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Abstract. From the one-dimensional consolidation of fine-grained soils with

threshold gradient, it can be derived a special type of Stefan problems where
the seepage front, because of the presence of this threshold gradient, exhibits

the features of a moving boundary. In this type of problems, in contrast with

the classical Stefan problem, the latent heat is considered to depend inversely
to the rate of change of the seepage front. In this paper, we study a one-

phase Stefan problem with a latent heat that depends on the rate of change

of the free boundary and on its position. The aim of this analysis is to extend
prior results, finding an analytical solution that recovers, by specifying some

parameters, the solutions that have already been examined in the literature

regarding Stefan problems with variable latent heat. Computational examples
are presented to examine the effect of this parameters on the free boundary.

1. Introduction

This article is a continuation of the work done by Zhou et al. in [18], where a
one-dimensional consolidation process with a threshold gradient is studied. This
problem is essentially a moving boundary problem where the seepage front, which
moves downward gradually, plays the role of the free boundary due to the presence
of this threshold gradient. This kind of problems are known in the literature as
Stefan problems. They have been widely studied in the last century due to the fact
that they arise in many significant areas of engineering, geoscience and industry
[1]-[6], [8, 9, 12, 16]. A review of the literature on this topic was presentend in [15].

The classical Stefan problem intends to describe the process of a material under-
going a phase change like, for example, the melting process on an ice bar. Finding
a solution to this problem consists in solving the heat-conduction equation in an
unknown region which has also to be determined, imposing an initial condition,
boundary conditions and the Stefan condition at the interface.

In this article, it will be considered the one-phase Stefan problem in a semi-
infinite material with variable latent heat. The reduction to a one-phase problem
is referred to the case in which it is assumed that one of the phases is at the
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phase-change temperature. The new mathematical feature of the problem to be
solved is concerned with the fact that the latent heat is assumed to depend on the
position of the free boundary as well as on its rate of change which is our novelty,
i.e L = L(s(t), ṡ(t)) (where s(t) is the free front). It is known that in the classical
formulation of the Stefan problem the latent heat is constant. The idea of a variable
latent heat is motivated by the following previous works:
• In [11] it was considered a Stefan problem with a latent heat given as a function

of the position of the interface L = ϕ(s(t)). Such assumption corresponds to the
practical case when the influence of phenomena such as surface tension, pressure
gradients and nonhomogenity of materials are taken into account. Sufficient con-
ditions that ensure the existence and uniqueness of solution were studied in this
paper.
• In [17] it was provided an analytical solution to the one-phase Stefan problem

with a latent heat defined as a linear function of the position, i.e L = γs(t) (with γ
a given constant). This hypothesis makes physical sense in the study of shoreline
movement in a sedimentary basin. The extension to the two-phase problem was
done in [13] .
• In [19] it was considered a one-phase Stefan problem, with temperature and

flux boundary condition at the fixed face, where the latent heat was not constant
but, rather a power function of the position, i.e. L = γsn(t) (with γ a given
constant and n an arbitrary non-negative integer). The extension to a non-integer
exponent was done in [20]. Moreover, in [2] the same problem with a convective
(Robin) condition at the fixed face was considered, obtaining the results of [19] and
[20] as a limit case.
• In [18] it was studied the one-dimensional consolidation problem with a thresh-

old gradient. This problem is reduced to a one-phase Stefan problem with a latent
heat expressed as L = γ

ṡ(t) . That is to say the latent heat depends on the rate of the
moving boundary. It must be noted that the case considered in [18] is not properly
a Stefan problem because the velocity of the moving boundary disappears, and it
has to be treated as a free boundary problem with implicit conditions [7, 14].

Based on the bibliography mentioned above it is quite natural from a mathe-
matical point of view to define a one-phase Stefan problem with a latent heat given
by L = γsβ(t)ṡδ(t) (with γ a given constant and β and δ arbitrary real constants).

It is worth pointing out that this formulation constitutes a mathematical gen-
eralization of the one-phase classical Stefan problem and the problems studied in
[17, 18, 20].

