) 6= 0, (2.17)

then, in a neighborhood of µ0, we can find a function x̂1(µ) satisfying

ω(µ, x̂1(µ)) = ω0. (2.18)



EJDE-2018/117 ISOCHRONOUS FAMILIES OF LIMIT CYCLES 5

-5 0 5 10

-10

-5

0

5

10

ξ1

ξ2

Figure 1. Orbits of system (2.22) for the harmonic oscillator with
horizontal line ξ2 = −6.28.

A family of isochronous periodic orbits can be defined by varying x̂1 with the
function x̂1(µ). This family gives the following auxiliary equation

ω0ξ
′
µ =

∂f
∂xµ,x̂1

ξµ +
∂f
∂µ

. (2.19)

Where

ξµ(t) = (ξ1µ(t), ξ2µ(t)) =
(∂x1µ,x̂1

∂µ
(t),

∂x2µ,x̂1

∂µ
(t)
)
. (2.20)

Two examples will suffice to clarify these points. First we consider the linear center
in a harmonic oscillator of equation

x′1 = x2,

x′2 = −µ2x1.
(2.21)

The frequency depends on µ but not on the initial condition x0, therefore there is
no family of isochronous cycles. Equation (2.19) reduces to

ξ′1µ = ξ2µ,

ξ′2µ = −µ2ξ1µ − 2x1µ,x0µ = −µ2ξ1µ − 2x0 cos(µt).
(2.22)

In Figure 1 we see that system (2.22) (with µ = 2) has no periodic orbits, since the
line is horizontal and does not cross the ξ1-axis.

In contrast, if we consider the anharmonic oscillator of equation

x′1 = x2,

x′2 = −x1 − µx3
1,

(2.23)
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equation (2.19) reduces to

ξ′1µ = ξ2µ,

ξ′2µ = −(1 + 3µx2
1µ,x0

)ξ1µ − x3
1µ,x0

.
(2.24)

In Figure 2 we can see the presence of a periodic orbit of period 2π starting from
ξ1 = −1. This negative value shows that the radius of the cycle decreases when µ
increases.
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Figure 2. Orbits of system (2.24) for the anharmonic oscillator
with line ξ2 = −11.726− 11.726ξ1 and µ = 1.

2.1. Systems with angular velocity independent of the parameter. One
type of systems having a family of trivially isochronous cycles is one in which the
angular velocity is constant and independent of µ. For example, system

x′1 = µx1 − x2 − x1(2x2
1 + x2

2),

x′2 = x1 + µx2 − x2(2x2
1 + x2

2),
(2.25)

transformed to polar coordinates gives

r′ = µr −
(3

2
+ cos(2θ)

)
r3,

θ′ = 1.
(2.26)

In this case equation (2.5) becomes

ξ′1µ = (−6x2
1µ − x2

2µ + µ)ξ1µ − (1 + 2x1µx2µ)ξ2µ + x1µ,

ξ′2µ = (1− 4x1µx2µ)ξ1µ − (2x2
1µ + 3x2

2µ + µ)ξ2µ + x2µ.
(2.27)

In Figure 3 we see the cycle to which the trajectories that start from the ξ1-axis
converge (µ = 1 was taken). As it can be seen, line (2.13) coincides with the ξ1-axis.
This occurs in all cases of systems with constant angular velocity.
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Figure 3. Orbits of system (2.5) for equation (2.25) with ω0 = 1
and µ = 1.

2.2. van der Pol and Rayleigh equations. In this section we will show two
examples of well-known equations whose families of cycles are not isochronous.
However, the frequency of these cycles is known as a function of the parameter
with arbitrary precision. Therefore, a change of variables can be made to obtain
systems where the limit cycles are isochronous.

As it is known, the limit cycle of van der Pol equation

x′1 = x2,

x′2 = −µ(x2
1 − 1)x2 − x1

(2.28)

is not isochronous with respect to µ. Here, equation (2.5) takes the form

ω0ξ
′
1µ = ξ2µ,

ω0ξ
′
2µ = −(1 + 2µx1µx2µ)ξ1µ + µ(1− x2

1µ)ξ2µ + (1− x2
1µ)x2µ(t).

(2.29)

Several orbits of system (2.29) are shown in Figure 4. Observing its behavior and
the line given by equation (2.13) we see that the system does not have periodic
orbits of period 2π. The green curve starts at the point where the line intersects
the ξ1-axis, at the value 0.0134, and clearly it is not a closed orbit of period 2π.

