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GLOBAL INTERVAL BIFURCATION AND CONVEX
SOLUTIONS FOR THE MONGE-AMPÈRE EQUATIONS

WENGUO SHEN

Abstract. In this article, we establish the global bifurcation result from the
trivial solutions axis or from infinity for the Monge-Ampère equations with

non-differentiable nonlinearity. By applying the above result, we shall deter-

mine the interval of γ, in which there exist radial solutions for the following
Monge-Ampère equation

det(D2u) = γa(x)F (−u), in B,

u(x) = 0, on ∂B,

where D2u = (∂2u/∂xi∂xj) is the Hessian matrix of u, where B is the unit

open ball of RN , γ is a positive parameter. a ∈ C(B, [0,+∞)) is a radially
symmetric weighted function and a(r) := a(|x|) 6≡ 0 on any subinterval of [0, 1]

and the nonlinear term F ∈ C(R+) but is not necessarily differentiable at the

origin and infinity. We use global interval bifurcation techniques to prove our
main results.

1. Introduction

The Monge-Ampère equations are a type of important fully nonlinear elliptic
equations [12, 27]. Historically, the study of Monge-Ampère equations is motivated
by Minkowski problem [3, 22] and Weyl problem [14, 21]. Existence and regularity
results of the Monge-Ampère equations can be found in [4, 5, 13, 15, 19, 22] and
the reference therein.

We first consider the real Monge-Ampère equation

det(D2u) = λa(x)(−u)N + g(x,−u, λ), in B,

u(x) = 0, on ∂B,
(1.1)

where D2u = (∂2u/∂xi∂xj) is the Hessian matrix of u, B is the unit ball of RN ,
a(x) is a weighted function, λ is a positive parameter and g ∈ C(B × (R+)2). In
recent years, the study of the problem (1.1) have attracted the attention of many
specialists in differential equations because of their interesting applications. For
example, Caffarelli et al. [2] and Gilbarg et al. [12] have investigated problem (1.1)
in general domains of RN . Kutev [17] investigated the existence of strictly convex
radial solutions of problem (1.1) with a ≡ 1 and g = 0. Delano [11] treated the
existence of convex radial solutions of problem (1.1).
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In [16, 28], the authors have showed that problem (1.1) can be reduced to the
boundary value problem

((u′)N )′ = λa(r)(−u)N + g(r,−u, λ), r ∈ (0, 1),

u′(0) = u(1) = 0.
(1.2)

By a solution of problem (1.2) we understand that it is a function which belongs to
C2[0, 1] and satisfies (1.2). It has been known that any negative solution of problem
(1.2) is strictly convex in (0,1). Hu [16] and Wang [28] (for a(−u)N = f(−u), g = 0)
also established several criteria for the existence, multiplicity and nonexistence of
strictly convex solutions for problem (1.2) by using fixed index theorem. Lions
[18] have proved the existence of the first eigenvalue λ1 of problem (1.1) with
λa(x) = λN , g = 0 via constructive proof. However, there is no information on the
bifurcation points and the optimal intervals for the parameter λ so as to ensure
existence of single or multiple convex solutions.

Recently, Dai et al. [6, 8] established a global bifurcation result for the Monge-
Ampère equations (1.1) with λa(x)(−u)N + g(x,−u, λ) equal λNa(x)((−u)N +
g(−u)) and λN ((−u)N + g(−u)) respectively. Furthermore, the radial solutions
of the above problem in [6, 8] of (1.1) is equivalent to the solutions of the cor-
responding problem (1.2), respectively. Where g : [0,+∞) → [0,+∞) satisfies
lims→0+ g(s)/sN = 0 and

(H0) a(x) ∈ C(B) is radially symmetric and a(r) ≥ 0, a(r) 6≡ 0 on any subinter-
val of [0, 1], where r = |x| with x ∈ B.

However, among the above papers, the nonlinearities are differentiable at the
origin. Berestycki [1] established an important global bifurcation theorem from in-
tervals for a class of second-order problems involving non-differentiable nonlinearity.
In [26], the result in [1] has been improved partially by Schmitt and Smith. Re-
cently, Ma and Dai [20] improved Berestycki’s result in [1] to show a unilateral global
bifurcation result for a class of second-order problems involving non-differentiable
nonlinearity. Later, Dai [7] considered similar problems with [20], and Dai and Ma
[9, 10] considered interval bifurcation problem for a class of p-Laplacian problems
involving non-differentiable nonlinearity.

Motivated by above papers, we shall establish a global bifurcation result from
interval for the following Monge-Ampère equations with nondifferentiable nonlin-
earity

det(D2u) = λa(x)(−u)N + F (x,−u, λ), in B,

u(x) = 0, on ∂B,
(1.3)

where λ is a positive parameter, B is the unit open ball of RN , and the nonlinear
term F has the form F = f + g, where f, g ∈ C(B× (R+)2) are radially symmetric
with respect to x, where R+ = [0,∞).