The aim of this article is to proof in Section 3 the existence and uniqueness
of the explicit solution of the problem given by equations (2.1)-(2.5) in Section
2. Moreover, in Section 4 we will consider some special cases and computational
examples for different values of the parameters involved in the problem (2.1)-(2.5).
The analytical solution that will be obtained in this work will recover in one formula,
by choosing different values for β and δ, the solutions obtained in: the classical
Stefan problem (β = δ = 0), the problem considered in [17] (β = 1, δ = 0), the
problems solved in [18, 20] (β ∈ R+

0 , δ = 0) and the problem studied in [18] (β = 0,
δ = −1).
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2. Formulation of the problem

This article is intended to study the one-dimensional one-phase Stefan problem
for the fusion of a semi-infinite material x > 0 in which it is involved a variable
latent heat. From a mathematical point of view the problem can be formulated
as follows: Find the free boundary s = s(t) (separation between phases) and the
temperature T = T (x, t) in the liquid portion of the material that satisfy the one-
dimensional heat conduction equation:

a2Txx(x, t) = Tt(x, t), 0 < x < s(t), (2.1)

subject to the boundary condition

T (0, t) = tα/2T0, t > 0 (2.2)

the temperature condition at the interface

T (s(t), t) = 0, t > 0 (2.3)

the Stefan condition at the interface

− kTx(s(t), t) = L(s(t), ṡ(t))ṡ(t), t > 0 (2.4)

and the initial condition
s(0) = 0. (2.5)

Here the parameters a2 (diffusion coefficient) and k > 0 (thermal conductivity) are
known constants. The phase change temperature is 0 and the imposed temperature
at the fixed face x = 0 is given by tα/2T0 > 0, where we assume that α is a non-
negative real exponent.

The remarkable feature of this problem is related to the condition at the interface
given by the Stefan condition (2.4), where the latent heat by unit of volume will be
defined by

L(s(t), ṡ(t)) = γs(t)β ṡ(t)δ, (2.6)
where γ is a given constant, and β and δ are arbitrary real constants.

3. Explicit solution of the problem

To solve problem (2.1)-(2.5), we use a similarity transformation to the one given
in [19, 20]:

T (x, t) = tα/2ϕ (η) , with η =
x

2a
√
t
. (3.1)

Computing the derivatives of T :

Txx(x, t) =
t(α/2−1)

4a2
ϕ′′(η), (3.2)

Tt(x, t) =
α

2
t(α/2−1)ϕ(η)− t(α/2−1)ϕ′(η)

η

2
, (3.3)

we obtain that the temperature given by (3.1) satisfies the heat equation (2.1) if
and only if ϕ is the solution of the ordinary differential equation

ϕ′′(η) + 2ηϕ′(η)− 2αϕ(η) = 0, (3.4)

whose general solution, in this case, can be written as (see the proof in the Appendix
A)

ϕ(η) = c1M
(
− α

2
,

1
2
,−η2

)
+ c2ηM

(
− α

2
+

1
2
,

3
2
,−η2

)
, (3.5)
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where c1 and c2 are arbitrary constants. The function M(a, b, z), called Kummer
function, is defined by

M(a, b, z) =
∞∑
s=0

(a)s
(b)ss!

zs, (3.6)

in which b cannot be a non-positive integer, and where (a)s is the Pochhammer
symbol defined by:

(a)s = a(a+ 1)(a+ 2) . . . (a+ s− 1), (a)0 = 1 (3.7)

All the properties of Kummer’s functions to be used in this paper can be found in
[10].

Therefore T (x, t) is given by

T (x, t) = tα/2
[
c1M

(
− α

2
,

1
2
,−η2

)
+ c2ηM

(
− α

2
+

1
2
,

3
2
,−η2

)]
. (3.8)

where c1 and c2 are constants that must be determined in order that T (x, t) satisfies
the conditions (2.2)-(2.4).