As stated before, the frequency ω(µ) of the limit cycle is known with sufficient
approximation in power series of the parameter µ [1]. Making a change on the
variable t, we obtain

x′1 = ω(µ)−1x2,

x′2 = −ω(µ)−1(µ(x2
1 − 1)x2 − x1),

(2.30)

where we take the approximation

ω(µ) = 1− 1
16
µ2+

17
3072

µ4+
35

884736
µ6− 678899

5096079360
µ8+

28160413
2293235712000

µ10, (2.31)

and the names of the variables are preserved for simplicity. In this system the family
of cycles is isochronous (within the approximation given by (2.31)). In Figure 5 we
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Figure 4. Orbits of system (2.29) for van der Pol equation with
µ = 1. Straight line ξ2 = 3174.35ξ1 − 42.58 is shown.

observe the limit cycle in the auxiliary system for µ = 1, it is a periodic orbit of
period 2π.
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Figure 5. Cycles of the auxiliary system for van der Pol equation
(2.30), with µ = 1.

Similarly, the limit cycles of the Rayleigh oscillator,

x′1 = x2,

x′2 = −µ(x2
2 − 1)x2 − x1,

(2.32)
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are not isochronous either. In Figure 6 we can see the orbits of the auxiliary
system for this case and the corresponding line given by equation (2.13). This line
intersects the ξ1-axis in the value 0.1915, but in the graph it is observed that the
orbit starting from that point, the green curve, is not periodic with period 2π.
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Figure 6. Orbits of the auxiliary system for Rayleigh equation
(2.32) with µ = 1. Straight line ξ2 = −112.5 + 587.59ξ1 is shown.

In the same way as with van der Pol equation, system (2.32) becomes

x′1 = ω(µ)−1x2,

x′2 = −ω(µ)−1(µ(x2
2 − 1)x2 − x1).

(2.33)

The frequency of these limit cycles can be calculated by the method of Poincaré-
Lindstedt [18]. We have the fact that the formula for ω(µ) is the same as (2.31).
Again the obtained system is isochronous. We see in Figure 7 the cycle of period
2π of the auxiliary system for µ = 1.

3. Delay differential equations

In [3] the problem of isochronous cycles in delayed systems of a particular type
was considered. The differential equations with delay are a special case of functional
differential equations [11]. The latter are of the form

x′(t) = F (t,xt), (3.1)

where x(t) ∈ Rn, xt ∈ C([−τ, 0],Rn) is the function xt(θ) = x(t+ θ) and F : D ⊂
R× C([−τ, 0],Rn)→ Rn is continuous.

In the case of differential equations with delay, the functional F is of the form
F (t,xt) = h(t,x(t),x(t − τ1), . . . ,x(t − τk)), where h : U ⊂ R × Rnk → Rn is
continuous and there is a constant τ such that 0 < τi ≤ τ , i = 1, · · · , k.

In [3] equations of form

x′′ + g(x, β) = γf(x− xτ ) (3.2)

are considered, where x(t), β and γ ∈ R, and xτ (t) = x(t−τ) (we use the superscript
to avoid confusion with the function xt). Function g is C1 and f is real analytic. In
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Figure 7. Cycles of the auxiliary system for Rayleigh equation
(2.33), with µ = 1

some cases a Hopf bifurcation occurs when any of the parameters γ or β changes.
In the above work it was proved that the generic situation is that the frequency of
the emergent limit cycles is constant in a neighborhood of the bifurcation.

In this work we consider differential equations with delay in the plane, of the
type

x̄′ = f(x̄, x̄τ , µ). (3.3)
As in Section 2, we assume that system has a limit cycle, x̄µ, with frequency

ω(µ). Then by suitable change of variables it can be written as

ω(µ)x′µ = f(xµ,xωτµ , µ). (3.4)

Differentiating with respect to µ and assuming that the frequency does not de-
pend on µ, we get the following delayed auxiliary system

ω0ξ
′
µ =

∂f
∂xµ

ξµ +
∂f

∂xω0τ
µ
ξω0τ
µ +

∂f
∂µ

, (3.5)

where the variations ξµ are given again by equations (2.6) and ∂f/∂xµ, ∂f/∂xω0τ
µ

are the Jacobians with respect to the variables and retarded variables, respectively.
Of course the interpretation of solutions of system (3.5) is much more involved

than the case of an ordinary differential equation. The difference essentially lies in
that the initial condition is in an infinite dimensional space and it is not a point in
R2. We use a heuristic approach to study this problem.

Suppose that system (3.3) has a unique periodic solution through the point
(x̂1, 0). For example, from a Hopf bifurcation. Let us further suppose that with a
small variation of µ another cycle is obtained. Suppose that these cycles are stable,
then if we integrate equation (3.4) with a constant function in the interval [−τ, 0],
at the point (x̂1, 0), then the orbit will probably converge to the new cycle. It is
interesting to know whether, with this variation of µ, the frequency of the new cycle
remains constant.