It is clear that the radial solutions of (1.3) is equivalent to the solutions of the
problem

((u′)N )′ = λNrN−1a(r)(−u)N +NrN−1F (r,−u, λ), r ∈ (0, 1),

u′(0) = u(1) = 0,
(1.4)

where a satisfies (H0), and F = f + g, where f, g ∈ C([0, 1]× (R+)2), satisfying the
following conditions:



EJDE-2018/02 GLOBAL INTERVAL BIFURCATION AND CONVEX SOLUTIONS 3

(H1) | f(r,s,λ)
sN | ≤ M1, for any r ∈ (0, 1), 0 < s ≤ 1 and λ ∈ R, where M1 is a

positive constant.
(H2) g(r, s, λ) = o(sN ) near s = 0 uniformly for r ∈ (0, 1) and λ on bounded

sets.
(H3) | f(r,s,λ)

sN | ≤M2 for any r ∈ [0, 1], C < s and λ ∈ R+, where M2 is a positive
constant, C is a positive constant which is large enough.

(H4) g(r, s, λ) = o(sN ) near s = +∞ uniformly for r ∈ [0, 1] and on bounded λ
intervals.

Under the above assumptions, we shall establish the global bifurcation results for
the problem (1.4), which bifurcates from the trivial solutions axis or from infinity,
respectively.

Following the above theory (see Theorem 3.2, 3.5), we shall investigate the exis-
tence of radial solutions for the problem

det(D2u) = γa(x)F (−u), in B,

u(x) = 0, on ∂B,
(1.5)

where γ is a positive parameter, the nonlinear term F ∈ C(R+) but is not neces-
sarily differentiable at the origin and infinity.

It is clear that the radial solutions of (1.5) is equivalent to the solutions of the
problem

((u′)N )′ = γNrN−1a(r)F (−u), r ∈ (0, 1),

u′(0) = u(1) = 0,
(1.6)

where a satisfying condition (H0). We assume that the nonlinear term F has the
form F = f + g, where f and g are continuous functions on R+, satisfying the
following conditions:

(H5) | f(s)
sN | ≤M3, 0 < s ≤ 1, where M3 is a positive constant.

(H6) | f(s)
sN | ≤ M4, C < s for some positive constant C large enough, where M4

is a positive constant.
(H7) g : [0,∞)→ [0,∞) is a continuous function and g(s) > 0 for s ∈ (0,∞).
(H8) There exist g0, g∞ ∈ (0,∞) such that

g0 = lim
s→0+

g(s)
sN

, g∞ = lim
s→+∞

g(s)
sN

.

For the abstract global bifurcation theory, we refer the reader to [6, 10, 20, 24, 25]
and the references therein.

Clearly, F is not necessarily differentiable at the origin because of the influence
of the term f . So the bifurcation theory of [6, 8] can not be applied directly to
obtain our results. Fortunately, using the global interval bifurcation (see Theorems
3.2 and 3.5), we can obtain some results of the existence of negative solutions which
extend the corresponding results in [6, 8].

The rest of this article is arranged as follows. In Section 2, we given some Pre-
liminaries. In Section 3, we establish the global bifurcation results which bifurcates
from the trivial solutions axis or from infinity for problem (1.4), respectively. In
Section 4, on the basis of the interval bifurcation result (see Theorems 3.2, 3.5),
we give the intervals for the parameter γ which ensure existence of single or multi-
ple strictly convex solutions for problem (1.6) under the under the assumptions of
(H5)–(H8).
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2. Preliminaries

Following [6, Section 3-4], we first consider the problem

((−v′)N )′ = h(r), r ∈ (0, 1),

v′(0) = v(1) = 0.
(2.1)

Let us define the operator GN (h) : E → E by

GN (h) =
∫ 1

t

(∫ s

0

(h(τ))
1
N dτ

)
ds. (2.2)

For a given h ∈ Y , GN (h) : Y → E is s completely continuous and (2.2) is equivalent
to (2.1).

With a simple transformation v = −u, problem (1.2) can be equivalently written
as (see [6, Section 4-p.10]).

((−v′)N )′ = λNrN−1a(r)vN +NrN−1g(r, v, λ), r ∈ (0, 1),

u′(0) = u(1) = 0,
(2.3)

where g ∈ C([0, 1]× (R+)2) satisfies

lim
s→0+

g(r, s, λ)
sN

= 0 (2.4)

uniformly for r ∈ (0, 1) and λ on bounded sets.
Define the Nemitskii operator H : R× E → Y by

H(µ, v)(r) := µNrN−1a(r)vN +NrN−1g(r, v, µ).

Then it is clear that H is continuous (compact) operator and problem (2.3) can be
equivalently written as

v = GN ◦H(µ, v) := F (µ, v).

