Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 09, pp. 1–13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NONEXISTENCE OF GLOBAL SOLUTIONS TO THE SYSTEM OF SEMILINEAR PARABOLIC EQUATIONS WITH BIHARMONIC OPERATOR AND SINGULAR POTENTIAL

SHIRMAYIL BAGIROV

Communicated by Ludmila S. Pulkina

ABSTRACT. In the domain $Q'_R=\{x:|x|>R\}\times (0,+\infty)$ we consider the problem

$$\begin{split} \frac{\partial u_1}{\partial t} + \Delta^2 u_1 - \frac{C_1}{|x|^4} u_1 &= |x|^{\sigma_1} |u_2|^{q_1}, \quad u_1|_{t=0} = u_{10}(x) \ge 0, \\ \frac{\partial u_2}{\partial t} + \Delta^2 u_2 - \frac{C_2}{|x|^4} u_2 &= |x|^{\sigma_2} |u_1|^{q_2}, \quad u_2|_{t=0} = u_{20}(x) \ge 0, \\ \int_0^\infty \int_{\partial B_R} u_i \, ds \, dt \ge 0, \quad \int_0^\infty \int_{\partial B_R} \Delta u_i \, ds \, dt \le 0, \end{split}$$

where $\sigma_i \in \mathbb{R}$, $q_i > 1$, $0 \leq C_i < (\frac{n(n-4)}{4})^2$, i = 1, 2. Sufficient condition for the nonexistence of global solutions is obtained. The proof is based on the method of test functions.

1. INTRODUCTION

Let us introduce the following notation: $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, n > 4, $r = |x| = \sqrt{x_1^2 + \cdots + x_n^2}$, $B_R = \{x; |x| < R\}$, $B'_R = \{x; |x| > R\}$, $B_{R_1,R_2} = \{x; R_1 < |x| < R_2\}$, $Q_R = B_R \times (0; +\infty)$, $Q'_R = B'_R \times (0; +\infty)$, $\partial B_R = \{x; |x| = R\}$, $\nabla u = (\frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_n})$, $C_{x,t}^{4,1}(Q'_R)$ is the set of functions that are four times continuously differentiable with respect to x and continuously differentiable with respect to t in Q'_R .

In the domain Q'_R we consider the system of equations

$$\frac{\partial u_1}{\partial t} + \Delta^2 u_1 - \frac{C_1}{|x|^4} u_1 = |x|^{\sigma_1} |u_2|^{q_1}
\frac{\partial u_2}{\partial t} + \Delta^2 u_2 - \frac{C_2}{|x|^4} u_2 = |x|^{\sigma_2} |u_1|^{q_2},$$
(1.1)

with the initial condition

$$u_i|_{t=0} = u_{i0}(x) \ge 0, \tag{1.2}$$

²⁰¹⁰ Mathematics Subject Classification. 35A01, 35B33, 35K52, 35K91.

Key words and phrases. System of semilinear parabolic equation; biharmonic operator; global solution; critical exponent; method of test functions.

^{©2018} Texas State University.

Submitted November 12, 2017. Published January 6, 2018.

and the conditions

$$\int_{0}^{\infty} \int_{\partial B_{R}} u_{i} \, dx \, dt \ge 0, \quad \int_{0}^{\infty} \int_{\partial B_{R}} \Delta u_{i} \, dx \, dt \le 0, \tag{1.3}$$

where n > 4, $q_i > 1$, $\sigma_i \in \mathbb{R}$, $0 \le C_i < (\frac{n(n-4)}{4})^2$, $u_{i0}(x) \in C(B'_R)$, $\Delta^2 u = \Delta(\Delta u)$, $\Delta u = \sum_{k=1}^n \frac{\partial^2 u}{\partial x_k^2}$, i = 1, 2.

We will study the nonexistence of a global solution of problem (1.1)-(1.3). By a global solution of problem (1.1)-(1.3) we understand a pair of functions (u_1, u_2) such that $u_1(x,t), u_2(x,t) \in C^{4,1}_{x,t}(Q'_R) \cap C^{3,0}_{x,t}(\overline{B'_R} \times (0; +\infty)) \cap C(B'_R \times [0; +\infty))$ and satisfy the system (1.1) at every point of Q'_R , the initial condition (1.2) and conditions (1.3).

The problems of nonexistence of global solutions for differential equations and inequalities play a key role in theory and applications. Therefore, they have a constant attention of mathematicians, and a great number of works were devoted to them [1, 2, 3, 4, 9, 12, 13, 16, 21, 22]. A survey of such results can be found in the monograph [17].

In the classical paper [7], Fujita considered the following initial value problem

$$\frac{\partial u}{\partial t} = \Delta u + u^q, \quad (x,t) \in \mathbb{R}^n \times (0,+\infty),$$

$$u|_{t=0} = u_0(x), \quad x \in \mathbb{R}^n,$$
(1.4)

and proved that positive global solutions of problem (1.4) do not exist for $1 < q < q^* = 1 + \frac{2}{n}$. If $q > q^*$, then there are positive global solutions for small $u_0(x)$. The case $q = q^*$ was investigated in [10, 11] and it was proved that in this case there are no positive global solutions. Pinsky [19] showed the existence and nonexistence of global solutions in $\mathbb{R}^n \times (0, +\infty)$ to the equation $u_t - \Delta u = a(x)u^q$, where q > 1 and a(x) behaves like $|x|^{\sigma}$ with $\sigma > -2$ for large |x|. The results of Fujita's work [7] aroused great interest in the problem of the nonexistence of global solutions, and they were expanded in several directions. For example, various bounded and unbounded domains were considered instead of \mathbb{R}^n , as well as more general operators than the Laplace operator including different type nonlinear operators were considered (for more comprehensive treatment of such problems, see [14, 17, 20] and references there in).

Another may of extending of Fujita's result is to investigate a system of Fujitatype reaction-diffusion equations, and this is what we do here. For example, many authors have investigated the existence and nonexistence of global and local solutions to the initial value problem

$$\frac{\partial u}{\partial t} = \alpha_1 \Delta u + t^{k_1} |x|^{\sigma_1} v^{q_1}, \quad u|_{t=0} = u_0(x) \ge 0
\frac{\partial v}{\partial t} = \alpha_2 \Delta v + t^{k_2} |x|^{\sigma_2} u^{q_2}, \quad v|_{t=0} = v_0(x) \ge 0.$$
(1.5)

Escobedo and Herrero [5] considered problem (1.5) on $\mathbb{R}^n \times (0, +\infty)$ with $\alpha_i = 1, k_i = 0, \sigma_i = 0, q_i > 0, q_1q_2 > 1, i = 1, 2$ and proved that if $\max(\frac{q_1+1}{q_1q_2-1}, \frac{q_2+1}{q_1q_2-1}) \ge \frac{n}{2}$, then for any nontrivial initial functions there are no nonnegative global solutions. Fila, Levine and Uda [6] considered problem(1.5) on $\mathbb{R}^n \times (0, +\infty)$ with $0 \le \alpha_1 \le 1, \alpha_2 = 1, k_i = 0, \sigma_i = 0, q_i \ge 0, q_1q_2 > 1, i = 1, 2$ and studied the existence of nonnegative global and non-global solutions. In the case $\alpha_i = 1, k_i = 0, i = 1, 2, 2$

Mochizuki and Huang [18] proved the existence and nonexistence theorems for global solutions and studied asymptotic behavior of the global solution of problem (1.5) on $\mathbb{R}^n \times (0, +\infty)$. Caristi [8] considered problem (1.5) for $k_i, \sigma_i \in \mathbb{R}, q_1, q_2 >$ 1 on $\mathbb{R}^n \times (0, +\infty)$, and nonexistence of global solution is studied. Levine [15] studied nonnegative solutions of the initial boundary value problem for the system of equations in (1.5) for $\alpha_i = 1, k_i = 0, \sigma_i = 0, i = 1, 2$ in domain $D \times (0, +\infty)$, where D is a cone or the exterior of a bounded domain. In the present paper we consider a system of semilinear parabolic equations with biharmonic operator and singular potential in the exterior domain Q'_R . Using the technique of test functions worked out by Mitidieri and Pohozaev in [16],[17], we find a sufficient condition for nonexistence of global nontrivial solution.