From equation (2.2), taking into account that M
(
−α2 ,

1
2 , 0
)

= 1, it is obtained

c1 = T0. (3.9)

From condition (2.3), we have ϕ
( s(t)

2a
√
t

)
= 0 for all t > 0. Then

s(t) = 2aξ
√
t, (3.10)

where ξ is a positive constant that has to be determined. Bearing in mind that the
free boundary s(t) is defined by (3.10), it can be deduced from (2.3) and (3.9) that

c2 =
−T0M

(
− α

2 ,
1
2 ,−ξ

2
)

ξM
(
− α

2 + 1
2 ,

3
2 ,−ξ2

) . (3.11)

Until know, s(t) and c2 are given in function of ξ. To determine ξ, we apply the
Stefan condition (2.4) which has not been considered yet. For that purpose, Tx(x, t)
must be calculated,

Tx(x, t) =
t(α−1)/2

a

[
c1αM

(
− α

2
+ 1,

3
2
,−η2

)
+
c2
2
M
(
− α

2
+

1
2
,

1
2
,−η2

)]
(3.12)

From the Stefan condition, taking into account (3.10) and (3.12), we obtain

− kt(α−1)/2

a

[
c1αM

(
− α

2
+ 1,

3
2
,−ξ2

)
+
c2
2
M
(
− α

2
+

1
2
,

1
2
,−ξ2

)]
= γ2βξβ+δ+1aβ+δ+1t(β−δ−1)/2.

(3.13)

As c1, c2 and ξ does not depend on t, (3.13) makes sense if and only if t(α−1)/2 =
t(β−δ−1)/2. This leads to

α = β − δ. (3.14)
Therefore, assuming that (3.14) holds, condition (2.4) leads to

kT0

2aξM
(
− α

2 + 1
2 ,

3
2 ,−ξ2

)[− 2αξ2M
(
− α

2
+ 1,

3
2
,−ξ2

)
M
(
− α

2
+

1
2
,

3
2
,−ξ2

)
+M

(
− α

2
,

1
2
,−ξ2

)
M
(
− α

2
+

1
2
,

1
2
,−ξ2

)]
= γ2βaβ+δ+1ξβ+δ+1.

(3.15)
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Taking note of the identity proved in [20],

e−ξ
2

= −2αξ2M
(
− α

2
+

1
2
,

3
2
,−ξ2

)
M
(
− α

2
+ 1,

3
2
,−ξ2

)
+M

(
− α

2
,

1
2
,−ξ2

)
M
(
− α

2
+

1
2
,

1
2
,−ξ2

)
,

and the relationship presented in [10],

M
(
− α

2
+

1
2
,

3
2
,−ξ2

)
= e−ξ

2
M
(α

2
+ 1,

3
2
, ξ2
)
, (3.16)

equation (3.15) becomes

kT0

γaβ+δ+22β+1

1
ξM
(
α
2 + 1, 3

2 , ξ
2
) = ξβ+δ+1. (3.17)

That is to say ξ is a positive solution of the equation

kT0

γaβ+δ+22β+1
f(z) = zβ+δ+1, z > 0, (3.18)

where

f(z) =
1

zM
(
α
2 + 1, 3

2 , z
2
) . (3.19)

Furthermore, from [10] knowing that

d

dz

[
zM

(α
2

+ 1,
3
2
, z2
)]

= M
(α

2
+ 1,

1
2
, z2
)

(3.20)

it follows that

f ′(z) = −f2(z)M
(α

2
+ 1,

1
2
, z2
)
. (3.21)

In this way, it can be said that the left-hand side of equation (3.18) given by
LE(z) = kT0

γaβ+δ+22β+1 f(z) satisfies

(LE)′(z) = − kT0

γaβ+δ+22β+1
f2(x)M

(α
2

+ 1,
1
2
, z2
)
< 0, (3.22)

LE(0) = +∞, (3.23)

LE(+∞) = 0, (3.24)

meanwhile the right hand side of (3.18) given by RI(z) = zβ+δ+1 satisfies

(RI)′(z) = (β + δ + 1)zβ+δ > 0, ( if β + δ + 1 ≥ 0) (3.25)

RI(0) = 0, (3.26)

RI(+∞) = +∞. (3.27)

Thus, from (3.22)-(3.24) and (3.25)-(3.27), one can conclude that equation (3.18)
has a unique positive solution ξ provided that β + δ + 1 ≥ 0.

It should be mentioned that because of (3.14), i.e α = β−δ, the fact that α ≥ 0,
and the request that β+ δ+ 1 ≥ 0, the results obtained in this paper are valid only
if β ≥ max (δ,−δ − 1).