Here F is completely continuous in R× E → E and F (µ, 0) = 0 for all µ ∈ R.
Let Y = C[0, 1] with the norm ‖u‖∞ = maxr∈[0,1] |u(r)|. Let E := {u(r) ∈

C1(0, 1)|u′(0) = u(1) = 0} with the usual norm ‖u‖ = max{‖u‖∞, ‖u′‖∞}. Let
P+ = {u ∈ E : u(r) > 0, r ∈ (0, 1)}. Set K+ = R × P+ under the product
topology.

Now, we consider the eigenvalue problem

((−v′)N )′ = λNrN−1a(r)vN , r ∈ (0, 1),

u′(0) = u(1) = 0,
(2.5)

By [6, (4.2) Section 4-p.11], the same proof as in [18, Theorem 1.1], we can show
that problem (2.5) possesses the first eigenvalue λ1 which is positive, simple , the
unique and the corresponding eigenfunctions are positive in (0, 1) and concave on
[0, 1].

By Rabinowitz [24], using the same method to prove [6, Theorems 4.1 and 4.2]
with obvious changes, we may get the following global bifurcation result.

Lemma 2.1 ([6, Theorem 4.2]). ) Assume that (2.4) and (H0) hold. Then (λ1, 0)
is the unique bifurcation point of problem (2.3) and there exists an unbounded con-
tinuum C ⊆ (K+ ∪ {(λ1, 0)}) of solutions to problem (2.3) emanating from (λ1, 0).

By [6], to prove our main results, we need the following Sturm type comparison
result.
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Lemma 2.2 ([6, Lemma 4.6]). Let bi(r) ∈ C(0, 1), i = 1, 2 such that b2(r) ≥ b1(r)
for r ∈ (0, 1) and the inequality is strict on some subset of positive measure in
(0, 1). Also let v1, v2 be solutions of the differential equations

((−v′)N )′ = bi(r)vN , r ∈ (0, 1), i = 1, 2,

v′(0) = v(1) = 0,
(2.6)

respectively. If v1 6= 0 in (0, 1), then v2 has at least one zero in (0, 1).

Next, we give an important lemma which will be used later.

Lemma 2.3. Let I be an interval and if y and z are functions such that y, z,
ϕN (y′) and ϕN (z′) are differentiable on I and y(t) > 0, z(t) > 0, y′(t) < 0, z′(t) < 0
for t ∈ I. Then we have the identity

d

dt

{ y

ϕN (z)
[ϕN (y)ϕN (−z′)− ϕN (z)ϕN (−y′)]

}
=

y

ϕN (z)
[ϕN (y)LN [z]− ϕN (z)LN [y]]

+
[
(−y′)N+1 +N

(−yz′
z

)N+1 + (N + 1)yNy′
(−z′
z

)N]
,

(2.7)

where ϕN (s) = sN , LN [y] = (ϕN (−y′))′.

Proof. The left-hand side of (2.7) equals

d

dt

{yN+1(−z′)N

zN
− y(−y′)N

}
=

[(N + 1)yNy′(−z′)N + yN+1((−z′)N )′]zN − yN+1(−z′)NNzN−1z′

z2N

− y′(−y′)N − y((−y′)N )′

=
y

ϕN (z)
[ϕN (y)LN [z]− ϕN (z)LN [y]]

+
[
(−y′)N+1 +N

(−yz′
z

)N+1 + (N + 1)yNy′
(−z′
z

)N]
.

�

Remark 2.4. In (2.7), by Young’s inequality, we obtain[
(−y′)N+1 +N

(−yz′
z

)N+1 + (N + 1)yNy′
(−z′
z

)N] ≥ 0 (2.8)

and the equality holds if and only if sgn y = sgn z and |y
′

y |
N+1 = | z

′

z |
N+1.

We use Young’s inequality

AB ≤ Aα

α
+
Bβ

β
, (2.9)

where A,B ∈ R+, α, β > 1, 1
α + 1

β = 1. Let α = N + 1, β = N+1
N , A = −(N +

1)
1

(N+1) y′, B = (N + 1)
N

(N+1) yN
(−z′
z

)N in (2.9). We obtain that inequality (2.8)
holds.

By Lemma 2.3 and Remark 2.4, we have the following result.
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Lemma 2.5. In (2.7), we have∫ 1

0

y

ϕN (z)
(ϕN (y)L[z]− ϕN (z)L[y]) dr ≤ 0.

Proof. By Lemma 2.3, it follows that∫ 1

0

{ y

ϕN (z)
[ϕN (y)ϕN (−z′)− ϕN (z)ϕN (−y′)]

}′
dr

=
∫ 1

0

[
(−y′)N+1 +N

(−yz′
z

)N+1 + (N + 1)yNy′
(−z′
z

)N]
dr

+
∫ 1

0

y

ϕN (z)
[ϕN (y)LN [z]− ϕN (z)LN [y]] dr.