2. Main result and its proof

The avoid complications, we introduce the following denotation:

$$\begin{split} D_i &= \sqrt{(n-2)^2 + C_i}, \quad \lambda_i^{\pm} = \sqrt{\left(\frac{n-2}{2}\right)^2 + 1 \pm D_i}, \\ \mu_i &= \frac{1}{2} \left(1 + \frac{D_i - \lambda_i^+}{\lambda_i^-}\right), \quad \overline{\mu}_i = \frac{1}{2} \left(1 - \frac{D_i - \lambda_i^+}{\lambda_i^-}\right), \\ \alpha_1 &= \frac{\lambda_1^- + \sigma_1 + \frac{n+4}{2}}{\lambda_2^- + \frac{n+4}{2}}, \quad \alpha_2 = \frac{\lambda_2^- + \sigma_2 + \frac{n+4}{2}}{\lambda_1^- + \frac{n+4}{2}}, \\ \beta_1 &= \frac{\lambda_1^- + \sigma_1 + 4 + \frac{n+4}{2}}{\lambda_2^- + \frac{n-4}{2}}, \quad \beta_2 = \frac{\lambda_2^- + \sigma_2 + 4 + \frac{n+4}{2}}{\lambda_1^- + \frac{n-4}{2}}, \\ \theta_1 &= \frac{\sigma_1 + 4 + q_1(\sigma_2 + 4)}{q_1q_2 - 1} - \lambda_1^- - \frac{n+4}{2}, \\ \theta_2 &= \frac{\sigma_2 + 4 + q_2(\sigma_1 + 4)}{q_1q_2 - 1} - \lambda_2^- - \frac{n+4}{2}, \quad i = 1, 2. \end{split}$$

Let us consider the functions

$$\xi_i(x) = \mu_i |x|^{-\frac{n-4}{2} + \lambda_i^-} + \overline{\mu}_i |x|^{-\frac{n-4}{2} - \lambda_i^-} - |x|^{-\frac{n-4}{2} - \lambda_i^+}, \quad i = 1, 2.$$

It is easy to verify that $\xi_i(x)$ are the solution of the equation

$$\Delta^2 u - \frac{C_i}{|x|^4} u = 0 \tag{2.1}$$

in $\mathbb{R}^n \setminus \{0\}$ and for |x| = 1,

$$\xi_i = 0, \quad \frac{\partial \xi_i}{\partial r} = D_i \ge 0, \quad \Delta \xi_i = 0, \quad \frac{\partial (\Delta \xi_i)}{\partial r} \le 0.$$
 (2.2)

The main result of this paper reads as follows.

Theorem 2.1. Assume that n > 4, $\beta_i > 1$, $0 \le C_i < (\frac{n(n-4)}{4})^2$ and $1 < q_i \le \beta_i$, $\max(\theta_1, \theta_2) \ge 0$, $(q_1, q_2) \ne (\alpha_1, \beta_2)$ in case $\alpha_1 > 1$, $(q_1, q_2) \ne (\beta_1, \alpha_2)$ in case $\alpha_2 > 1$, i = 1, 2. Then there is no nontrivial global solution of (1.1)-(1.3). S. BAGIROV

Proof. For simplicity we take R = 1. Assume that $(u_1(x,t), u_2(x,t))$ is a nontrivial solution of (1.1)-(1.3). Let us consider the following two functions:

$$\varphi(x) = \begin{cases} 1, & \text{for } 1 \le |x| \le \rho, \\ (2 - \frac{|x|}{\rho})^{\kappa}, & \text{for } \rho \le |x| \le 2\rho \\ 0, & \text{for } |x| \ge 2\rho, \end{cases}$$
$$T_{\rho}(t) = \begin{cases} 1, & \text{for } 0 \le t \le \rho^{4}, \\ (2 - \rho^{-4}t)^{\gamma}, & \text{for } \rho^{4} \le t \le 2\rho^{4} \\ 0, & \text{for } t \ge 2\rho^{4}, \end{cases}$$

where κ, γ are large positive, and κ is such number that for $|x| = 2\rho$,

$$\varphi = \frac{\partial \varphi}{\partial r} = \frac{\partial^2 \varphi}{\partial r^2} = \frac{\partial^3 \varphi}{\partial r^3} = 0.$$
 (2.3)

We multiply the first equation by $\psi_1(x,t) = T_\rho(t)\xi_1(x)\varphi(x)$, the second by $\psi_2(x,t) = T_\rho(t)\xi_2(x)\varphi(x)$ and integrate over Q'_1 . After integration by parts, we obtain the following relations

$$\begin{aligned} \iint_{Q'_{1}} |x|^{\sigma_{i}} |u_{j}|^{q_{i}} T_{\rho}(t)\xi_{i}(x)\varphi(x) dx dt \\ &= -\iint_{Q'_{1}} u_{i}\xi_{i}\varphi \frac{dT_{\rho}}{dt} dx dt + \iint_{Q'_{1}} u_{i}T_{\rho}\Delta^{2}(\xi_{i}\varphi) dx dt \\ &-\iint_{Q'_{1}} \frac{C_{i}}{|x|^{4}} u_{i}T_{\rho}\xi_{i}\varphi dx dt - \int_{B'_{1}} u_{i0}(x)\xi_{i}(x)\varphi(x)dx \\ &+ \int_{0}^{\infty} T_{\rho}(t) dt \Big[\int_{\partial B_{1,2\rho}} \frac{\partial(\Delta u_{i})}{\partial\nu} \xi_{i}\varphi ds - \int_{\partial B_{1,2\rho}} \Delta u_{i} \frac{\partial(\xi_{i}\varphi)}{\partial\nu} ds \\ &+ \int_{\partial B_{1,2\rho}} \frac{\partial u_{i}}{\partial\nu} \Delta(\xi_{i}\varphi) ds - \int_{\partial B_{1,2\rho}} u_{i} \frac{\partial}{\partial\nu} \Delta(\xi_{i}\varphi) ds \Big], \end{aligned}$$

$$(2.4)$$

where ν is a unit vector of external normal to $\partial B_{1,2}\rho$, $i, j = 1, 2, i \neq j$.

In order not to be repeated, in what follows, we will take into account that $i, j = 1, 2, i \neq j$ and in all expressions will write the same constant C, but in fact, in each expression C indicates different constants.

