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PARAMETER-DEPENDENT ONE-DIMENSIONAL
BOUNDARY-VALUE PROBLEMS IN SOBOLEV SPACES

YEVHENIIA HNYP, VLADIMIR MIKHAILETS, ALEKSANDR MURACH

Communicated by Ludmila S. Pulkina

Abstract. We consider the most general class of linear boundary-value prob-

lems for higher-order ordinary differential systems whose solutions and right-
hand sides belong to the corresponding Sobolev spaces. For parameter-depen-

dent problems from this class, we obtain a constructive criterion under which

their solutions are continuous in the Sobolev space with respect to the parame-
ter. We also obtain a two-sided estimate for the degree of convergence of these

solutions to the solution of the nonperturbed problem. These results are ap-

plied to a new broad class of parameter-dependent multipoint boundary-value
problems.

1. Introduction

Questions concerning verification of limit transition in parameter-dependent dif-
ferential equations arise in various mathematical problems. These questions are
best cleared up for ordinary differential systems of the first order. Gikhman [2],
Krasnoselskii and Krein [15], Kurzweil and Vorel [16] obtained fundamental results
on the continuity in a parameter of solutions to the Cauchy problem for nonlinear
differential systems. For linear systems, these results were refined and supplemented
by Levin [17], Opial [23], Reid [25], and Nguen [22].

Parameter-dependent boundary-value problems are less investigated than the
Cauchy problem. Kiguradze [9, 10, 11] and then Ashordia [1] introduced and inves-
tigated a class of general linear boundary-value problems for systems of first order
differential equations. Kiguradze and Ashordia obtained conditions under which
the solutions to the parameter-dependent problems from this class are continuous
with respect to the parameter in the normed space C([a, b],Rm). Recently [14, 19]
these results were refined and extended to complex-valued functions and systems
of higher order differential equations.

New broad classes of linear boundary-value problems for differential systems
are considered in [3, 13]. These classes relate to the classical scale of complex
Sobolev spaces and are introduced for the systems whose right-hand sides and
solutions run through the corresponding Sobolev spaces. The boundary conditions
for these systems are posed in the most general form by means of an arbitrary
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continuous linear operator given on the Sobolev space of the solutions. Therefore
it is naturally to say that these boundary-value problems are generic with respect
to the corresponding Sobolev space.

Generally, the formally adjoint problem and Green formula are not defined for
generic problems. Therefore the usual methods of the theory of ordinary differential
equations are not applicable to these problems, and their study is of a special
interest.

Investigating parameter-dependent generic boundary-value problems, Hnyp, Ko-
dlyuk and Mikhailets [3, 13] found constructive sufficient conditions under which
the solutions to these problems exist and are unique for small values of the positive
parameter and are continuous with respect to the parameter in the Sobolev space.
(The paper [13] deals with the systems of first-order differential equations, whereas
[3] investigates the systems of higher-order differential equations.)

The goal of this article is to prove that these conditions are necessary as well.
So, we prove a constructive criterion for continuity of the solutions with respect
to the parameter in Sobolev spaces. Besides, we establish a two-sided estimate
for the degree of convergence of the solutions as the parameter approaches zero.
An application of this criterion to multipoint parameter-dependent boundary-value
problems is also given. Namely, we introduce a new broad class of these problems
and obtain explicit sufficient conditions under which the solutions to these problems
are continuous with respect to the parameter in Sobolev spaces.

Note that other important classes of generic boundary-value problems are in-
troduced and investigated in papers [18, 27]. These classes relate to the classical
scale of normed spaces of continuously differential functions. Sufficient conditions
for the continuous dependence on the parameter of solutions to these problems are
established in these papers.

The above-mentioned results were applied to multipoint boundary-value prob-
lems [12] and Green matrixes of boundary-value problems [14, 19], to the spectral
theory of differential operators with singular coefficients [4, 5, 6]. The latter applica-
tion stimulates us to consider differential equations with complex-valued coefficients
and right-hand sides.

The approach used in the present paper can be applied to investigation of
boundary-value problems which are generic with respect to other normed function
spaces (see [20, 21]).

2. Statement of problem and main results

We arbitrarily choose integers n ≥ 0 and m, r ≥ 1, a real number p ∈ [1,∞) and
compact interval [a, b] ⊂ R. We use the complex Sobolev spaces

Wn
p := Wn

p ([a, b],C), (Wn
p )m := Wn

p ([a, b],Cm),

(Wn
p )m×m := Wn

p ([a, b],Cm×m)

formed respectively by scalar, vector-valued, and matrix-valued functions defined
on [a, b]. Recall that the norm in the Banach space Wn

p is defined by the formula

‖x‖n,p :=
( n∑

j=0

∫ b

a

|x(j)(t)|p dt
)1/p

for x ∈Wn
p .
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Note that W 0
p is the Lebesgue space Lp := Lp([a, b],C). The norms in the Banach

spaces
(
Wn

p

)m and
(
Wn

p

)m×m are the sums of the norms in Wn
p of all components of

vector-valued or matrix-valued functions from these spaces. We denote these norms
by ‖x‖n,p as well; it will be always clear from context in which Sobolev space (scalar
or vector-valued or matrix-valued functions) these norms are considered.