(2.10)

As in the proof of [6, Lemma 4.5], we can show that the left-hand side of (2.10)
equals 0. By Remark 2.4, We have the result. �

3. Global bifurcation from an interval

With a simple transformation v = −u, problem (1.4) can be equivalently written
as

((−v′)N )′ = λNrN−1a(r)vN +NrN−1F (r, v, λ), r ∈ (0, 1),

v′(0) = v(1) = 0.
(3.1)

Let S denote the closure in R× E of the set of nontrivial solutions (λ, v) of (3.1)
with v ∈ P+. By an argument similar to that of [6, Lemma 4.1] with obvious
changes, we can show that the following existence and uniqueness theorem is valid
for problem (3.1).

Lemma 3.1 ([6, Lemma 4.1]). If (λ, v) is a solution of (3.1) under the assumptions
of (H0)–(H2) and v has a double zero, then u ≡ 0.

Our first main result for (3.1) is the following theorem.

Theorem 3.2. Let (H0)–(H2) hold. Let d1 = M1/a0, where a0 = minr∈[0,1] a(r),
and let I0

1 = [λ1 − d1, λ1 + d1]. The component C of S ∪ (I0
1 × {0}), containing

I0
1 × {0} is unbounded and lies in K+ ∪ (I0

1 × {0}).

For the proof we introduce the auxiliary approximate problem

((−v′)N ) = λNrN−1a(r)vN +NrN−1f(r, v|v|ε, λ) +NrN−1g(r, v, λ),

r ∈ (0, 1),

v′(0) = v(1) = 0.

(3.2)

The next lemma will play a key role in the proof of Theorem 3.2.

Lemma 3.3. Let εn, 0 < εn < 1, be a sequence converging to 0. If there exists a
sequence (λn, vn) ∈ K+ such that (λn, vn) is a nontrivial solution of problem (3.2)
corresponding to ε = εn, and (λn, vn) converges to (λ, 0) in R× E, then λ ∈ I0

1 .
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Proof. Let wn = vn/‖vn‖, then wn satisfies

((−w′n)N )′ = λnNr
N−1a(r)wNn +

NrN−1f(r, un|un|ε, λn)
‖un‖N

+
NrN−1g(r, un, λn)

‖un‖N
, r ∈ (0, 1),

w′n(0) = wn(1) = 0,

(3.3)

Let

g(r, v, λ) = max
0≤|s|≤v

∣∣g(r, s, λ)
∣∣ for all r ∈ (0, 1) and λ on bounded sets,

then g is nondecreasing with respect to v and

lim
v→0+

g(r, v, λ)
vN

= 0 (3.4)

uniformly for r ∈ (0, 1) and λ on bounded sets. Further it follows from (3.4) that

|g(r, v, λ)|
‖v‖N

≤ g(r, |v|, λ)
‖v‖N

≤ g(r, ‖v‖∞, λ)
‖v‖N

≤ g(r, ‖v‖, λ)
‖v‖N

→ 0 (3.5)

as ‖v‖ → 0, uniformly for r ∈ (0, 1) and λ on bounded sets.
Clearly, (H1) implies

|f(r, vn|vn|εn , λn)|
‖vn‖N

=
|f(t, vn|vn|εn , λn)|

vNn |vn|Nεn
· v

N
n |vn|Nεn
‖vn‖N

≤M1 · |vn|Nεn →M1

(3.6)

for all r ∈ (0, 1).
Note that ‖wn‖ = 1 implies ‖wn‖∞ ≤ 1. Using this fact with (3.5) and (3.6), we

have λnNrN−1a(r)wNn +NrN−1f(r, vn|vn|εn , λn)/‖vn‖N+NrN−1g(r, vn, λn)/‖vn‖N
is bounded in E for n large enough. The compactness of GN implies that wn is
convergence in E. Without loss of generality, we may assume that wn → w in E
with ‖w‖ = 1. Clearly, we have w ∈ P+.

We claim that w ∈ P+. On the contrary, suppose that w ∈ ∂P+, by Lemma
3.1, then w ≡ 0, which is a contradiction with ‖w‖ = 1.

Now, we deduce the boundedness of λ. Let ψ ∈ P+ be an eigenfunction of
problem (2.5) corresponding to λ1. We know that wn satisfies

((−w′n)N )′ = λnNr
N−1a(r)wNn +NrN−1f(r, vn|vn|εn , λn)/‖vn‖N

+NrN−1g(r, vn, λn)/‖vn‖N ,

r ∈ (0, 1), w′n(0) = wn(1) = 0 and ψ satisfies ((−ψ′)N )′ = λ1Nr
N−1a(r)ψN , r ∈

(0, 1), ψ′(0) = ψ(1) = 0.
By Lemma 2.5, it follows that∫ 1

0

wn
ϕN (ψ)

(ϕN (wn)L[ψ]− ϕN (ψ)L[wn]) dr

=
∫ 1

0

[
(λ1 − λn)a(r)− f(r, vn|vn|εn , λn)

‖vn‖NwNn
− g(r, vn, λn)
‖vn‖NwNn

]
rN−1NwN+1

n dr ≤ 0.