Using (2.2), (2.3), we estimate the integrals in square brackets in (2.4).

$$\int_{\partial B_{1,2\rho}} \frac{\partial (\Delta u_i)}{\partial \nu} \xi_i \varphi ds = 0,$$

$$- \int_{\partial B_{1,2\rho}} \Delta u_i \frac{\partial (\xi_i \varphi)}{\partial \nu} ds = - \int_{|x|=1} \Delta u_i \frac{\partial (\xi_i \varphi)}{\partial \nu} ds$$

$$= \int_{|x|=1} \Delta u_i (\frac{\partial \xi_i}{\partial r} \varphi + \xi_i \frac{\partial \varphi}{\partial r}) ds$$

$$= \int_{|x|=1} \Delta u_i \frac{\partial \xi_i}{\partial r} ds \le 0,$$

$$\begin{split} \int_{\partial B_{1,2\rho}} \frac{\partial u_i}{\partial \nu} \Delta(\xi_i \varphi) ds &= \int_{\partial B_{1,2\rho}} \frac{\partial u_i}{\partial \nu} (\Delta \xi_i \varphi + 2(\nabla \xi_i, \nabla \varphi) + \xi_i \Delta \varphi) ds \\ &= -\int_{|x|=1} \frac{\partial u_i}{\partial r} \Delta \xi_i ds = 0, \\ -\int_{\partial B_{1,2\rho}} u_i \frac{\partial}{\partial \nu} (\Delta(\xi_i \varphi)) ds &= -\int_{|x|=1} u_i \frac{\partial}{\partial \nu} (\Delta \xi_i \varphi) ds \\ &= \int_{|x|=1} u_i \frac{\partial (\Delta \xi_i)}{\partial r} ds \leq 0. \end{split}$$

Since

$$\int_{B_1'} u_{i0}(x)\xi_i(x)\varphi(x)dx \ge 0, \quad \text{and} \quad \int_0^\infty T_\rho(t)dt \ge 0,$$

taking into account that ξ_i is the solution of n (2.1) and using the above estimates, from (2.4) we obtain

$$\begin{aligned} \iint_{Q_{1}'} |x|^{\sigma_{i}} |u_{j}|^{q_{i}} T_{\rho}(t)\xi_{i}(x)\varphi(x) \, dx \, dt \\ &\leq -\iint_{Q_{1}'} u_{i}\xi_{i}\varphi \frac{dT\rho}{dt} \, dx \, dt + \iint_{Q_{1}'} u_{i}T_{\rho}\Delta^{2}(\xi_{i}\varphi) \, dx \, dt - \iint_{Q_{1}'} \frac{C_{i}}{|x|^{4}} u_{i}T_{\rho}\xi_{i}\varphi \, dx \, dt \\ &= -\iint_{Q_{1}'} u_{i}\xi_{i}\varphi \frac{dT\rho}{dt} \, dx \, dt + \iint_{Q_{1}'} u_{i}T_{\rho}\varphi(\Delta^{2}\xi_{i} - \frac{C_{i}}{|x|^{4}}\xi_{i}) \, dx \, dt \\ &+ \iint_{Q_{1}'} u_{i}T_{\rho} \Big[4(\nabla(\Delta\xi_{i}), \nabla\varphi) + 4(\nabla\xi_{i}, \nabla(\Delta\varphi)) + 2\Delta\xi_{i}\Delta\varphi \\ &+ 4\sum_{k,m=1}^{n} \frac{\partial^{2}\xi_{i}}{\partial x_{k}\partial x_{m}} \frac{\partial^{2}\varphi}{\partial x_{k}\partial x_{m}} \Big] \, dx \, dt \\ &\leq -\int_{\rho^{4}}^{2\rho^{4}} \int_{B_{1}'} u_{i}\xi_{i}\varphi \frac{dT_{\rho}}{dt} \, dx \, dt + \int_{0}^{2\rho^{4}} \int_{B_{\rho,2\rho}} u_{i}T_{\rho}H_{i}(\xi_{i},\varphi) \, dx \, dt, \end{aligned}$$

$$(2.5)$$

where $H_i(\xi_i, \varphi)$ denotes the expression in the square brackets, i.e.

$$H_{i}(\xi_{i},\varphi) = 4(\nabla(\Delta\xi_{i}),\nabla\varphi) + 4(\nabla\xi_{i},\nabla(\Delta\varphi)) + 2\Delta\xi_{i}\Delta\varphi + 4\sum_{k,m=1}^{n} \frac{\partial^{2}\xi_{i}}{\partial x_{k}\partial x_{m}} \frac{\partial^{2}\varphi}{\partial x_{k}\partial x_{m}}.$$
(2.6)

Using the Holder's inequality, we estimate the right-hand side of (2.5). We can write:

$$\begin{split} &\iint_{Q'_{1}} |x|^{\sigma_{i}} |u_{j}|^{q_{i}} T_{\rho} \xi_{i} \varphi \, dx \, dt \\ &\leq \Big(\int_{\rho^{4}}^{2\rho^{4}} \int_{B'_{1}} |x|^{\sigma_{j}} |u_{i}|^{q_{j}} T_{\rho} \xi_{j} \varphi \, dx \, dt \Big)^{1/q_{j}} \\ & \qquad \times \Big(\int_{\rho^{4}}^{2\rho^{4}} \int_{B'_{1}} \frac{|\frac{dT_{\rho}}{dt}|^{q'_{j}} \xi_{i}^{q'_{j}} \varphi}{T_{\rho}^{q'_{j}-1} |x|^{\sigma_{j}(q'_{j}-1)} \xi_{j}^{q'_{j}-1}} \, dx \, dt \Big)^{1/q'_{j}} \end{split}$$

S. BAGIROV

EJDE-2018/09

$$+ \left(\int_{0}^{2\rho^{4}} \int_{B_{\rho,2\rho}} |x|^{\sigma_{j}} |u_{i}|^{q_{j}} T_{\rho} \xi_{j} \varphi \, dx \, dt\right)^{1/q_{j}} \\ \times \left(\int_{0}^{2\rho^{4}} \int_{B_{\rho,2\rho}} \frac{|H_{i}(\xi_{i},\varphi)|^{q'_{j}} T_{\rho}}{|x|^{\sigma_{j}(q'_{j}-1)} \xi_{j}^{q'_{j}-1} \varphi^{q'_{j}-1}} \, dx \, dt\right)^{1/q'_{j}},$$

where $\frac{1}{q_j} + \frac{1}{q'_j} = 1$. Let us denote the second integral in the first addend above by I_i , and the second integral in the second addend by J_i . If we write separately, then from (2.6) we obtain the following:

$$\int_{Q_{1}^{\prime}} \int |x|^{\sigma_{1}} |u_{2}|^{q_{1}} T_{\rho} \xi_{1} \varphi \, dx \, dt \qquad (2.7)$$

$$\leq \left(\int_{Q_{1}^{\prime}} \int |x|^{\sigma_{2}} |u_{1}|^{q_{2}} T_{\rho} \xi_{2} \varphi \, dx \, dt \right)^{1/q_{2}} \left[I_{1}^{1/q_{2}^{\prime}} + J_{1}^{1/q_{2}^{\prime}} \right], \qquad (2.8)$$

$$\leq \left(\int_{Q_{1}^{\prime}} \int |x|^{\sigma_{1}} |u_{2}|^{q_{1}} \rho \xi_{1} \varphi \, dx \, dt \right)^{1/q_{1}} \left[I_{2}^{1/q_{1}^{\prime}} + J_{2}^{\frac{1}{q_{1}^{\prime}}} \right].$$