Let ε0 > 0, and let the parameter ε run through [0, ε0). We consider the following
parameter-dependent boundary-value problem for a system of m linear differential
equations of order r:

L(ε)y(t, ε) ≡ y(r)(t, ε) +
r∑

j=1

Ar−j(t, ε)y(r−j)(t, ε) = f(t, ε), a ≤ t ≤ b, (2.1)

B(ε)y(·, ε) = c(ε). (2.2)

Here, for every ε ∈ [0, ε0), the unknown vector-valued function y(·, ε) belongs to the
space (Wn+r

p )m, and we arbitrarily choose the matrix-valued functions Ar−j(·, ε) ∈
(Wn

p )m×m with j ∈ {1, . . . , r}, vector-valued function f(·, ε) ∈ (Wn
p )m, vector

c(ε) ∈ Crm, and continuous linear operator

B(ε) : (Wn+r
p )m → Crm. (2.3)

Throughout the paper, we interpret vectors as columns. Note that the functions
Ar−j(t, ε) are not assumed to have any regularity with respect to ε.

Let us indicate the sense in which equation (2.1) is understood. If n ≥ 1, then
the solution y(·, ε) ∈ (Wn+r

p )m belongs to the space (Cr)m := Cr([a, b],Cm) by
the Sobolev embedding theorem and then equality (2.1) should be fulfilled at every
point t ∈ [a, b]. (In this case, all components of Ar−j(·, ε) and f(·, ε) are continuous
on [a, b].) If n = 0, then y(·, ε) ∈ (Wn+r

p )m ⊂ (Cr−1)m by this theorem and,
moreover, y(r−1)(·, ε) is absolutely continuous on [a, b]. Hence in this case, the
classical derivative y(r)(·, ε) exists almost everywhere on [a, b], and therefore we
require equality (2.1) to be fulfilled almost everywhere on [a, b].

Note that the boundary condition (2.2) with the arbitrary continuous operator
B(ε) is the most general for the differential system (2.1). Indeed, if the right-hand
side f(·, ε) of the system runs through the whole space (Wn

p )m, then the solution
y(·, ε) to the system runs through the whole space (Wn+r

p )m. This condition covers
both all kinds of classical boundary conditions (such as initial conditions of the
Cauchy problem, multipoint and integral boundary conditions) and nonclassical
boundary conditions which contain the derivatives y(k)(·, ε), with r ≤ k ≤ n+ r, of
the unknown function. Therefore the boundary-value problem (2.1), (2.2) is called
generic with respect to the Sobolev space Wn+r

p .
For every ε ∈ [0, ε0), the continuous linear operator (2.3) admits the following

unique representation [7, Section 0.1]:

B(ε)y =
n+r∑
k=1

αk(ε)y(k−1)(a) +
∫ b

a

Φ(t, ε)y(n+r)(t)dt (2.4)

for arbitrary y ∈ (Wn+r
p )m. Here, each αk(ε) is a number rm × m-matrix, and

Φ(·, ε) is a matrix-function from the space (Lq)rm×m with the index q ∈ (1,∞]
subject to 1/p+ 1/q = 1.
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With the boundary-value problem (2.1), (2.2), we associate the continuous linear
operator

(L(ε), B(ε)) : (Wn+r
p )m → (Wn

p )m × Crm. (2.5)

According to [3, Theorem 1], operator (2.5) is Fredholm with zero index for every
ε ∈ [0, ε0).

Let us now give our basic concepts.

Definition 2.1. We say that the solution to the boundary-value problem (2.1),
(2.2) depends continuously on the parameter ε at ε = 0 if the following two condi-
tions are fulfilled:

(∗) There exists a positive number ε1 < ε0 such that for arbitrary ε ∈ [0, ε1),
f(·, ε) ∈ (Wn

p )m, and c(ε) ∈ Crm this problem has a unique solution
y(·, ε) ∈ (Wn+r

p )m.
(∗∗) The convergence of the right-hand sides f(·, ε) → f(·, 0) in (Wn

p )m and
c(ε) → c(0) in Crm as ε → 0+ implies the convergence of the solutions
y(·, ε)→ y(·, 0) in (Wn+r

p )m as ε→ 0+.

