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Abstract. We consider a mathematical model which describes the frictional
contact between a viscoelastic body and a foundation. The contact is modelled

with normal compliance associated to a rate-and-state version of Coulomb’s

law of dry friction. We start by presenting a description of the friction law,
together with some examples used in geophysics. Then we state the classical

formulation of the problem, list the assumptions on the data and derive a

variational formulation of the model. It is in a form of a differential variational
inequality in which the unknowns are the displacement field and the surface

state variable. Next, we prove the unique weak solvability of the problem. The
proof is based on arguments of history-dependent variational inequalities and

nonlinear implicit integral equations in Banach spaces.

1. Introduction

Phenomena of contact between deformable bodies abound in industry and ev-
eryday life. Usually, they give rise to additional phenomena like friction, wear,
adhesion, damage and heat generation. Among these additional effects, friction
represents the main ingredient on most of the contact problems. Due to their in-
herent complexity, contact phenomena lead to strongly nonlinear boundary value
problems and their mathematical analysis requires tools of nonsmooth functional
analysis, including results on variational inequalities and nonlinear differential equa-
tions.

Frictional contact is usually modelled with the Coulomb law of dry friction or
a version thereof. According to this law, the tangential traction στ can reach a
bound H, the so-called friction bound, which is the maximal frictional resistance
that the surfaces can generate, and once it has been reached, a relative slip motion
commences. Thus,

‖στ‖ ≤ H, −στ = H
u̇τ
‖u̇τ‖

if u̇τ 6= 0. (1.1)

Here, u̇τ is the relative tangential velocity or slip rate, and once slip starts, the
frictional resistance has magnitude H and is opposing the motion. The bound H
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depends on the process variables and, often, especially in engineering publications,
is chosen as

H = µ|σν |, (1.2)

where µ is the friction coefficient and σν denotes the normal stress on the contact
surface.

We observe that the friction coefficient µ is not an intrinsic thermodynamic prop-
erty of a material, a body or its surface, since it depends on the contact process and
the operating conditions. It is defined as the ratio between the normal stress and
the modulus of the tangential stress on the contact surface when sliding commences,
and there is no theoretical reason for this ratio to be a well defined function. This
may explain the difficulties in the experimental measurements of the friction coef-
ficient. The issue is considerably complicated by the following facts. Engineering
surfaces are not mathematically smooth surfaces, but contain asperities and vari-
ous irregularities. Moreover, very often they contain some or all of the following:
moisture, lubrication oils, various debris, wear particles, oxide layers, and chemicals
and materials that are different from those of the parent body. Therefore, it is not
surprising that the friction coefficient is found to depend on the surface character-
istics, on the surface geometry and structure, on the relative velocity between the
contacting surfaces, on the surface temperature, on the wear or rearrangement of
the surface and, therefore, on its history, and other factors which we skip here. A
very thorough description of these issues can be found in [18] (see also the survey
[26]). However, and it is somewhat surprising, the concept of a friction coefficient is
found to be sufficiently useful to be employed almost universally in frictional con-
tact problems. Indeed, there seems to be no generally accepted current alternative
to it.

Until recently, mathematical models for frictional contact used a constant fric-
tion coefficient, mainly for mathematical reasons. This is rapidly changing, and the
dependence of µ on the process parameters has been incorporated into the models
in recent publications. The dependence of the friction coefficient µ on the loca-
tion x on the contacting surface, when the surface is not homogeneous, is easy to
incorporate into the mathematical models, but is rarely made explicit, except for
possibly mentioning it in passing. On the other hand, it is well documented that
such dependence may be very pronounced. Indeed, in experiments on axisymmetric
stretch forming in [27, 28] the friction coefficient was found to vary steeply from
a value close to zero at the center to about 0.3 at the edge, with a very sharp
transition region in between which was found to depend on the forming speed.

General models which take into consideration the dependence of the coefficient
of friction on the process can be obtained by considering that

µ(t) = µ(‖u̇τ (t)‖, α(t)), α̇(t) = G(α(t), ‖u̇τ (t)‖) (1.3)

where G is an appropriate function and α represents an internal state surface vari-
able. Note that in such laws, the coefficient of friction depends both the rate of the
slip, denoted ‖u̇τ‖, and on the state variable α. For this reason, the literature refers
to friction laws of the form (1.1)–(1.3) as rate-and-state friction laws. References
in the field are [15, 16, 17, 20].