Using (2.6), from these inequalities we obtain

$$\begin{split} &\iint_{Q_{1}'} |x|^{\sigma_{1}} |u_{2}|^{q_{1}} T_{\rho} \xi_{1} \varphi \, dx \, dt \\ &\leq \left[\left(\int_{\rho^{4}}^{2\rho^{4}} \int_{B_{1}'} |x|^{\sigma_{1}} |u_{2}|^{q_{1}} T_{\rho} \xi_{1} \varphi \, dx \, dt \right)^{1/q_{1}} I_{2}^{1/q_{1}'} \\ &\quad + \left(\int_{0}^{2\rho^{4}} \int_{B_{\rho,2\rho}} |x|^{\sigma_{1}} |u_{2}|^{q_{1}} T_{\rho} \xi_{1} \varphi \, dx \, dt \right)^{1/q_{1}} J_{2}^{1/q_{1}'} \right]^{1/q_{2}} \left[I_{1}^{1/q_{2}'} + J_{1}^{1/q_{2}'} \right], \\ &\iint_{Q_{1}'} |x|^{\sigma_{2}} |u_{1}|^{q_{2}} T_{\rho} \xi_{2} \varphi \, dx \, dt \\ &\leq \left[\left(\int_{\rho^{4}}^{2\rho^{4}} \int_{B_{1}'} |x|^{\sigma_{2}} |u_{1}|^{q_{2}} T_{\rho} \xi_{2} \varphi \, dx \, dt \right)^{1/q_{2}} I_{1}^{1/q_{2}'} \\ &\quad + \left(\int_{0}^{2\rho^{4}} \int_{B_{\rho,2\rho}} |x|^{\sigma_{2}} |u_{1}|^{q_{2}} T_{\rho} \xi_{2} \varphi \, dx \, dt \right)^{1/q_{2}} J_{1}^{1/q_{2}'} \right]^{1/q_{1}} \left[I_{2}^{1/q_{1}'} + J_{2}^{1/q_{1}'} \right]. \end{split}$$

Substituting (2.8) in (2.7) and (2.7) in (2.8), we obtain

$$\begin{split} &\int_{Q_1'} \int |x|^{\sigma_1} |u_2|^{q_1} T_{\rho} \xi_1 \varphi \, dx \, dt \\ &\leq \Big(\int_{Q_1'} \int |x|^{\sigma_1} |u_2|^{q_1} T_{\rho} \xi_1 \varphi \, dx \, dt \Big)^{\frac{1}{q_1 q_2}} \Big[I_1^{1/q_2'} + J_1^{1/q_2'} \Big] \Big[I_2^{1/q_1'} + J_2^{1/q_1'} \Big]^{1/q_2}, \\ &\int_{Q_1'} \int |x|^{\sigma_2} |u_1|^{q_2} T_{\rho} \xi_2 \varphi \, dx \, dt \\ &\leq \Big(\int_{Q_1'} \int |x|^{\sigma_2} |u_1|^{q_2} T_{\rho} \xi_2 \varphi \, dx \, dt \Big)^{\frac{1}{q_1 q_2}} \Big[I_2^{1/q_1'} + J_2^{1/q_1'} \Big] \Big[I_1^{1/q_2'} + J_1^{1/q_2'} \Big]^{1/q_1}. \end{split}$$

Hence

$$\int_{Q_{1}'} \int |x|^{\sigma_{1}} |u_{2}|^{q_{1}} T_{\rho} \xi_{1} \varphi \, dx \, dt \qquad (2.11)$$

$$\leq \left[I_{1}^{1/q_{2}'} + J_{1}^{1/q_{2}'} \right]^{\frac{q_{1}q_{2}}{q_{1}q_{2}-1}} \left[I_{2}^{\frac{1}{q_{1}'}} + J_{2}^{1/q_{1}'} \right]^{\frac{q_{1}}{q_{1}q_{2}-1}}, \qquad (2.12)$$

$$\leq \left[I_{2}^{1/q_{1}'} + J_{2}^{1/q_{1}'} \right]^{\frac{q_{1}q_{2}}{q_{1}q_{2}-1}} \left[I_{1}^{1/q_{2}'} + J_{1}^{1/q_{2}'} \right]^{\frac{q_{2}}{q_{1}q_{2}-1}}.$$

Making the substitutions

$$t = \rho^{4}\tau, \quad r = \rho s, \quad x = \rho y, \quad \widetilde{T}(\tau) = T_{\rho}(\rho^{4}\tau),$$

$$\widetilde{\xi}_{i}(y) = \xi_{i}(\rho y), \quad \widetilde{\varphi}(y) = \varphi(\rho y),$$

(2.13)

we estimate the right-hand sides of (2.11) and (2.12).

First, we estimate the integrals I_i , i = 1, 2.

$$\begin{split} I_{i} &= \int_{\rho^{4}}^{2\rho^{4}} \int_{B_{1}^{\prime}} \frac{|\frac{dT\rho}{dt}|^{q_{j}^{\prime}} \xi_{i}^{q_{j}^{\prime}} \varphi}{T_{\rho}^{q_{j}^{\prime}-1} |x|^{\sigma_{j}(q_{j}^{\prime}-1)} \xi_{j}^{q_{j}^{\prime}-1}} \, dx \, dt \\ &\leq \int_{\rho^{4}}^{2\rho^{4}} \frac{|\frac{dT\rho}{dt}|^{q_{j}^{\prime}}}{T_{\rho}^{q_{j}^{\prime}-1}} dt \int_{B_{1}^{\prime}} \frac{\xi_{i}^{q_{j}^{\prime}}}{|x|^{\sigma_{j}(q_{j}^{\prime}-1)} \xi_{j}^{q_{j}^{\prime}-1}} dx \\ &\leq C\rho^{-4(q_{j}^{\prime}-1)} \int_{1}^{2} \frac{|\frac{d\widetilde{T}}{d\tau}|^{q_{j}^{\prime}}}{\widetilde{T}^{q_{j}^{\prime}-1}} d\tau \int_{B_{1}^{\prime}} \frac{\xi_{i}^{q_{j}^{\prime}}}{|x|^{\sigma_{j}(q_{j}^{\prime}-1)} \xi_{j}^{q_{j}^{\prime}-1}} dx \\ &\leq C\rho^{-4q_{j}^{\prime}/q_{j}} \widetilde{I}_{j}(\widetilde{T}) \int_{B_{1}^{\prime}} \frac{\xi_{i}^{q_{j}^{\prime}}}{|x|^{\sigma_{j}(q_{j}^{\prime}-1)} \xi_{j}^{q_{j}^{\prime}-1}} dx, \end{split}$$
(2.14)

where

$$\widetilde{I}_{j}(\widetilde{T}) = \int_{1}^{2} \frac{|\frac{d\widetilde{T}}{d\tau}|^{q'_{j}}}{\widetilde{T}^{q'_{j}-1}} d\tau.$$