System (3.5) helps us to answer this question. If the points on the ξ1-axis are
used as the origin of orbits with a constant initial condition during the delay time,
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then these orbits can converge to periodic orbits of period 2π. If this happens
we may consider it as an indication that the system is isochronous. On the other
hand, if it fails to find cycles of period 2π with constant initial conditions of the
type here considered, it is a strong evidence that the family of limit cycles is not
isochronous. The difficulty in interpreting the solutions of the auxiliary system in
delayed equations is that it is impossible to cover all the initial conditions to test
the existence of periodic orbits.

An interesting situation we have found is that there may be infinite orbits of
period 2π, as will be seen in the examples below. This happens as follows. Suppose
that ξµ is a solution of period 2π of the auxiliary system. Then the family ξµ +ηµ
will also be a solution of period 2π if ηµ satisfies the homogeneous equation

ω0η
′
µ =

∂f
∂xµ

ηµ +
∂f

∂xω0τ
µ
ηω0τ
µ . (3.6)

If ω0τ is a multiple of π, then this equation has infinite proportional solutions of
period 2π. One of them is the one that allows us to write xµ as a function of xµ0

using equation (2.9); that is,

xµ = xµ0 +
∫ µ

µ0

ξν dν.

We state the following theorem.

Theorem 3.1. Suppose that system (3.3) has a limit cycle for all points of some
interval I ⊂ R of the parameter µ. Also, suppose that it crosses the horizontal
axis transversely at t = 0. Then the family is isochronous with respect to µ; i.e.,
the frequency does not depend on the parameter in the interval, if and only if for
some µ = µ0 the limit cycle has frequency ω0, and for all µ in I system (3.5) has
a periodic solution of period 2π which is equal to the derivative of xµ with respect
to µ for t ∈ [−ω0τ, 0].

Remark 3.2. The presence of an infinite number of cycles of period 2π in the
auxiliary system can also occur in systems of ordinary differential equations. Here
ηµ must verify equation

ω0η
′
µ =

∂f
∂xµ

ηµ. (3.7)

According to Floquet’s theory [7] the fundamental matrix of solutions of this system
is of the form P (t)etR, where P is a 2π-periodic matrix and R is a constant matrix.
That is, there may be periodic solutions of period 2π only if any of the eigenvalues
of R (characteristic values) is 2πi.

In what follows we will show three examples. In the first one, it is known that
the limit cycles are not isochronous [2]. For the other two, it was proved in [3] that
the branches of Hopf bifurcation are isochronous.

3.1. van der Pol with delayed feedback. We consider the equation studied in
[2],

x′′ + (x2 − 1)x′ + x = µxτ . (3.8)

When the parameter µ is zero, we have a van der Pol equation. For µ sufficiently
small, the limit cycle is maintained but it is deformed, generating a family which
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is not isochronous. These cycles of frequency ω(µ) give rise to cycles of frequency
1 of system

ω(µ)x′1µ = x2µ,

ω(µ)x′2µ = −(x2
1µ − 1)x2µ − x1µ + µx

ω(µ)τ
1µ .

(3.9)

The auxiliary system takes the form

ω0ξ
′
1µ = ξ2µ,

ω0ξ
′
2µ = −(1 + 2x1µx2µ)ξ1µ + (1− x2

1µ)ξ2µ + µξω0τ
1µ + xω0τ

1µ .
(3.10)

Hopf bifurcations also appear in this system by varying the parameter µ. These
branches are not isochronous either.

As can be seen in Figure 8 the orbits of the auxiliary system (3.10) are not
bounded, because they move away from the origin. This is an indication of the
non-isochronous character of the family. The orbit of the figure was calculated
with an initial condition constant during the delay time at a point in the ξ1-axis.

-40 -20 0 20

-50

0

50

ξ1

ξ2

Figure 8. Orbit of the auxiliary system (3.10) for µ = 0.1, τ = 9
and ω0 = 0.99315.

3.2. Rotating pendulum with delay. In [3] the following differential equation
with delay was studied:

x′′ + (β − cosx) sinx = µ sin(x− xτ ). (3.11)

It represents the movement of a pendulum restricted to move on the surface of
a vertical plane that rotates with constant angular velocity. A delayed feedback,
which may be interpreted as a torque acting on the pivot, was added. This equation
has two equilibria, one around x = 0 and another at x∗ = arccosβ. It was proved
that the branches of Hopf bifurcations that appear due to the delay are isochronous,
i.e., the emergent cycles of this bifurcation around the nonzero equilibrium have
constant frequency. Hopf bifurcations occur at frequency ω = (2n + 1)π/τ for
n = 0, 1, . . ..
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To apply the method developed in the present work we rewrite equation (3.11)
around the non-zero equilibrium. After the change of independent variable, the
2π-periodic orbits verify the equation

ω(µ)x′1µ = x2µ,

ω(µ)x′2µ = −(β − cos(x1µ − x∗)) sin(x1µ − x∗) + µ sin(x1µ − xω(µ)τ
1µ ).