(3.7)
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Similarly, we can also show that∫ 1

0

[
(λn − λ1)a(r) +

f(r, vn|vn|εn , λn)
‖vn‖NwNn

+
g(r, vn, λn)
‖vn‖NwNn

]
rN−1NψN+1 dr ≤ 0.

(3.8)

If λ ≤ λ1, considering (3.7), (H1) and (H2), we have∫ 1

0

(λ1 − λ)a(r)NrN−1wN+1 dr

≤ lim
n→∞

∫ 1

0

f(r, vn|vn|εn , λn)
‖vn‖NwNn

NrN−1wN+1
n dr

≤ lim
n→∞

∫ 1

0

f(r, vn|vn|εn , λn)
vNn |vn|Nεn

|vn|NεnNrN−1wN+1
n dr

≤
∫ 1

0

M1Nr
N−1wN+1 dr.

Hence, we obtain∫ 1

0

(λ1 − λ)a0Nr
N−1wN+1 dr ≤

∫ 1

0

M1Nr
N−1wN+1 dr,

which implies λ ≥ λ1 − d1.
If λ ≥ λ1, considering (3.8), (H1) and (H2), we have∫ 1

0

(λ− λ1)a(r)NrN−1ψN+1 dr

≤ lim
n→∞

∫ 1

0

−f(r, vn|vn|εn , λn)
‖vn‖NwNn

NrN−1ψN+1 dr

≤ lim
n→∞

∫ 1

0

−f(r, vn|vn|εn , λn)
vNn |vn|Nεn

|vn|NεnNrN−1ψN+1 dr

≤
∫ 1

0

M1Nr
N−1ψN+1 dr.

Hence, we obtain∫ 1

0

(λ− λ1)a0Nr
N−1ψN+1 ≤

∫ 1

0

M1Nr
N−1ψN+1 dr,

which implies λ ≤ λ1 − d1. Therefore, we have that λ ∈ I0
1 . �

Proof of Theorem 3.2. We divide the rest of proofs into two steps.

Step 1. We show that C ⊂ (K+ ∪ (I0
1 × {0})). For any (λ, v) ∈ C , there are two

possibilities: (i) v ∈ P+, or (ii) v ∈ ∂P+. It is obvious that (λ, v) ∈ K+ in the case
of (i). While, the case (ii) implies that v has at least one double zero in [0, 1]. From
Lemma 3.1 it follows that v ≡ 0. Hence, there exists a sequence (λn, vn) ∈ K+ such
that (λn, vn) is a solution of problem (3.2) corresponding to ε = 0, and (λn, vn)
converges to (λ, 0) in R×E. By Lemma 3.3, we have λ ∈ I0

1 , i.e., (λ, v) ∈ (I0
1 ×{0})

in the case of (ii). Hence, C ⊂ (K+ ∪ (I0
1 × {0})).
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Step 2. We prove that C is unbounded. Suppose on the contrary that C is
bounded. Using the similar method to prove [1, Theorem 1] with obvious changes,
we can find a neighborhood O of C such that ∂O ∩S = ∅.

In order to complete the proof of this theorem, we consider problem (3.2). For
ε > 0, it is easy to show that nonlinear term f(r, v|v|ε, λ) + g(r, v, λ) satisfies the
condition (H2). Let

Sε = {(λ, v) : (λ, v) satisfies (3.2) and v 6≡ 0}
R×E

.

By Lemma 2.1, there exists an unbounded continuum Cε of Sε bifurcating from
(λ1, 0) such that

Cε ⊂ (K+ ∪ {(λ1, 0)}).
So there exists (λε, vε) ∈ Cε ∩ ∂O for all ε > 0. Since O is bounded in K+,
Equation (3.2) shows that (λε, vε) is bounded in R×C2 independently of ε. By the
compactness of GN , one can find a sequence εn → 0 such that (λεn , vεn) converges
to a solution (λ, v) of (3.2). So v ∈ P+. If v ∈ ∂P+, then from Lemma 3.1 follows
that v ≡ 0. By Lemma 3.3, λ ∈ I0

1 , which contradicts the definition of O. On the
other hand, if v ∈ P+, then (λ, v) ∈ S ∩ ∂O which contradicts S ∩ ∂O = ∅. �

From Theorem 3.2 and its proof, we can easily get a corollary.

Corollary 3.4. There exists a unbounded sub-continua D of solutions of (3.1) in
R× E, bifurcating from I0

1 × {0}, and D ⊂ (K+ ∪ (I0
1 × {0})).