Remark 2.2. We will obtain an equivalent of Definition 2.1 if we replace (∗∗)
with the following condition: y(·, ε) → y(·, 0) in (Wn+r

p )m as ε → 0+ provided
that f(·, ε) = f(·, 0) and c(ε) = c(0) for all sufficiently small ε > 0. Indeed, this
condition together with (∗) means that the operator (L(ε), B(ε))−1, inverse of (2.5),
converges strongly to (L(0), B(0))−1 as ε→∞. The latter property implies (∗∗).

Following [3, Section 3], we consider the next two conditions on the left-hand
sides of this problem.
Limit Conditions as ε→ 0+:

(I) Ar−j(·, ε)→ Ar−j(·, 0) in (Wn
p )m×m for each j ∈ {1 . . . r};

(II) B(ε)y → B(0)y in Crm for every y ∈ (Wn+r
p )m.

We also consider the following condition.
Condition (0). The homogeneous limiting boundary-value problem

L(0)y(t, 0) = 0, a ≤ t ≤ b, B(0)y(·, 0) = 0

has only the trivial solution.
Our main result reads as follows.

Theorem 2.3. The solution to the boundary-value problem (2.1), (2.2) depends
continuously on the parameter ε at ε = 0 if and only if this problem satisfies Con-
dition (0) and Limit Conditions (I) and (II).

We supplement this theorem with a two-sided estimate of the deviation ‖y(·, 0)−
y(·, ε)‖n+r,p for sufficiently small ε > 0. Let

dn,p(ε) := ‖L(ε)y(·, 0)− f(·, ε)‖n,p + ‖B(ε)y(·, 0)− c(ε)‖Crm .

Theorem 2.4. Assume that the boundary-value problem (2.1), (2.2) satisfies Con-
dition (0) and Limit Conditions (I) and (II). Then there exist positive numbers
ε2 < ε1, γ1, and γ2 such that for every ε ∈ (0, ε2) we have the two-sided estimate

γ1 dn,p(ε) ≤ ‖y(·, 0)− y(·, ε)‖n+r,p ≤ γ2 dn,p(ε). (2.6)

Here, the numbers ε2, γ1, and γ2 do not depend on y(·, 0) and y(·, ε).
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In this theorem, we can interpret ‖y(·, 0)−y(·, ε)‖n+r,p and dn,p(ε) respectively as
an error and discrepancy of the solution y(·, ε) to the problem (2.1), (2.2) provided
that y(·, 0) is considered as an approximate solution to this problem. In this sense,
formula (2.6) means that the error and discrepancy are of the same degree as
ε→ 0+.

Note that Theorems 2.3 and 2.4 are new even for classical boundary conditions,
in which the orders of derivatives of the unknown function are less than r. We will
prove these theorems in Section 3.

Remark 2.5. It follows directly from representation (2.4) and the criterion for weak
convergence of continuous linear operators on Lp [8, Chapter VIII, Section 3.3] that
Limit Condition (II) is equivalent to the following system of conditions as ε→ 0+:

(2a) αk(ε)→ αk(0) for each k ∈ {1, . . . , n+ r};
(2b) ‖Φ(·, ε)‖(Lq)rm×m = O(1);
(2c)

∫ t

a
Φ(s, ε)ds→

∫ t

a
Φ(s, 0)ds for every t ∈ (a, b].

It is useful to compare these conditions with the criterion for the convergence
B(ε) → B(0) in the uniform operator topology as ε → 0+. This convergence
is equivalent to the system of conditions (2a) and Φ(·, ε)→ Φ(·, 0) in (Lq)rm×m as
ε→ 0+. The latter condition is evidently stronger than the pair of conditions (2b)
and (2c). Note also that Limit Condition II means the convergence B(ε) → B(0)
as ε→ 0+ in the strong operator topology and that this topology is not metrizable
because it does not satisfy the first separability axiom (see, e.g., [24, Chapter VI,
Section 1]).

3. Proofs of main results

Proof of Theorem 2.3. The sufficiency of the system of Condition (0) and Limit
Condition (I) and (II) for the problem (2.1), (2.2) to satisfy Definition 2.1 is proved
in [13, Theorem 1.1] for r = 1 and in [3, Theorem 3] for r ≥ 2. Thus, we should
establish necessity only.

Assume that this problem satisfies Definition 2.1. Then, of course, Condition (0)
is fulfilled. It remains to prove that the problem satisfies both Limit Condition (I)
and (II). We divide our reasoning into three steps.