Since for |x| = 1 in the last integral (2.14) there is a singularity, then we estimate it separately.

$$\int_{B'_{1}} \frac{\xi_{i}^{q'_{j}}}{|x|^{\sigma_{j}(q'_{j}-1)}\xi_{j}^{q'_{j}-1}} dx
= \int_{1}^{2\rho} \frac{(\mu_{i}r^{-\frac{n-4}{2}+\lambda_{i}^{-}}+\overline{\mu}_{i}r^{-\frac{n-4}{2}-\lambda_{i}^{-}}-r^{-\frac{n-4}{2}-\lambda_{i}^{+}})^{q'_{j}}r^{n-1}}{r^{\sigma_{j}(q'_{j}-1)}(\mu_{j}r^{-\frac{n-4}{2}+\lambda_{j}^{-}}+\overline{\mu}_{j}r^{-\frac{n-4}{2}-\lambda_{j}^{-}}-r^{-\frac{n-4}{2}-\lambda_{j}^{+}})^{q'_{j}-1}} dr
= \int_{1}^{2\rho} r^{\lambda_{i}^{-}q_{j}-\lambda_{j}^{-}(q'_{j}-1)-\sigma_{j}(q'_{j}-1)-\frac{n-4}{2}+n-1}
\times \frac{(\mu_{i}+\overline{\mu}_{i}r^{-2\lambda_{i}^{-}}-r^{-\lambda_{i}^{+}-\lambda_{i}^{-}})^{q'_{j}}}{(\mu_{j}+\overline{\mu}_{j}r^{-2\lambda_{j}^{-}}-r^{-\lambda_{j}^{+}-\lambda_{j}^{-}})^{q'_{j}-1}} dr.$$
(2.15)

Using the L'Hopital's rule, we obtain

$$\lim_{r \to 1} \frac{\mu_i + \overline{\mu}_i r^{-2\lambda_i^-} - r^{-\lambda_i^+ - \lambda_i^-}}{\mu_j + \overline{\mu}_j r^{-2\lambda_j^-} - r^{-\lambda_j^+ - \lambda_j^-}} \\ = \lim_{r \to 1} \frac{-2\lambda_i^- \overline{\mu}_i r^{-2\lambda_i^- - 1} + (\lambda_i^+ + \lambda_i^-) r^{-\lambda_i^+ - \lambda_i^- - 1}}{-2\lambda_j^- \overline{\mu}_j r^{-2\lambda_j^- - 1} + (\lambda_j^+ + \lambda_j^-) r^{-\lambda_j^+ - \lambda_j^- - 1}} \\ = \frac{-\lambda_i^- + D_i - \lambda_i^+ + \lambda_i^+ + \lambda_i^-}{-\lambda_j^- + D_j - \lambda_j^+ + \lambda_j^+ + \lambda_j^-} = \frac{D_i}{D_j}.$$

Then there exists $r_0 > 1$ such that for $r < r_0$,

$$\frac{D_i}{D_j} - 1 < \frac{\mu_i + \mu_i^- r^{-2\lambda_i^-} - r^{-\lambda_i^+ - \lambda_i^-}}{\mu_j + \mu_j^- r^{-2\lambda_j^-} - r^{-\lambda_j^+ - \lambda_j^-}} < \frac{D_i}{D_j} + 1.$$

So, for $r < r_0$,

$$\mu_i + \mu_i^- r^{-2\lambda_i^-} - r^{-\lambda_i^+ - \lambda_i^-} < \left(\frac{D_i}{D_j} + 1\right) \left(\mu_j + \mu_j^- r^{-2\lambda_j^-} - r^{-\lambda_i^+ - \lambda_j^-}\right).$$

On the other hand, for $r \geq r_0$,

$$\frac{\mu_j + \overline{\mu}_j r^{-\lambda_j^-} - r^{-\lambda_j^+ - \lambda_j^-}}{\mu_j + \overline{\mu}_j r^{-\lambda_j^-} - r^{-\lambda_j^+ - \lambda_j^-}} \le C(r_0).$$

Taking into account the above two relations, from (2.15) we obtain

$$\int_{B'_{1}} \frac{\xi_{i}^{q'_{j}}}{|x|^{\sigma_{j}(q'_{j}-1)}\xi_{j}^{q'_{j}-1}} dx \leq C \int_{1}^{2\rho} r^{\lambda_{i}^{-}q'_{j}-\lambda_{j}^{-}(q'_{j}-1)-\sigma_{j}(q'_{j}-1)+\frac{n+4}{2}-1} dr
= C \int_{1}^{2\rho} r^{\frac{q'_{j}}{q_{j}}(\lambda_{i}^{-}q_{j}-\lambda_{j}^{-}-\sigma_{j}+\frac{n+4}{2}(q_{j}-1))-1} dr
\leq C \begin{cases} \rho^{\frac{q'_{j}}{q_{j}}\eta_{i}}, & \text{for } \eta_{i} > 0 \\ \ln(2\rho), & \text{for } \eta_{i} = 0 \\ 1, & \text{for } \eta_{i} < 0, \end{cases}$$
(2.16)

where

$$\eta_i = \lambda_i^- q_j - \lambda_j^- - \sigma_j + \frac{n+4}{2}(q_j - 1).$$

Using (2.16), from (2.14) we obtain

$$I_{i} \leq C \begin{cases} \widetilde{I}_{j}(\widetilde{T}) \rho^{\frac{q_{j}}{q_{j}}(\eta_{i}-4)}, & \text{for } \eta_{i} > 0\\ \ln(2\rho) \rho^{-4q_{j}'/q_{j}}, & \text{for } \eta_{i} = 0\\ \rho^{-4q_{j}'/q_{j}}, & \text{for } \eta_{i} < 0. \end{cases}$$
(2.17)

To estimate J_i , i = 1, 2, we estimate each addend of $H_i(\xi_i, \varphi)$ separately.

$$\begin{split} |(\nabla(\Delta\xi_i), \nabla\varphi)| &\leq \Big|\frac{\partial^3\xi_i}{\partial r^3} + \frac{n-1}{r}\frac{\partial^2\xi_i}{\partial r^2} - \frac{n-1}{r^2}\frac{\partial\xi_i}{\partial r}\Big|\Big|\frac{\partial\varphi}{\partial r}\Big| \\ &\leq Cr^{-\frac{n-4}{2} + \lambda_i^- - 3}\Big|\frac{\partial\varphi}{\partial r}\Big|, \end{split}$$