We add the points {(λ,∞)|λ ∈ R} to space R × E. Let T denote the closure
in R × E of the set of nontrivial solutions (λ, v) of (3.1) under conditions (H3)
and (H4) with v ∈ P+. Let SN denote the spectral set of problem (2.5). Let
I∞ = [λ− d2, λ+ d2], where λ ∈ SN \ {λ1} and d2 be given in Theorem 3.5.

By Rabinowitz [25], our second main result for (3.1) is the following theorem.

Theorem 3.5. Let (H0), (H3), (H4) hold. Also let d2 = M2/a0, where a0 =
mint∈[0,1] a(t), and let I∞1 = [λ1− d2, λ1 + d2]. There exists a connected component
D of T ∪ (I∞1 × {∞}), containing I∞1 × {∞}. Moreover, if Λ ⊂ R is an interval
such that Λ∩ (∪λ∈SN\{λ1}(I∞ ∪ I

∞
1 )) = I∞1 and M is a neighborhood of I∞1 ×{∞}

whose projection on R lies in Λ and whose projection on E is bounded away from
0, then either

(1) D−M is bounded in R×E in which case D−M meets R = {(λ, 0)|λ ∈ R}
or

(2) D −M is unbounded.

If (2) occurs and D −M has a bounded projection on R, then D −M meets I∞.
Moreover, there exists a neighborhood N ⊂M of I∞1 ×{∞} such that (D ∩N ) ⊂
(K+ ∪ (I∞1 × {∞})).

Proof. The idea is similar to the one in the proof of [25, Theorem 1.6], but we give
a rough sketch of the proof for readers convenience. If (λ, v) ∈ T with ‖v‖ 6= 0,
dividing (3.1) by ‖v‖2 and setting w = v/‖v‖2 yield

((−w′)N )′ = λNrN−1a(r)wN +
NrN−1F (r, v, λ)

‖v‖2N
, r ∈ (0, 1),

w′(0) = w(1) = 0,
(3.9)
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Define

f̃(r, w, λ) =

{
‖w‖2Nf(r, w

‖w‖2 , λ), if w 6= 0,

0, if w = 0;

g̃(r, w, λ) =

{
‖w‖2Ng(r, w

‖w‖2 , λ), if w 6= 0,

0, if w = 0.

Clearly, (3.9) is equivalent to

((−w′)N )′ = λNrN−1a(r)wN +NrN−1f̃(r, w, λ)

+NrN−1g̃(r, w, λ), r ∈ (0, 1),

w′(0) = w(1) = 0.

(3.10)

It is obvious that (λ, 0) is always the solution of (3.10). By simple computation,
we can show that assumptions (H3) and (H4) imply

(H9) | ef(r,w,λ)
wN | ≤ M2 for all r ∈ [0, 1], 0 < w ≤ 1 and λ ∈ R+, where M2 is a

positive constant.
(H10) g̃(r, w, λ) = o(wN ) near w = 0, uniformly for all r ∈ (0, 1) and on bounded

λ intervals.
Now applying Theorem 3.2 to (3.10), we have a connected component C of

S ∪ (I0
1 × {0}). Under the inversion w → w

‖w‖2 = v, C → D satisfying problem
(3.1). Clearly, D satisfy the conclusions of this theorem.

Finally, We show that there exists a neighborhood N ⊂M of I∞1 × {∞} such
that (D ∩ N ) ⊂ (K+ ∪ (I∞1 × {∞})). Clearly, the inversion w → w/‖w‖2 = v
turns I0

1 × {0} into I∞1 × {∞}. Let O be a bounded neighborhood of I0
1 × {0}.

Then (C ∩ (O \ (I0
1 × {0}))) ⊂ K+, containing I0

1 × {0} is unbounded and lies in
K+ ∪ (I∞1 × {∞}). While, by the inversion w → w/‖w‖2 = v,C ∩ (O \ (I0

1 × {0}))
is translated to a deleted neighborhood N 0 of I∞1 × {∞}. It is obvious that
(λ,w) ∈ C ∩ (O \ (I0

1 × {0})) implies that there exists a constant c0 such that
0 < ‖w‖ ≤ c0. It follows that (λ, v) ∈ N 0 implies that 1/c0 ≤ ‖v‖ < +∞. It
follows that (D∩N ) ⊂ (K+∪(I∞1 ×{∞})) by taking N := N 0∪(I∞1 ×{∞}). �

4. Applications

In this section, we shall investigate the existence and multiplicity of convex
solutions of problem (1.6). With a simple transformation v = −u, problem (1.6)
can be written as

((−v′)N )′ = γNrN−1a(r)F (v), r ∈ (0, 1),

v′(0) = v(1) = 0,
(4.1)

The main results of this section are the following theorems.

Theorem 4.1. Let a0 = minr∈[0,1] a(r), a0 = maxr∈[0,1] a(r). Let (H0), (H5)–(H8)
hold. If g0a0 > M3a

0 and g∞a0 > M4a
0, either

λ1

g0 −M3a0/a0
< γ <

λ1

g∞ +M4a0/a0
(4.2)

or
λ1

g∞ −M4a0/a0
< γ <

λ1

g0 +M3a0/a0
, (4.3)
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then problem (1.6) has at least one solution u such that it is negative, and strictly
convex in (0, 1).