Step 1. Here, we will prove that the boundary-value problem (2.1), (2.2) satisfies
Limit Condition (I). If r ≥ 2, we will previously reduce the problem (2.1), (2.2) to
a boundary-value problem for system of first-order differential equations. Let the
parameter ε ∈ [0, ε0). As usual, we put

x(·, ε) := col(y(·, ε), y′(·, ε), . . . , y(r−1)(·, ε)) ∈ (Wn+1
p )rm, (3.1)

f̃(·, ε) := col
(
0, . . . , 0, f(·, ε)) ∈ (Wn

p )rm,

and

Ã(·, ε) :=


Om Im Om . . . Om

Om Om Im . . . Om

...
...

...
. . .

...
Om Om Om . . . Im

A0(·, ε) A1(·, ε) A2(·, ε) . . . Ar−1(·, ε)

 ∈ (Wn
p )rm×rm.
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Here, Om and Im stand respectively for zero and identity (m×m)-matrix. Bearing
representation (2.4) in mind, we also set

B̃(ε)x :=
r−1∑
k=1

αk(ε)xk(a) +
n+r∑
k=r

αk(ε)x(k−r)
r (a) +

∫ b

a

Φ(t, ε)x(n+1)
r (t)dt (3.2)

for every vector-valued function x = col(x1, . . . , xr) with x1, . . . , xr ∈ (Wn+1
p )m.

The linear mapping x 7→ B̃(ε)x acts continuously from (Wn+1
p )rm to Crm. Let us

consider the boundary-value problem

x′(t, ε) + Ã(t, ε)x(t, ε) = f̃(t, ε), a ≤ t ≤ b, (3.3)

B̃(ε)x(·, ε) = c(ε). (3.4)

It is evident that a function y(·, ε) ∈ (Wn+r
p )m is a solution to problem (2.1), (2.2)

if and only if the function (3.1) is a solution to problem (3.3), (3.4). In the r = 1
case, we put x(·, ε) := y(·, ε), f̃(·, ε) := f(·, ε), Ã(·, ε) := A0(·, ε), and B̃(ε) := B(ε)
for the sake of uniformity in notation on Step 1, then problem (2.1), (2.2) coincides
with problem (3.3), (3.4).

Limit Condition (I) is equivalent to the convergence Ã(·, ε)→ Ã(·, 0) in the space
(Wn

p )rm×rm as ε→ 0+. Let us prove this convergence.
To this end we note the following: if f̃(·, ε) and c(ε) do not depend on ε ∈ [0, ε1),

then y(·, ε)→ y(·, 0) in (Wn+r
p )m as ε→ 0+ by condition (∗∗) of Definition 2.1. The

latter convergence is equivalent to that x(·, ε)→ x(·, 0) in (Wn+1
p )rm as ε→ 0+.

Given ε ∈ [0, ε1), we consider the matrix boundary-value problem

X ′(t, ε) + Ã(t, ε)X(t, ε) = Orm, a ≤ t ≤ b, (3.5)

[B̃(ε)X(·, ε)] = Irm. (3.6)

Here, X(·, ε) := (xj,k(·, ε))rm
j,k=1 is an unknown matrix-valued function from the

space (Wn+1
p )rm×rm, and

[B̃(ε)X(·, ε)] :=

B̃(ε)

 x1,1(·, ε)
...

xrm,1(·, ε)

 . . . B̃(ε)

 x1,rm(·, ε)
...

xrm,rm(·, ε)


 .

Problem (3.5), (3.6) is a union of rm boundary-value problems (3.3), (3.4) whose
right-hand sides do not depend on ε. Therefore it follows directly from our as-
sumption that this problem has a unique solution X(·, ε) ∈ (Wn+1

p )rm×rm, and,
moreover, X(·, ε) → X(·, 0) in the space (Wn+1

p )rm×rm as ε → 0+. Note that
detX(t, ε) 6= 0 for every t ∈ [a, b]; otherwise the function columns of X(·, ε) would
be linear dependent, contrary to (3.6). Since (Wn+1

p )rm×rm is a Banach algebra,
the latter convergence implies that (X(·, ε))−1 → (X(·, 0))−1 in (Wn+1

p )rm×rm as
ε → 0+. Besides, X ′(·, ε) → X ′(·, 0) in (Wn

p )rm×rm as ε → 0+. Hence, owing to
(3.5), we obtain the convergence

Ã(·, ε) = −X ′(·, ε)(X(·, ε))−1 → −X ′(·, 0)(X(·, 0))−1 = Ã(·, 0)

in the space (Wn
p )rm×rm as ε → 0+. Here, we use the fact that (Wn

p )rm×rm

is a Banach algebra if n ≥ 1, and, besides, that (X(·, ε))−1 → (X(·, 0))−1 in
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C([a, b],Crm×rm) when we reason in the n = 0 case. Thus, problem (2.1), (2.2)
satisfies Limit Condition (I). Specifically,