$$\begin{split} |\Delta\xi_{i}\Delta\varphi| &\leq \left|\frac{\partial^{2}\xi_{i}}{\partial r^{2}} + \frac{n-1}{r}\frac{\partial\xi_{i}}{\partial r}\right|\left|\frac{\partial^{2}\varphi}{\partial r^{2}} + \frac{n-1}{r}\frac{\partial\varphi}{\partial r}\right| \\ &\leq Cr^{-\frac{n-4}{2}+\lambda_{i}^{-}-2}\left|\frac{\partial^{2}\varphi}{\partial r^{2}} + \frac{n-1}{r}\frac{\partial\varphi}{\partial r}\right|, \\ |(\nabla\xi_{i}\nabla(\Delta\varphi))| &\leq Cr^{-\frac{n-4}{2}+\lambda_{i}^{-}-1}\left|\frac{\partial^{3}\varphi}{\partial r^{3}} + \frac{n-1}{r}\frac{\partial^{2}\varphi}{\partial r^{2}} + \frac{n-1}{r^{2}}\frac{\partial\varphi}{\partial r}\right|, \\ \sum_{i,j=1}^{n}\frac{\partial^{2}\xi_{i}}{\partial x_{i}\partial x_{j}}\frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{j}}\right| \\ &\leq \left|\sum_{i,j=1}^{n}\frac{\partial}{\partial x_{j}}\left(\frac{\partial\xi_{i}}{\partial r}\frac{x_{i}}{r}\right)\frac{\partial}{\partial x_{j}}\left(\frac{\partial\varphi}{\partial r}\frac{x_{i}}{r}\right)\right| \\ &\leq \sum_{i,j=1}^{n}\left|\frac{\partial^{2}\xi_{i}}{\partial r^{2}}\frac{x_{i}x_{j}}{r^{2}} + \frac{\partial\xi_{i}}{\partial r}\left(\frac{\delta_{ij}}{r} - \frac{x_{i}x_{j}}{r^{3}}\right)\right|\left|\frac{\partial^{2}\varphi}{\partial r^{2}}\frac{x_{i}x_{j}}{r^{2}} + \frac{\partial\varphi}{\partial r}\left(\frac{\delta_{ij}}{r} - \frac{x_{i}x_{j}}{r^{3}}\right)\right| \\ &\leq C\left(\left|\frac{\partial^{2}\xi_{i}}{\partial r^{2}}\right| + \frac{1}{r}\left|\frac{\partial\xi_{i}}{\partial r}\right|\right)\left(\left|\frac{\partial^{2}\varphi}{\partial r^{2}}\right| + \frac{1}{r}\left|\frac{\partial\varphi}{\partial r}\right|\right) \\ &\leq Cr^{-\frac{n-4}{2}+\lambda_{i}^{-2}}\left(\left|\frac{\partial^{2}\varphi}{\partial r^{2}}\right| + \frac{1}{r}\left|\frac{\partial\varphi}{\partial r}\right|\right). \end{split}$$

Now, taking into account these relations and (2.13), we estimate J_i , i = 1, 2:

$$\begin{split} J_{i} &= \int_{0}^{2\rho^{4}} \int_{B_{\rho,2\rho}} \frac{|H_{i}(\xi_{i},\varphi)|^{q'_{j}}T_{\rho}}{|x|^{\sigma_{j}(q'_{j}-1)}\xi_{j}^{q'_{j}-1}\varphi^{q'_{j}-1}} \, dx \, dt \\ &\leq \int_{0}^{2\rho^{4}} T_{\rho} dt \int_{B_{\rho,2\rho}} \frac{|H_{i}(\xi_{i},\varphi)|^{q'_{j}}}{|x|^{\sigma_{j}(q'_{j}-1)}\xi_{j}^{q'_{j}-1}\varphi^{q'_{j}-1}} \, dx \\ &\leq C\rho^{(-\frac{n-4}{2}+\lambda_{i}^{-}-4)q'_{j}-\sigma_{j}(q'_{j}-1)-(-\frac{n-4}{2}+\lambda_{j}^{-})(q'_{j}-1)+n+4} \\ &\qquad \times \int_{1}^{2} \frac{(|\frac{d^{3}\widetilde{\varphi}}{ds^{3}}|+|\frac{d^{2}\widetilde{\varphi}}{ds^{2}}|+|\frac{d\widetilde{\varphi}}{ds}|)^{q'_{j}}}{s^{\sigma_{j}(q_{j}-1)}\widetilde{\varphi}^{q'_{j}-1}} \, ds \\ &\leq C\rho^{-4(q'_{j}-1)+\lambda_{i}^{-}q'_{j}-\lambda_{j}^{-}(q'_{j}-1)-\sigma_{j}(q'_{j}-1)+\frac{n+4}{2}} \widetilde{J}_{j}(\widetilde{\varphi}) \\ &= C\rho^{\frac{q'_{j}}{q_{j}}(\eta_{i}-4)} \widetilde{J}_{j}(\widetilde{\varphi}), \end{split}$$

where $\widetilde{J}_j(\widetilde{\varphi})$ denotes the last integral.

Using the estimates (2.17),(2.18), we estimate the right-hand sides of (2.11), (2.12). It is known that for large κ and γ , the integrals $\widetilde{I}_j(\widetilde{T})$, $\widetilde{J}_j(\widetilde{\varphi})$ are bounded [17].

Depending on the sign of η_i , i = 1, 2, we consider various variants. I. $\alpha_1 > 1$, $\alpha_2 > 1$. This is equivalent to

$$\lambda_1^- - \lambda_2^- + \sigma_1 > 0$$
 and $\lambda_2^- - \lambda_1^- + \sigma_2 > 0.$ (2.19)

Subject to relation (2.19), we consider the following cases.

(a) $\eta_1 \leq 0, \eta_2 \leq 0$ or $q_1 \leq \alpha_1, q_2 \leq \alpha_2$. Then, taking into account (2.17), (2.18), from (2.11), (2.12) we obtain

$$\int_{Q_1'} \int |x|^{\sigma_i} |u_j|^{q_i} T_\rho \xi_i \varphi \, dx \, dt$$

S. BAGIROV

EJDE-2018/09

$$\leq C\rho^{-\frac{4}{q_1q_2-1}(q_i+1)} \big[f_i^{\frac{1}{q'_j}} \widetilde{I}_j^{1/q'_j} + \widetilde{J}_j^{1/q'_j}\big]^{\frac{q_1q_2}{q_1q_2-1}} \big[f_j^{\frac{1}{q'_i}} \widetilde{I}_i^{\frac{1}{q'_i}} + \widetilde{J}_i^{\frac{1}{q'_i}}\big]^{\frac{q_i}{q_1q_2-1}},$$

where

$$f_i(\rho) = \begin{cases} 1, & \text{if } \eta_i < 0\\ \ln(2\rho), & \text{if } \eta_i = 0. \end{cases}$$

When we pass to limit as $\rho \to +\infty$, we obtain

$$\int_{Q_1'} \int |x|^{\sigma_i} |u_j|^{q_i} T_\rho \xi_i \varphi \, dx \, dt \le 0.$$

Hence $u_1 \equiv 0, u_2 \equiv 0$.