The above arguments can be summarized in the following theorem.
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Theorem 3.1. Let β and δ be arbitrary constants satisfying β ≥ max (δ,−δ − 1).
Taking α = β−δ, there exists a unique solution of a similarity type for the one-phase
Stefan problem (2.1)-(2.5) given by

T (x, t) = tα/2
[
c1M

(
− α

2
,

1
2
,−η2

)
+ c2ηM

(
− α

2
+

1
2
,

3
2
,−η2

)]
, (3.28)

s(t) = 2aξ
√
t, (3.29)

where η = x
2a
√
t

and the constants c1 and c2 are given by

c1 = T0, c2 =
−T0M

(
− α

2 ,
1
2 ,−ξ

2
)

ξM
(
− α

2 + 1
2 ,

3
2 ,−ξ2

) , (3.30)

and the dimensionless coefficient ξ is obtained as the unique positive solution of the
equation

kT0

γaβ+δ+22β+1
f(z) = zβ+δ+1, z > 0, (3.31)

in which f is the real function defined by

f(z) =
1

zM
(
α
2 + 1, 3

2 , z
2
) , z > 0. (3.32)

4. Special cases and computational examples

This section is meant to highlight the problems that are generalized in this work
by showing that the solutions already reached in the literature can be obtained
from the one we present by just choosing the appropriate parameters β, δ and thus
α. For each case it it going to be done a computational example in order to see
how the parameter ξ, that characterizes the free boundary, varies with respect to
δ, for a fixed β.

Properties found in [10] and [20] will be helpful in the subsequent arguments:

M(0, b, z) = 1 (4.1)

M(a, b, z) = ezM(a, b,−z) (4.2)

M
(
− n

2
,

1
2
,−z2

)
= 2n−1Γ

(n
2

+ 1
)

[in erfc(z) + inerfc(−z)] (4.3)

zM
(
− n

2
+

1
2
,

3
2
,−z2

)
= 2n−2Γ

(n
2

+
1
2
)

[in erfc(−z)− in erfc(z)] (4.4)

with n ∈ N, and where in erfc(·) is the repeated integral of the complementary error
function defined by

i0 erfc(z) = erfc(z) = 1− erf(z), erf(z) =
2√
π

∫ z

0

e−u
2
du, (4.5)

in erfc(z) =
∫ +∞

z

in−1 erfc(t)dt (4.6)

Let us analyze the explicit solution achieved in each of the following problems:
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Classical one-phase Stefan problem. The latent heat is given by L = γ con-
stant, so the solution in this case can be recovered from the solution given by
(3.28)-(3.32) by taking β = 0, δ = 0 and thus α = 0. It must be pointed out that
in this case, using that

M
(
0,

1
2
,−η2

)
= 1, and M

(1
2
,

3
2
,−η2

)
=
√
π

2η
erf(η), (4.7)

we get a temperature with the form T (x, t) = c1 + c2 erf(η), like in the classical
literature [1, 3, 5, 6, 8, 12, 16].

Problem of the shoreline movement in a sedimentary basin [17, 13]. In
this problem it was considered a latent heat that varies linearly with the position,
that is to say L = γs(t). Therefore the solution can be obtained from Theorem
3.1 by choosing β = 1, δ = 0 and thus α = 1. Using (4.3), and the properties:

i erf(z) = e−z
2

√
π

+ z erfc(z) and Γ
(

3
2

)
=
√
π

2 , the temperature becomes:

T (x, t) = c1

[√
te−η

2
+
√
π

2
x erfc(η)

]
+
c2
2
x (4.8)

in accordance to the solution shown in [17] and [13].

Problem with a latent heat defined as a power function of the position
solved in [19] and [20]. In these papers, the latent heat L is defined as a power
function of the position, i.e, L = γs(t)β with γ constant and β a non-negative real
exponent. Choosing β ∈ R+

0 , δ = 0, and then α = β, the solutions given in [19] and
[20] are automatically recovered.