‖Ar−j(ε)‖n,p = O(1) as ε→ 0 + for each j ∈ {1, . . . , r}. (3.7)

Step 2. Let us prove that

‖B(ε)‖ = O(1) as ε→ 0+; (3.8)

here, ‖B(ε)‖ denotes the norm of the continuous operator (2.3). Suppose the con-
trary, i.e. there exists a number sequence (ε(k))∞k=1 ⊂ (0, ε1) such that ε(k) → 0
and

0 < ‖B(ε(k))‖ → ∞ as k →∞. (3.9)
For every integer k ≥ 1, we choose a function wk ∈ (Wn+r

p )m such that

‖wk‖n+r,p = 1 and ‖B(ε(k))wk‖Crm ≥ 1
2
‖B(ε(k))‖. (3.10)

We let

y(·, ε(k)) := ‖B(ε(k))‖−1 wk, f(·, ε(k)) := L(ε(k)) y(·, ε(k)),

c(ε(k)) := B(ε(k)) y(·, ε(k)).

It follows from (3.9) and (3.10) that

y(·, ε(k))→ 0 in (Wn+r
p )m as k →∞. (3.11)

Hence,
f(·, ε(k))→ 0 in (Wn

p )m as k →∞ (3.12)

because the problem (2.1), (2.2) satisfies Limit Condition (I) according to Step 1.
Besides, it follows directly from (3.10) that 1/2 ≤ ‖c(ε(k))‖Crm ≤ 1. Therefore,
passing to a subsequence of (ε(k))∞k=1, we can assume that

c(ε(k))→ c(0) in Crm as k →∞ for some c(0) 6= 0. (3.13)

Recall that, for every integer k ≥ 1, the vector-valued function y(·, ε(k)) ∈
(Wn+r

p )m is a unique solution to the boundary-value problem

L(ε(k))y(t, ε(k)) = f(t, ε(k)), a ≤ t ≤ b,

B(ε(k))y(·, ε(k)) = c(ε(k)).

Since this problem satisfies condition (∗∗) of Definition 2.1, it follows from (3.12)
and (3.13) that the function y(·, ε(k)) converges in (Wn+r

p )m to the unique solution
y(·, 0) of the boundary-value problem

L(0)y(t, 0) = 0, a ≤ t ≤ b,
B(0)y(·, 0) = c(0). (3.14)

But y(·, 0) = 0 by (3.11), which contradicts (3.14) in view of c(0) 6= 0. Hence, the
assumption made at the beginning of Step 2 is wrong; so, we have proved (3.8).
Step 3. Let us now prove that the boundary-value problem (2.1), (2.2) satisfies
Limit Condition (II). According to (3.7) and (3.8), there exist numbers γ′ > 0 and
ε′ ∈ (0, ε1) such that

‖(L(ε), B(ε))‖ ≤ γ′ for every ε ∈ [0, ε′). (3.15)
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Here, ‖(L(ε), B(ε))‖ denotes the norm of the continuous operator (2.5). We arbi-
trarily choose a function y ∈ (Wn+r

p )m and put f(·, ε) := L(ε)y and c(ε) := B(ε)y
for every ε ∈ [0, ε0). Then

y = (L(ε), B(ε))−1(f(·, ε), c(ε)) for every ε ∈ [0, ε′). (3.16)

Here, of course, (L(ε), B(ε))−1 denotes the inverse operator to (2.5). (Recall that
the operator (2.5) is invertible by condition (∗) of Definition (2.1).) Using (3.15)
and (3.16), we obtain the following relations as ε→ 0+:∥∥B(ε)y −B(0)y

∥∥
Crm ≤

∥∥(f(·, ε), c(ε))− (f(·, 0), c(0))
∥∥

(W n
p )m×Crm

≤ γ′
∥∥(L(ε), B(ε))−1

(
(f(·, ε), c(ε))− (f(·, 0), c(0))

)∥∥
n+r,p

= γ′
∥∥(L(0), B(0))−1(f(·, 0), c(0))− (L(ε), B(ε))−1(f(·, 0), c(0))

∥∥
n+r,p

→ 0.