(3.12)

The auxiliary system for this problem is
ω0ξ
′
1µ = ξ2µ,

ω0ξ
′
2µ = (cos 2(x1µ − x∗)− β cos(x1µ − x∗) + µ cos(x1µ − x∗))ξ1µ

+ µ cos(x1µ − x∗)ξω0τ
1µ .

(3.13)

The orbits of system (3.13) converge to cycles of period 2π for initial conditions
constant during the delay time at a point in the ξ1-axis. This provides a verification
of the isochronous character of the Hopf cycles in this system. In this case the cycles
are not unique, as explained in Section 3. As the delay is a multiple of π, infinite
solutions of period 2π of equation (3.6) are obtained.

If we plot the cycles to which the solutions of (3.13) converge and in a third
axis the initial value of the coordinate ξ1, where the integration starts, we obtain
Figure 9. The surface determined by all these cycles is a ruled surface as also
shown in Figure 9, where the lines are represented by points on the lines joining
the corresponding cycles. It is a consequence of the linearity of the equations. If,
instead of taking initial conditions during the delay time as mentioned above, other
conditions are taken (for example a non-constant function of time or starting from
another line), the same cycles are obtained.

-5
0

5

ξ1

-5
0

5
ξ2

-20

-10

0

ξ1(0)

Figure 9. Left: cycles of the auxiliary system (3.13) for delayed
rotatory pendulum, with µ = −1, β = 0.5, τ = 2 and ω0 = π/τ .
Right: dotted right lines joining different cycles

3.3. Anharmonic oscillator with delay. Another similar example is shown in
[3]. It is given by the following differential equation with delay

x′′ + x+ βx3 = µ(x− xτ ). (3.14)
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As in the previous example this equation undergoes Hopf bifurcations when the
parameter µ varies. The emergent cycles have frequency ω = (2n + 1)π/τ for
n = 0, 1, . . .. After reparametrization, equation (3.14) gives

ω(µ)x′1 = x2,

ω(µ)x′2 = −βx3
1 − x1 + µ(x1 − xω(µ)τ

1 ),
(3.15)

and the auxiliary equation is

ω0ξ
′
1µ = ξ2µ,

ω0ξ
′
2µ = (µ− 3βx2

1µ − 1)ξ1µ − µξω0τ
1µ + x1 − xω0τ

1 .
(3.16)

The behavior of this system is very similar to the previous one. In Figure 10
we observe the cycles obtained by integrating equation (3.16) from different points
on the ξ1-axis (which is represented on the vertical axis). The lines connecting the
cycles are also observed as dotted lines. Again this shows that the cycles in this
system are isochronous.

Figure 10. Left: cycles of the auxiliary system (3.16) for delayed
anharmonic oscillator, with µ = −0.4, β = −1, τ = 2.5 and ω0 =
π/τ . Right: dotted right lines joining different cycles.

4. Conclusions

We have developed a methodology to study the frequency behavior of a family
of limit cycles in differential equations and differential equations with delay in
the plane. In particular, this methodology allows us to know if the family has
constant frequency when the parameter changes. The problem is reduced to study
the periodic solutions of non-homogeneous and non-autonomous linear differential
equations.

While the method presented in this article works for systems in the plane, it could
be extended to higher dimensions. However, its utility would be compromised by
the fact that the search for periodic solutions of the auxiliary system should be
done in one plane.
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For the case of differential equations with delay the search for periodic cycles of
the auxiliary equation is much more involved than in ordinary equations. In par-
ticular, the straight line through which the solutions pass after integration for time
2π corresponds to a linear subvariety in the Banach space of continuous functions
and therefore it is not accessible with the graphic methods developed here. The
problem would deserve further study, perhaps with the application of topological
techniques such as degree theory [12].

Acknowledgments. This work is supported by the Universidad Nacional del Sur
(Grant no. PGI 24/L096).

References

[1] C. M. Andersen, J. F. Geer; Power expansions for the frequency and period of the limit cycle

of the van der pol equation. Siam J. Appl. Math., 42(3):678–693, 1982.
[2] A. Bel, W. Reartes; The homotopy analysis method in bifurcation analysis of delay differential

equations. International Journal of Bifurcation and Chaos, 22(8), 2012.

[3] A. Bel, W. Reartes; Isochronous bifurcations in second-order delay differential equations.
Electronic Journal of Differential Equations, 2014(162):1–12, 2014.

[4] J. Chavarriga, M. Sabatini; A survey of isochronous centers. Qualitative Theory of Dynamical

Systems, 1:1–70, 1999.
[5] A. Cima, F. Mañosas, J. Villadelprat; Isochronicity for several classes of hamiltonian systems.

Journal of Differential Equations, 157:373–413, 1999.

[6] G. F. D. Duff; Limit-cycles and rotated vector fields. Annals of Mathematics, 57(1):15–31,
1953.
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