One-dimensional consolidation problem with threshold gradient [18]. In
this work, it is considered a one-dimensional consolidation problem with a threshold
gradient which can be transformed into a one-phase Stefan problem with a latent
heat that depends on the rate of change of the moving boundary. It is studied the
case in which L = γ

ṡ(t) . We remark here that this problem is not a Stefan problem
because the velocity of the free boundary does not appear but it is a free boundary
problem for the heat equation with implicit free boundary conditions [7, 14]. Fixing
β = 0, δ = −1 and so α = 1, the solution of this problem can be obtained from
Theorem 3.1 the temperature can be expressed as (4.8). In addition, taking into
account (4.2), it is obtained that

f(z) =
1

zM
(

3
2 ,

3
2 , z

2
) =

1
zez2M

(
0, 3

2 ,−z2
) =

e−z
2

z
(4.9)

in agreement to the solution in [18].

Once it has been compared the solution obtained in this paper with the solutions
presented in the literature, we are going to run some computational examples. To
solve the Stefan problem (2.1)-(2.5) it is necessary to solve equation (3.31) which
is equivalent to find the unique zero of the function

H(z) =
kT0

γaβ+δ+22β+1
f(z)− zβ+δ+1, z > 0, (4.10)

in which f is the function defined by (3.32).
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We are going to apply Newton’s method with the iteration formula

zk = zk−1 −
H(zk−1)
H ′(zk−1)

. (4.11)

to solve (4.10). For the computational examples we consider the corresponding
thermal parameters for the water in liquid state i.e., k = 0.58 [W/(m◦C)] and a2 =
1.39×10−7 [m2/s]. Without loss of generality we assume γ = 1. Newton’s Method
will be implemented using Matlab software to find the unique positive solution
of equation (3.31). It is worth pointing out that in this programming language,
the Kummer function M(a, b, z) is represented by the ‘hypergeom’ command. The
stopping criterion to be used here is the boundedness of the absolute error |zk −
zk−1| < 10−15.

Figure 1 shows the variation of ξ (solution of (4.10)) with respect to δ, choosing
different values for the coefficient that characterizes the temperature at the fixed
face (T0 = 1, 5 or 10 [◦C/sα/2]) and fixing β = 0.

Looking at Figure 1, it is obvious that solution of ξ for the Classical Stefan
problem is obtained for δ = 0. For δ = 1 the solution is given by [17], and for any
other δ ∈ R+

0 the solution is given by [19] and [20].

0 1 2 4 6 8 10 12 14 16 18 20

4

5

6

7

8

9

β

ξ

Fig 1: Variation of ξ with β for δ=0

 

 

T
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T
0
=5

T
0
=10

Figure 1. Variation of ξ with δ, for β = 0 and T0 = 1, 5, 10.

Figure 2, shows the variation of ξ with respect to β (−1 ≤ β ≤ 1), choosing
different values for the coefficient that characterizes the temperature at the fixed
face (T0 = 1, 5 or 10 [◦C/sα/2]) and fixing δ = 0. The case for β = −1 corresponds
to the solution of the problem analyzed in [18].

The results obtained indicate that ξ increases with β increasing and δ = 0, and
the same happens when β = 0 is fixed and δ varies between −1 and 1. Moreover, it
can be assured that the greater the value of T0, the higher is the value obtained for
ξ (parameter that characterizes the free boundary) implying that the fusion process
occurs faster.



EJDE-2018/10 ONE-PHASE STEFAN PROBLEM 9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

δ

ξ

Fig2: Variation of ξ with δ for β=0

 

 

T
0
=1

T
0
=5

T
0
=10

Figure 2. Variation of ξ with β, for δ = 0 and T0 = 1, 5, 10.

5. Appendix

We prove that the general solution of the ordinary differential equation

ϕ′′(η) + 2ηϕ′(η)− 2αϕ(η) = 0. (5.1)

is

ϕ(η) = c1M
(
− α

2
,

1
2
,−η2

)
+ c2ηM

(
− α

2
+

1
2
,

3
2
,−η2

)
, (5.2)

regardless of α being an integer, or a non-integer non-negative number, where c1
and c2 are arbitrary constants.