The latter convergence is due to condition (∗∗) of Definition 2.1. Thus, since the
function y ∈ (Wn+r

p )m is arbitrary, we have proved that Limit Condition (II) is
satisfied. �

Proof of Theorem 2.4. Let us first prove the left-hand side of (2.6). Limit Condi-
tions (I) and (II) imply the strong convergence (L(ε), B(ε))→ (L(0), B(0)) as ε→
0+ of the continuous operators from (Wn+r

p )m to (Wn
p )m×Crm. Hence, there exist

numbers γ′ > 0 and ε′ ∈ (0, ε0) that the norm of the operator (L(ε), B(ε)) satisfies
condition (3.15). Indeed, if this condition were not fulfilled, there would exist a se-
quence of positive numbers (ε(k))∞k=1 such that ε(k) → 0 and ‖(L(ε(k)), B(ε(k)))‖ →
∞ as k → ∞, which would contradict the above-mentioned strong convergence in
view of Banach-Steinhaus Theorem. Now, owing to (3.15), we conclude that

dn,p(ε) = ‖(L(ε), B(ε))(y(·, 0)− y(·, ε))‖(W n
p )m×Crm

≤ γ′ ‖y(·, 0)− y(·, ε)‖n+r,p

for every ε ∈ [0, ε′). Thus, we obtain the left-hand side of the two-sided estimate
(2.6) with γ1 := 1/γ′.

Let us prove the right-hand side of this estimate. The boundary-value problem
(2.1), (2.2) satisfies Definition 2.1 by Theorem 2.3. Therefore the operator (2.5) is
invertible for every ε ∈ [0, ε1), and, furthermore, its inverse (L(ε), B(ε))−1 converges
strongly to (L(0), B(0))−1 as ε → 0+. Indeed, for arbitrary f ∈ (Wn

p )m and
c ∈ Crm, it follows from condition (∗∗) of Definition 2.1 that

(L(ε), B(ε))−1(f, c) =: y(·, ε)→ y(·, 0) := (L(0), B(0))−1(f, c)

in (Wn+r
p )m as ε→ 0+. Hence, there exist positive numbers ε2 < min{ε1, ε′} and

γ2 such that
‖(L(ε), B(ε))−1‖ ≤ γ2 for every ε ∈ [0, ε2). (3.17)

Here, of course, ‖(L(ε), B(ε))−1‖ denotes the norm of the inverse operator to
(2.5). Property (3.17) is deduced from the above strong convergence and Banach-
Steinhaus Theorem in the same way as that in the previous paragraph. Now, owing
to this property, we conclude that

‖y(·, 0)− y(·, ε)‖n+r,p = ‖(L(ε), B(ε))−1(L(ε), B(ε))(y(·, 0)− y(·, ε))‖n+r,p

≤ γ2 ‖(L(ε), B(ε))(y(·, 0)− y(·, ε))‖(W n
p )m×Crm

= γ2 dn,p(ε)

for every ε ∈ [0, ε2). Thus, we get the right-hand side of the estimate (2.6). �
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4. Application to multipoint boundary-value problems

We arbitrarily choose κ ≥ 1 distinct points t1, . . . , tκ ∈ [a, b] and consider the
following multipoint boundary-value problem:

Ly(t) ≡ y(r)(t) +
r∑

j=1

Ar−j(t)y(r−j)(t) = f(t), a ≤ t ≤ b, (4.1)

By ≡
n+r−1∑

l=0

κ∑
i=1

α
(l)
i y(l)(ti) = c. (4.2)

Here, the unknown vector-valued function y belongs to (Wn+r
p )m, whereas each

matrix-valued function Ar−j ∈ (Wn
p )m×m, the vector-valued function f ∈ (Wn

p )m,

each number matrix α(l)
i ∈ Crm×m, and the vector c ∈ Crm are arbitrarily chosen.

Owing to the continuous embedding

(Wn+r
p )m ↪→ (Cn+r−1)m, (4.3)

the boundary condition (4.2) is well posed, and the mapping y 7→ By, with y ∈
(Wn+r

p )m, sets the continuous linear operator B : (Wn+r
p )m → Crm. Thus, the

boundary-value problem (4.1), (4.2) is generic with respect to the Sobolev space
Wn+r

p . Note that the boundary condition (4.2) is not classical because it contains
the derivatives y(l) of order l ≥ r if n ≥ 1.

We consider (4.1), (4.2) as a limiting problem as ε → 0+ for the following
multipoint boundary-value problem depending on the parameter ε ∈ (0, ε0):

L(ε)y(t, ε) ≡ y(r)(t, ε) +
r∑

j=1

Ar−j(t, ε)y(r−j)(t, ε) = f(t, ε), a ≤ t ≤ b, (4.4)

B(ε)y(·, ε) ≡
n+r−1∑

l=0

κ∑
i=0

ki∑
j=1

α
(l)
i,j(ε)y(l)(ti,j(ε), ε) = c(ε). (4.5)

Here, for every ε ∈ (0, ε0), the unknown vector-valued function y(·, ε) belongs to
(Wn+r

p )m, whereas each matrix-valued function Ar−j(·, ε) ∈ (Wn
p )m×m, the vector-

valued function f(·, ε) ∈ (Wn
p )m, each number matrix α

(l)
i,j(ε) ∈ Crm×m, every

point ti,j(ε) ∈ [a, b], and the vector c(ε) ∈ Crm are arbitrarily chosen. The positive
integers k0, k1, . . . , kκ do not depend on ε.