(b) Now let $\eta_1 > 0$, $\eta_2 > 0$ or $q_1 > \alpha_1, q_2 > \alpha_2$. Again using (2.17), (2.18), from (2.11), (2.12) we obtain

$$\int_{Q'_{1}} \int |x|^{\sigma_{i}} |u_{j}|^{q_{i}} T_{\rho} \xi_{i} \varphi \, dx \, dt \\
\leq C \rho^{\frac{1}{q_{1}q_{2}-1}(q_{i}(\eta_{i}-4)+\eta_{j}-4)} \left[I_{j}^{1/q'_{j}}(\widetilde{T}) + \widetilde{J}_{j}^{1/q'_{j}}(\widetilde{T}) \right]^{\frac{q_{1}q_{2}}{q_{1}q_{2}-1}} \\
\times \left[\widetilde{I}_{i}^{\frac{1}{q'_{i}}}(\widetilde{T}) + \widetilde{J}_{i}^{\frac{1}{q'_{i}}}(\widetilde{T}) \right]^{\frac{q_{i}}{q_{1}q_{2}-1}}.$$
(2.20)

Assume that

$$\min\{q_1(\eta_1 - 4) + \eta_2 - 4, \quad q_2(\eta_2 - 4) + \eta_1 - 4\} < 0.$$
(2.21)

Since

$$\begin{split} q_i(\eta_i - 4) &+ \eta_j - 4 \\ &= \lambda_i^- q_i q_j - \lambda_j^- q_i - \sigma_j q_i + \frac{n+4}{2} (q_i q_j - q_i) + \lambda_j^- q_i - \lambda_i^- - \sigma_i \\ &+ \frac{n+4}{2} (q_i - 1) - 4 - 4 q_i \\ &= -(q_i q_j - 1) \theta_i, \end{split}$$

then we can write (2.21) as $\max(\theta_1, \theta_2) > 0$.

For definiteness, we assume $q_1(\eta_1 - 4) + \eta_2 - 4 < 0$. Then for i = 1, from (2.20) we obtain

$$\begin{split} &\int_{Q_1'} \int |x|^{\sigma_1} |u_2|^{q_1} T_{\rho} \xi_1 \varphi \, dx \, dt \\ &\leq C \rho^{\frac{1}{q_1 q_2 - 1} (q_1(\eta_1 - 4) + \eta_2 - 4)} \big[\widetilde{I}_2^{\frac{1}{q_2'}} + \widetilde{J}_2^{1/q_2'} \big]^{\frac{q_1 q_2}{q_1 q_2 - 1}} \big[\widetilde{I}_1^{1/q_1'} + \widetilde{J}_1^{1/q_1'} \big]^{\frac{q_1}{q_1 q_2 - 1}}. \end{split}$$

Passing to the limit as $\rho \to +\infty$, we obtain

$$\int_{Q_1'} \int |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \le 0.$$

Hence $u_2 \equiv 0$. Then from the second equation of the system it follows that $u_1 \equiv 0$. Similarly, for $q_2(\eta_2 - 4) + \eta_1 - 4 < 0$, we obtain $u_1 \equiv 0$, $u_2 \equiv 0$. Now let $\min\{q_1(\eta_1 - 4) + \eta_2 - 4, q_2(\eta_2 - 4) + \eta_1 - 4\} = 0$ or the same $\max(\theta_1, \theta_2) = 0$. For example, take $q_1(\eta_1 - 4) + \eta_2 - 4 = 0$. Then from (2.20) it follows

$$\int_{Q_1'} \int |x|^{\sigma_1} |u_2|^{q_1} T_{\rho} \xi_1 \, dx \, dt \le C.$$

From the properties of the integral, it follows that

$$\int_{0}^{\infty} \int_{B_{\rho,2\rho}} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \to 0, \tag{2.22}$$

$$\int_{\rho^4}^{2\rho^4} \int_{B_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \to 0.$$
(2.23)

Then from (2.9), by (2.22) and (2.23) we obtain

$$\begin{split} &\int_{Q_1'} \int |x|^{\sigma_1} |u_2|^{q_1} T_{\rho} \xi_1 \varphi \, dx \, dt \\ &\leq \Big[\Big(\int_{\rho^4}^{2\rho^4} \int_{B_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \Big)^{1/q_1} I_2^{1/q_1'} \\ &\quad + \Big(\int_0^{\infty} \int_{B_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \Big)^{1/q_1} J_2^{1/q_1'} \Big]^{1/q_2} \Big[I_1^{1/q_2'} + J_1^{1/q_2'} \Big] \\ &\leq C \rho^{-\frac{1}{q_1 q_2} (q_1 (\eta_1 - 4) + \eta_2 - 4)} \Big[\Big(\int_{\rho^4}^{2\rho^4} \int_{B_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \Big)^{\frac{1}{q_1'}} \widetilde{I}_1^{1/q_1'} \\ &\quad + \Big(\int_0^{\infty} \int_{B_{\rho, 2\rho}} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \Big)^{1/q_1'} \widetilde{J}_2^{1/q_1'} \Big]^{1/q_2} \Big[\widetilde{I}_2^{1/q_2'} + \widetilde{J}_2^{1/q_2'} \Big] \to 0. \end{split}$$

So, again

$$\iint_{Q_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \le 0.$$

Hence $u_2 \equiv 0$ and respectively $u_1 \equiv 0$. If $q_2(\eta_2 - 4) + \eta_1 - 4 = 0$, then in the same way, we obtain $u_1 \equiv 0$, $u_2 \equiv 0$.

(c) Let us consider the case when $\eta_i \leq 0$, $\eta_j \geq 0$. At first, let $\eta_1 \leq 0$, $\eta_2 \geq 0$. As in the previous cases, from (2.11), (2.12) we obtain

$$\begin{aligned} \iint_{Q_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \\ &\leq C \rho^{\frac{1}{q_1 q_2 - 1} (-4(q_1 + 1) + \eta_2)} \left[f_1^{1/q_2'} \widetilde{I}_2^{1/q_2'} + \widetilde{J}_2^{1/q_2'} \right]^{\frac{q_1 q_2}{q_1 q_2 - 1}} \left[\widetilde{I}_1^{1/q_1'} + \widetilde{J}_1^{1/q_1'} \right]^{\frac{q_1}{q_1 q_2 - 1}}. \end{aligned} \tag{2.24}$$

$$\text{If } \eta_2 < 4(q_1 + 1), \text{ then passing to limit as } \rho \to +\infty, \text{ from (2.24) we have} \end{aligned}$$

$$\iint_{Q_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt \le 0.$$

Hence $u_2 \equiv 0$ and from the second equation of the system it follows $u_1 \equiv 0$. Note that if $\eta_1 < 0$, then for $\eta_2 = 4(q_1 + 1)$, f rom (2.24) we obtain

$$\iint_{Q_1'} |x|^{\sigma_1} |u_2|^{q_1} \xi_1 \, dx \, dt < C.$$

As in the previous case, we can show again that $u_1 \equiv 0$, $u_2 \equiv 0$. Note that the condition $\eta_1 < 0$, $0 \le \eta_2 \le 4(q_1 + 1)$ is equivalent to the condition

$$1 < q_2 < \alpha_2, \alpha_1 \le q_1 \le \beta_1,$$

and the condition $\eta_1 = 0, 0 \le \eta_2 \le 4(q_1 + 1)$ to the condition

$$q_2 = \alpha_2, \quad \alpha_1 \le q_1 < \beta_1.$$

Now let $\eta_1 \ge 0$, $\eta_2 \le 0$. Then similar to the previous case we obtain that for $\eta_2 < 0$, $0 \le \eta_1 \le 4(q_2 + 1)$ and for $\eta_2 = 0$, $\eta_1 < 4(q_2 + 1)$, $u_1 \equiv 0$, $u_2 \equiv 0$.