α non-negative, non-integer. Introducing the new variable w(η) = −η2 as in
[20] and defining g(w) = ϕ(η(w)) we obtain that (5.1) is equivalent to the Kummer’s
differential equation

wg′′(w) + g′(w)
(1

2
− w

)
+
α

2
f(w) = 0. (5.3)

whose general solution, according to [10], is

g(w) = ĉ1M
(
− α

2
,

1
2
, w
)

+ ĉ2U
(
− α

2
,

1
2
, w
)
, (5.4)

where ĉ1 and ĉ2 are arbitrary constants. Because U can be defined as

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b, z) +

Γ(b− 1)
Γ(a)

z1−bM(a− b+ 1, 2− b, z). (5.5)

we obtained that the general solution of (5.3) is

g(w) = c1M
(
− α

2
,

1
2
, w
)

+ c2w
1/2M

(
− α

2
+

1
2
,

3
2
, w
)
, (5.6)

where c1 and c2 are arbitrary constants, arriving in this way to a ϕ solution of (5.1)
defined by (5.2).
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α = n non-negative integer. According to [19], the general solution of (5.1) is

ϕ(η) = ĉ1i
n erfc(η) + ĉ2i

n erfc(−η). (5.7)

where in erfc(·) is the family of the repeated integrals of the complementary error
function.

Let c1 and c2 be arbitrary constants. Taking:

ĉ1 = c12n−1Γ
(n

2
+ 1
)
− c22n−2Γ

(n
2

+
1
2
)

(5.8)

ĉ2 = c12n−1Γ
(n

2
+ 1
)

+ c22n−2Γ
(n

2
+

1
2
)

(5.9)

in (5.7) leads to

ϕ(η) =
[
c12n−1Γ

(n
2

+ 1
)
− c22n−2Γ

(n
2

+
1
2
)]
in erfc(η)

+
[
c12n−1Γ

(n
2

+ 1
)

+ c22n−2Γ
(n

2
+

1
2
)]
in erfc(−η),

= c12n−1Γ
(n

2
+ 1
)[
in erfc(η) + in erfc(−η)

]
+ c22n−2Γ

(n
2

+
1
2
)[
in erfc(−η)− in erfc(η)

]
,

= c1M
(
− n

2
,

1
2
,−η2

)
+ c2ηM

(
− n

2
+

1
2
,

3
2
,−η2

)
.

(5.10)

arriving to a solution of (5.1) given by a ϕ defined as (5.2), using the properties
stated in (4.3)-(4.4).

Nomenclature
a2 Diffusivity coefficient (a2 = k/ρc),[m2/s]
c Specific heat capacity, [m2/◦Cs2]
k Thermal conductivity, [W/(m◦C)]
s Position of the free front, [m]
t Time, [s]
T Temperature, [◦C]
T0 Coefficient that characterizes the temperature at the

fixed face, [◦C/sα/2]
x Spatial coordinate, [m]
α Power of the time that characterizes the temperature at the fixed

boundary, dimensionless
β Power of the position that characterizes the latent heat per unit

of volume, dimensionless
δ Power of the velocity that characterizes the latent heat per unit

of volume, dimensionless
γ Coefficient that characterizes the latent heat per unit of volume,

[sδ−2kg/(mβ+δ+1)]
ρ Density, [kg/m3]
ξ Coefficient that characterizes the free interface, dimensionless
η Similarity variable in expression (3.1), dimensionless.

Conclusions. In this work we analyzed a Stefan problem with a latent heat that
depends on the position of the free boundary as well as on its rate of change.
An explicit solution has been found using the similarity technique and the theory



EJDE-2018/10 ONE-PHASE STEFAN PROBLEM 11

of Kummer functions. This exact solution gathers in one formula the solutions
obtained in the previous papers [17, 18, 19, 20], constituting a generalization of
them. The exact solution is worth finding it, since it can be used to provide a
benchmark for verifying the accuracy of numerical methods that approximate the
solution of Stefan problems.

We have also applied Newton’s method to the problem (2.1)-(2.5) to estimate
the parameter ξ that characterizes the free front numerically. The solutions given
in the literature have also been recovered. In addition it was observed that this
parameter increases with respect to the parameter β, fixing δ = 0 and vice versa.
Also, it can be noted that if the coefficient that characterizes the initial temperature
T0 becomes greater, ξ also does, meaning that the phase-change happens quicker,
validating mathematically what it seems obvious from the physical point of view.
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Depto. Matemática - CONICET, FCE, Univ. Austral, Paraguay 1950, S2000FZF Rosario,

Argentina
E-mail address: JBollati@austral.edu.ar

Domingo A. Tarzia
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