Theorem 4.2. Let (H0)–(A2), (H7), (H8) hold. If g0a0 > M3a
0 but g∞a0 ≤M4a

0,
for

λ1

g0 −M3a0/a0
< γ <

λ1

g∞ +M4a0/a0
,

then problem (1.6) has at least one solution u such that it is negative, strictly convex
in (0, 1).

Theorem 4.3. Let (H0), (H5)–(H8) hold. If g0a0 ≤M3a
0 but g∞a0 > M4a

0, for

λ1

g∞ −M4a0/a0
< γ <

λ1

g0 +M3a0/a0
,

then problem (1.6) has at least one solution u such that it is negative, strictly convex
in (0, 1).

Remark 4.4. From (H8), we can see that there exists a positive constant M5 such
that g(s)/sN ≥M5 for all s 6= 0.

Remark 4.5. Note that if Mi ≡ 0 (i = 3, 4), then the cases of Theorems 4.2 and
4.3 do not occur and Theorem 4.1 is equivalent to [8, Theorem 4.1] or [6, Theorem
5.1]. In this sense, Theorem 4.1 is also a generalization of [8, Theorem 4.1] or [6,
Theorem 5.1].

To prove Theorem 4.1, we need the following results.

Lemma 4.6. Let (H0), (H5)–(H8) hold. If g0a0 > M3a
0 and g∞a0 > M4a

0, either
(4.2) or (4.3) hold, then

(i) There is a distinct unbounded component D0 of S ∪ (I0
1 ×{0}), containing

I0
1 × {0} and lying in K+ ∪ (I0

1 × {0}).
(ii) There is a distinct unbounded component D∞ of T ∪ (I∞1 × {∞}), which

satisfy the alternates of Theorem 3.5. Moreover, there exists a neighborhood
N ⊂M of I∞1 × {∞} such that (D∞ ∩N ) ⊂ (K+ ∪ (I∞1 × {∞})).

Proof. Firstly, we study the bifurcation phenomena for the following eigenvalue
problem

((−v′)N )′ = λγNrN−1a(r)g(v) + γNrN−1a(r)f(v), r ∈ (0, 1),

v′(0) = v(1) = 0,
(4.4)

where λ > 0 is a parameter.
(i) Clearly, condition (H5) implies

|a(r)f(s)
sN

| ≤M3a
0, 0 < s ≤ 1. (4.5)

Let ζ ∈ C(R \ R−,R \ R−) be such that

g(s) = g0s
N + ζ(s) (4.6)

with lims→0+ ζ(s)/sN = 0. Let ζ(v) = max0≤|s|≤v |ζ(s)|, then ζ(v) is nondecreasing
and

lim
s→0+

ζ(s)
sN

= 0. (4.7)
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Further it follows from (4.7) that

|ζ(v(r))|
‖v‖N

≤ ζ(|v(r)|)
‖v‖N

≤ ζ(‖r‖∞)
‖v‖N

≤ ζ(‖r‖)
‖v‖N

as ‖v‖ → 0. (4.8)

Hence, (4.5), (4.6) and (4.8) imply that conditions (H1) and (H2) hold. Moreover,
let d3 = M3a

0/g0a0 and I0
1 = [ λ1

γg0
− d3,

λ1
γg0

+ d3]. By Theorem 3.2, the result
follows.

(ii) Clearly, condition (H6) implies

|a(t)f(s)
sN

| ≤M4a
0, C < s. (4.9)

Let ξ ∈ C(R \ R−,R \ R−) be such that

g(s) = g∞s
N + ξ(s) (4.10)

with lims→+∞ ξ(s)/sN = 0. Let v = max0≤|s|≤v |ξ(s)|, then ξ is nondecreasing and

lim
s→+∞

ξ(s)
sN

= 0. (4.11)

Further it follows from (4.11) that

|ξ(v(r))|
‖v‖N

≤ ξ(|v(r)|)
‖v‖N

≤ ξ(‖v‖∞)
‖v‖N

≤ ξ(‖v‖)
‖v‖N

as ‖v‖ → +∞. (4.12)

Hence, (4.9), (4.10) and (4.12) imply that conditions (H3) and (H4) hold. Moreover,
let d4 = M4a

0/g∞a0 and I∞1 = [ λ1
γg∞
−d4,

λ1
γg∞

+d4]. Using Theorem 3.5, the result
follows. �

Lemma 4.7. If D0 and D∞ are defined as in Lemma 4.6, then D0 = D∞.