The same condition $\eta_2 < 0, 0 \le \eta_1 \le 4(q_2 + 1)$ is equivalent to the condition

$$q_1 < \alpha_1, \alpha_2 \le q_2 \le \beta_2,$$

and the condition $\eta_2 = 0, 0 \le \eta_1 < 4(q_2 + 1)$ to the condition

$$q_1 = \alpha_1, \alpha_2 \le q_2 < \beta_2.$$

II. $\alpha_1 \leq 1, \alpha_2 > 1$. Herewith, the cases $\eta_1 \leq 0, \eta_2 > 0$ and $\eta_1 > 0, \eta_2 > 0$ should be considered. For $\eta_1 \leq 0, \eta_2 > 0$ as in the previous cases, we obtain $u_1 \equiv 0, u_2 \equiv 0$ if $\eta_1 < 0, \eta_2 \leq 4(q_1 + 1)$ and $\eta_1 = 0, \eta_2 < 4(q_1 + 1)$.

From the inequality $\eta_2 \leq 4(q_1+1)$ it follows that $1 < q_1 \leq \beta_1$. Since

$$\beta_1 = \frac{\lambda_1^- + \sigma_1 + 4 + \frac{n+4}{2}}{\lambda_2^- + \frac{n-4}{2}},$$

this case has meaning for $\lambda_1^- + \sigma_1 + 8 > \lambda_2^-$.

Now let $\eta_1 > 0$, $\eta_2 > 0$. Then similar to case (b), we obtain that $u_1 \equiv 0$, $u_2 \equiv 0$ if

$$q_1 > \alpha_1, q_2 > \alpha_2, \quad \max\{\theta_1, \theta_2\} \ge 0.$$

III. $\alpha_1 > 0$, $\alpha_2 \leq 1$. Herewith, it is necessary to consider the case when $\eta_1 > 0$, $\eta_2 \leq 0$ and $\eta_1 > 0$, $\eta_2 > 0$. For $\eta_1 > 0$, $\eta_2 \leq 0$, $u_1, u_2 \equiv 0$ if $q_1 < \alpha_1$, $1 < q_2 \leq \beta_2$ and $q = \alpha_1$, $1 < q_2 < \beta_2$, and in the case $\eta_1 > 0$, $\eta_2 > 0$, for $q_1 > \alpha_1$, $1 < q_2 < \beta_2$, max $\{\theta_1, \theta_2\} \geq 0$. Obviously, this case has meaning for $\beta_2 > 1$ or for $\lambda_2^- + \sigma_2 + 8 > \lambda_1^-$.

IV. $\alpha_1 \leq 1, \ \alpha_2 \leq 1$. Here it is necessary to consider the only case when $\eta_1 > 0$, $\eta_2 > 0$. Then $u_1 \equiv 0, \ u_2 \equiv 0$, if $1 < q_1 < \beta_1, \ 1 < q_2 < \beta_2$ and $\max\{\theta_1, \theta_2\} \geq 0$. Obviously, this set is not empty if $\lambda_1^- + \sigma_1 + 8 > \lambda_2^-, \ \lambda_2^- + \sigma_2 + 8 > \lambda_1^-$. This completely proves the theorem.

Note that remains open the cases $q_1 = \alpha_1, q_2 = \beta_2$ and $q_1 = \beta_1, q_2 = \alpha_2$.

References

- D. Andreucci, M. A. Herrero, J. J. L. Velazquez; Liouville theorems and blow up behavior in semilinear reaction diffusion systems, Ann. Inst. Henri Poincarce, Anal. Non Linneaire, 14 (1997), 1-53.
- [2] Sh. G. Bagyrov; On the existence of a positive solution of a nonlinear second-order parabolic equation with time-periodic coefficients, Differentsial'nye Uravneniya, 2007, Vol. 43, No. 4, pp. 562565.
- [3] M. F. Bidaut-Veron, S. Pohozaev; Nonexistence results and estimates for some nonlinear elliptic problems, Anal. Math., 84 (2001), 1-49.
- [4] K. Deng, H. A. Levine; The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., 243 (2000), no. 1, 85126.
- [5] M. Escobedo, M. A. Herrero; Boundedness and blow up for a semilinear reaction diffusion system, J. Differential Equations, 89 (1991), 176-202.

- [6] M. Fila, A. Levine, Y. A. Uda; Fujita-type global existence-global nonexistence theorem for a system of reaction diffusion equations with differing diffusivities, *Math. Methods Appl. Sci.*, 17 (1994), 807-835.
- [7] H. Fujita; On the blowing-up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ, Tokyo, Sect. I, **13** (1966), 109-124.
- [8] Gabriella Caristi, Existence and nonexistence of global solutions of degenerate and singular parabolic system, Abstr. Appl. Anal., 5 (2000), no. 4, 265-284
- B. Gidas, J. Spruck; Global and local behavior of positive solutions of linear elliptic equations, Comm. Pare. Appl. Math.vol 34,pages 525-598,yr 1981
- [10] K. Hayakawa; On nonexistence of global solutions of some semi-linear parabolic equations, Proc. Japan. Acad., 49 (1973), 503-505.
- [11] K. Kobayashi, T. Siaro, H. Tanaka; On the blowing up problem of semi linear heat equations, J. Math. Soc. Japan, 29 (1977), 407-424
- [12] A. A. Kon'kov; On solutions of quasi-linear elliptic inequalities containing terms with lowerorder derivatives, Nonlinear Anal., 90 (2013), pages 121-134.
- [13] G. G. Laptev; On nonexistence of solutions of a class of singular semilinear differential inequalities, Tr. MIAN, 232 (2001), 223-235.
- [14] H. A. Levine; The role of critical exponents in blowup theorems, SIAM Review, 32 (1990), no. 2, 262-288.
- [15] H. A. Levine; A Fujita type global existence–global nonexistence theorem for a weakly coupled system of reaction-diffusion equations, *Zeit. Ang. Math.Phys.*, 42 (1992), 408-430.
- [16] E. Mitidieri, S. I. Pohozaev; Absence of positive solutions for quasi-linear elliptic problems on R^N, Proc. Steklov Inst. Math., **227** (1999), 186-216 (in Russian).
- [17] E. Mitidieri, S. I. Pohozaev; A priori estimations and no solutions of nonlinear partial equations and inequalities, Proc. of V. A. Steklov Mathematics Institute of NAS, 234 (2001), 9-234.
- [18] K. Mochizuki, Q. Huang; Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations, *Methods Appl. Anal.*, 5 (1998), 109-124.
- [19] R. G. Pinsky; Existence and nonexistence of global solutions for $u_t \Delta u = a(x)u^q$ in \mathbb{R}^d , Jour. Diff. Equations, 133 (1997), 152-177.
- [20] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhaylov; Blowup of solutions in problems for quasilinear parabolic equations, Nauka Pub., Moscow, 1987. (In Russian).
- [21] J. Serrin, H. Zou; Nonexistence of positive solutions of Lane-Emden system, Diff. Integr. Equat., 9 (1996), pages 635-653.
- [22] Y. Uda; The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations, Z. Angew. Math. Phys., 46 (1995), no. 3, 366383.

Shirmayil Bagirov

INSTITUTE OF MATHEMATICS AND MECHANICS OF NAS OF AZERBAIJAN, BAKU, AZERBAIJAN *E-mail address:* sh_bagirov@yahoo.com