Note that, unlike (4.2), the boundary condition (4.5) is posed for the points ti,j(ε)
united in κ +1 sets {ti,1(ε), . . . , ti,ki

(ε)}, with i = 0, 1, . . . ,κ. This is caused by our
further assumption on the behaviour of these points as ε → 0+. Namely, we will
assume that ti,j(ε)→ ti whenever i ≥ 1, whereas no assumption on convergence of
the points t0,j(ε) will be made. Note also that the coefficients Ar−j(t, ε) and α(l)

i,j(ε)
and the points ti,j(ε) are not supposed to have any regularity with respect to ε.

Like (4.1), (4.2), boundary-value problem (4.4), (4.5) is generic with respect to
Wn+r

p for every ε ∈ (0, ε0). Thus, the matter of Section 2 is applicable to this
problem provided that we put L(0) := L and B(0) := B. The main result of
this section, Theorem 2.3, gives necessary and sufficient conditions for the solution
y(·, ε) to depend continuously on the parameter ε at ε = 0. Among them is Limit
Condition (II), which means the strong convergence B(ε) → B as ε → 0+ of con-
tinuous operators from (Wn+r

p )m to Crm. We will give explicit sufficient conditions
under which this convergence holds.
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Note that it is scarcely possible to use the system of conditions (2a)–(2c) from
Remark 2.5 for the verification of this strong convergence because it is difficult in
practice to find the matrix-function Φ(·, ε) in the canonical representation (2.4) of
the operator B(ε) corresponding to the multipoint boundary condition (4.5).

Theorem 4.1. Suppose that the left-hand side of (4.5) satisfies the following con-
ditions as ε→ 0+:

(d1) ti,j(ε)→ ti for all i ∈ {1, . . . ,κ} and j ∈ {1, . . . , ki};

(d2)
∑ki

j=1 α
(l)
i,j(ε)→ α

(l)
i for all i ∈ {1, . . . ,κ} and l ∈ {0, . . . , n+ r − 1};

(d3) ‖α(n+r−1)
i,j (ε)‖ · |ti,j(ε) − ti|1/q = O(1) for all i ∈ {1, . . . ,κ} and j ∈

{1, . . . , ki},

(d4) ‖α(l)
i,j(ε)‖·|ti,j(ε)− ti| → 0 for all i ∈ {1, . . . ,κ}, j ∈ {1, . . . , ki}, and l ∈ Z

with 0 ≤ l ≤ n+ r − 2;

(d5) α
(l)
0,j(ε)→ 0 for all j ∈ {1, . . . , k0} and l ∈ {0, . . . , n+ r − 1}.

Then (4.5) satisfies Limit Condition (II).

The hypothesis of this theorem need some comments. In conditions (d3) and
(d4) we let ‖ · ‖ denote the norm of a number matrix, this norm being equal to the
sum of the absolute values of all entries of the matrix. In condition (d3), the number
q is defined by the formula 1/p+1/q = 1. If p = 1, then 1/q = 0 and condition (d3)
means that ‖α(n+r−1)

i,j (ε)‖ = O(1) as ε→ 0+. Conditions (d2) and (d4) admit that

the coefficients α(l)
i,j(ε) with l ≤ n + r − 2 may grow infinitely as ε → 0+ but not

very rapidly. The same is true for the leading coefficients α(n+r−1)
i,j (ε) in the p > 1

case due to condition (d3). Condition (d5) suggests that we need not assume any
convergence of the points t0,j(ε) as ε→ 0+, in contrast to condition (d1).

The following result is a direct consequence of Theorems 2.3 and 4.1.

Theorem 4.2. Suppose that the multipoint boundary-value problem (4.4), (4.5)
satisfies Limit Condition (I) and conditions (d1)–(d5) and that the limiting problem
(4.1), (4.2) with f(·) ≡ 0 and c = 0 has only the trivial solution. Then the solution
to the problem (4.4), (4.5) depends continuously on the parameter ε at ε = 0.

Note that the system of conditions (d1)–(d5) does not imply the uniform con-
vergence B(ε) → B(0) as ε → 0+ of continuous operators from (Wn+r

p )m to Crm.
Therefore the conclusion of Theorem 4.2 does not follow from the Banach theorem
on inverse operator.

Proof of Theorem 4.1. In view of Banach-Steinhaus Theorem, it is sufficient to
prove that the norm of the operator B(ε) : (Wn+r

p )m → Crm is bounded as ε→ 0+
and that B(ε)y → B(0)y in Crm as ε→ 0+ for every vector-valued function y from
the dense set

(C∞)m := C∞([a, b],Cm)

in the space (Wn+r
p )m.