Proof. (i) We shall prove that (1) of Theorem 3.5 occurs. It suffices to show that
D∞ meets some point (λ∗, 0) of R. In fact, if this occurs, we can show that λ∗ ∈ I0

1 .
Suppose on the contrary that λ∗ 6∈ I0

1 , hence λ∗ ∈ I0. So (D∞∩N ) ⊂ D∞ ⊂ D0 ⊂
((R × P ) ∪ (I0 × {0})), noting (D∞ ∩ N ) ∩ (R × {0}) = ∅, which contradicts
(D∞ ∩N ) ⊂ (K+ ∪ (I∞ × {∞})). Where T 0 denote the closure in R × E of the
set of nontrivial solutions (λ, v) of (3.1) under conditions (H5), (H7) and (H8) with
v ∈ P , where P = {v|(λ, v) ∈ (SN \ {λ1})× E} and I0 = [ λ

γg0
− d3,

λ
γg0

+ d3]. D0

is a connected component of T 0 ∪ (I0 × {0}), containing I0 × {0}. Hence λ∗ ∈ I0
1 ,

it follows that D0 = D∞.
(ii) We shall show that (2) of Theorem 3.5 does not occur. Suppose on the

contrary that (2) of Theorem 3.5 occurs, then we shall deduce a contradiction. We
divide the proof into two steps.
Step 1. We show that D∞ −M has a bounded projection on R. Firstly, we
show that D∞ ⊂ K+. If (D∞ − (D∞ ∩ N )) 6⊂ K+, then there exists (µ, v) ∈
(D∞ − (D∞ ∩N )) ∩ (R× ∂P+). Since v ∈ ∂P+, by Lemma 3.1, v ≡ 0, i.e. (1) of
Theorem 3.5 occurs, which is a contradiction.

On the contrary, we suppose that (µn, vn) ∈ D∞ −M such that

lim
n→∞

µn = +∞.

It follows that
((−v′n)N )′ = µnγNr

N−1a(r)g(vn) + γNrN−1a(r)f(vn), r ∈ (0, 1),

v′n(0) = vn(1) = 0,
(4.13)
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In view of Remark 4.4, (H5) and (H6),we have that

lim
n→∞

(µnNrN−1a(r)
g(vn)
vNn

+NrN−1a(r)
f(vn)
vNn

) = +∞

for any r ∈ (0, 1). By the Sturm Comparison Lemma 2.2, we get that vn has
more change its sign in (0, 1) for n large enough, and this contradicts the fact that
(µn, vn) ∈ D+

∞ −M .

Step 2. We show that the case of D∞−M meeting I∞×{∞} is impossible. Assume
on the contrary that D∞ −M meets I∞ × {∞}. So there exists a neighborhood
Ñ ⊂ M̃ of I∞×{∞} such that (D∞−M )∩ (Ñ \ (I∞×{∞})) ⊂ (R×P ), where
M̃ is a neighborhood of I∞ × {∞} which satisfies the assumptions of Theorem
3.5, which contradicts D∞ ⊂ P , where P = {v|(λ, v) ∈ (SN \ {λ1}) × E} and
I∞ = [ λ

γg∞
− d4,

λ
γg∞

+ d4]. �

Proof of Theorem 4.1. It suffices to prove that problem (4.1) has at least one solu-
tion v such that it is positive, strictly concave in (0, 1).

By Lemmas 4.6 and 4.7, we write D = D0 = D∞ for simplicity. It is clear that
any solution of (4.4) of the form (1, v) yields a solution v of (4.1). In this case,
d3 < 1, d4 < 1. By (4.2), we obtain

λ1

γg0
+ d3 < 1,

λ1

γg∞
− d4 > 1. (4.14)

By (4.3), we have
λ1

γg∞
+ d4 < 1,

λ1

γg0
− d3 > 1 (4.15)

From I0
1 = [ λ1

γg0
− d3,

λ1
γg0

+ d3] and I∞1 = [ λ1
γg∞
− d4,

λ1
γg∞

+ d4], it follows that the
subsets I0

1 ×E and I∞1 ×E of R×E can be separated by the hyperplane {1} ×E.
Furthermore, we have D cross the hyperplane {1} × E in R× E. �

Proof of Theorem 4.2. The proof is similar to that of Theorem 4.1. In the case,
d3 < 1, d4 ≥ 1, which follows that (4.14) hold. By d4 ≥ 1, it follows that (4.15) is
impossible. �

Proof of Theorem 4.3. The proof is similar to that of Theorem 4.1. In the case,
d3 ≥ 1, d4 < 1, which follows that (4.15) hold. By d3 ≥ 1, it follows that (4.14) is
impossible. �

Remark 4.8. Note that if d3 ≥ 1, d4 ≥ 1, (4.14) and (4.15) are impossible, it
follows that the subsets I0

1 × E and I∞1 × E of R × E can not be separated by
the hyperplane {1} × E. In this case, we cannot give a suitable interval of γ in
which there exist positive solutions for (4.1). It would be interesting to have more
information about this case.
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