Let us first prove the boundedness of the norm of B(ε) as ε→ 0+. We arbitrarily
choose a vector-valued function y ∈ (Wn+r

p )m and a sufficiently small number ε > 0.
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Owing to (4.2) and (4.5), we have the inequality

‖By −B(ε)y‖ ≤
n+r−1∑

l=0

k0∑
j=1

‖α(l)
0,j(ε)‖·‖y(l)(t0,j(ε))‖

+
n+r−1∑

l=0

κ∑
i=1

∥∥α(l)
i y(l)(ti)−

ki∑
j=1

α
(l)
i,j(ε)y(l)(ti,j(ε))

∥∥. (4.6)

Here, using the continuous embedding (4.3), we can write

‖α(l)
0,j(ε)‖·‖y(l)(t0,j(ε))‖ ≤ c0‖α(l)

0,j(ε)‖·‖y‖n+r,p (4.7)

for all l ∈ {0, . . . , n+ r − 1} and j ∈ {1, . . . , k0}, with c0 denoting the norm of the
embedding operator (4.3).

Also given l ∈ {0, . . . , n+ r − 1} and i ∈ {1, . . . ,κ}, we obtain the inequalities∥∥α(l)
i y(l)(ti)−

ki∑
j=1

α
(l)
i,j(ε)y(l)(ti,j(ε))

∥∥
≤
∥∥(α(l)

i −
ki∑

j=1

α
(l)
i,j(ε)

)
y(l)(ti)

∥∥+
∥∥ ki∑

j=1

α
(l)
i,j(ε)

(
y(l)(ti)− y(l)(ti,j(ε))

)∥∥
≤ c0

∥∥α(l)
i −

ki∑
j=1

α
(l)
i,j(ε)

∥∥·‖y‖n+r,p +
ki∑

j=1

‖α(l)
i,j(ε)‖·‖y(l)(ti,j(ε))− y(l)(ti)‖.

(4.8)

Here, for l = n+ r − 1 and each j ∈ {1, . . . , ki}, we have the inequality

‖α(n+r−1)
i,j (ε)‖·‖y(n+r−1)(ti,j(ε))− y(n+r−1)(ti)‖

≤ ‖α(n+r−1)
i,j (ε)‖ c1 ‖y‖n+r,p |ti,j(ε)− ti|1/q,

(4.9)

with c1 being the norm of the continuous operator of the embedding of the Sobolev
space Wn+r

p in the complex Hölder space Cn+r−1,1/q([a, b]); see, e.g., [28, Theo-
rem 4.6.1(e)]. If 1/q = 0, then the latter space becomes Cn+r−1 and inequality (4.9)
holds true with c1 := 2c0, of course. Besides, for each l ∈ Z with 0 ≤ l ≤ n+ r− 2,
we conclude by the Lagrange theorem of the mean that

‖α(l)
i,j(ε)‖·‖y(l)(ti,j(ε))− y(l)(ti)‖ ≤ ‖α(l)

i,j(ε)‖ max
a≤t≤b

‖y(l+1)(t)‖·|ti,j(ε)− ti|

≤ ‖α(l)
i,j(ε)‖ c0‖y‖n+r,p|ti,j(ε)− ti|.

(4.10)

Now it follows directly from inequalities (4.6)–(4.10) and conditions (d2)–(d5)
that

‖By −B(ε)y‖ ≤ c‖y‖n+r,p

for some number c > 0 that does not depend on y ∈ (Wn+r
p )m and sufficiently

small ε > 0. Hence, the norm of the operator B(ε) is bounded as ε→ 0+.
Also

‖α(l)
0,j(ε)‖·‖y(l)(t0,j(ε))‖ → 0 as ε→ 0+ (4.11)

due to inequality (4.7) and condition (d5), and

c0
∥∥α(l)

i −
ki∑

j=1

α
(l)
i,j(ε)

∥∥·‖y‖n+r,p → 0 as ε→ 0+ (4.12)
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due to condition (d2). Note that if y ∈ (C∞)m, then

‖α(l)
i,j(ε)‖·‖y(l)(ti,j(ε))− y(l)(ti)‖

≤ ‖α(l)
i,j(ε)‖ max

a≤t≤b
‖y(l+1)(t)‖·|ti,j(ε)− ti| → 0 as ε→ 0+

(4.13)

for each l ∈ {0, . . . , n + r − 1} due to condition (d4) in the 0 ≤ l ≤ n + r − 2 case
and due to conditions (d1) and (d3) in the l = n+ r− 1 case. Now formulas (4.6),
(4.8), and (4.11)–(4.13) yield the convergence B(ε)y → By in Crm as ε → 0+ for
every y ∈ (C∞)m. �
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