Contact models constructed by using equalities of the form (1.3) have been used
in most geophysical publications dealing with earthquakes. A first example is the
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so-called Dieterich-Ruina model (see, e.g., [14]) in which

µ = µ0 −A ln
(
1 +
‖u̇τ (t)‖
v∞

)
+B ln

(
1 +

α(t)
α0

)
. (1.4)

Here µ0 is the static friction coefficient, v∞ is the maximal slip velocity in the sys-
tem, and α is an internal state variable describing the surface, and whose equation
of evolution is given by

α̇(t) = 1− ‖u̇τ (t)‖
L∗

α(t) (1.5)

where L∗, A,B are adjusted system parameters. More elaborate expressions can be
found in [6, 14, 15, 16], and we refer the reader there and the references therein. A
second example is obtained by taking

µ = µ(α), α̇(t) = ‖u̇τ (t)‖. (1.6)

In this case state variable is the total slip rate, i.e., α(t) =
∫ t

0
||u̇τ (s)|| ds. The

dependence on the process history via this parameter takes into account the mor-
phological changes undergone by the contacting surfaces as the process goes on.
Finally, the slip rate dependence µ = µ(‖u̇τ‖) is also an example of (1.3), in which
α is a constant and G vanishes.

A friction coefficient which depends on the slip rate has been employed in dy-
namic cases in [8, 12, 13] where the non-uniqueness of the solution and possible
solutions with shocks were investigated in a special setting. A result on quasistatic
contact with slip rate or total slip rate dependent friction coefficient can be found
in [1]. The modelling of dynamic contact problems with rate-and-state friction of
the form (1.3) have been considered recently in [15, 16], associated to Kelvin-Voingt
viscoelastic materials. An algorithm for the numerical simulation of these problems
was considered in [17]. There, numerical simulations were provided and compared
with experimental results made to a laboratory scale. However, the well-posedness
of models with such friction conditions is, as yet, an unsolved problem. The reason
arises in the coupling between the rate and the state variables in the friction law.

The aim of this paper is to present a rigorous analysis of a contact model with
rate-and-state friction. In contrast with the models considered in [15, 16], in this
paper we consider only quasistatic process of contact but we assume a more general
viscoelastic constitutive law. Considering a dependence of the form (1.3) for the
coefficient of friction leads to a new and nonstandard mathematical model which
couples a variational inequality for the displacement field with an ordinary differ-
ential equation for the surface state variable. The analysis of this model represents
the main trait of novelty of this paper.

The rest of the manuscript is structured as follows. In Section 2 we present the
notation we shall use as well as some preliminary material. In Section 3 we describe
the model of the contact process and list the assumptions on the data. Then, in
Section 4 we derive the variational formulation of the problem and state our main
existence and uniqueness result, Theorem 4.1. The proof of the theorem is provided
in Section 5, based on arguments on history-dependent variational inequalities and
nonlinear implicit integral equations in Banach spaces.

2. Notation and preliminaries

As already mentioned in the previous section, we start by introducing the notion
we use everywhere in this paper together with some preliminary results.
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General notation. Everywhere in this paper d ∈ {1, 2, 3} and Sd represents the
space of second order symmetric tensors on Rd or, equivalently, the space of sym-
metric matrices of order d. The zero element of the spaces Rd and Sd will be
denoted by 0. The inner product and norm on Rd and Sd are defined by

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u = (ui), v = (vi) ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ)1/2 ∀σ = (σij), τ = (τij) ∈ Sd,

where the indices i, j run between 1 and d and, unless stated otherwise, the sum-
mation convention over repeated indices is used.

The norm on the space X will be denote by ‖ · ‖X , and 0X will represent the
zero element of X. Moreover, we denote by X = X1 ×X2 × . . .×Xm the product
of the normed spaces X1, X2, . . . , Xm, endowed with the canonical product norm

‖u‖X =
√
‖u1‖2X1

+ . . .+ ‖um‖2Xm
, (2.1)

for all u = (u1, . . . , um) ∈ X. For a Hilbert space X we denote by (·, ·)X its
inner product. In addition, if Xi are real Hilbert spaces with the inner products
(·, ·)Xi and associated norms ‖ · ‖Xi , i = 1, . . . ,m, then the product space X =
X1 ×X2 × . . .×Xm will be endowed with with the canonical inner product (·, ·)X
defined by

(u,v)X = (u1, v1)X1 + . . .+ (um, vm)Xm , (2.2)

for all u = (u1, . . . , um), v = (v1, . . . , vm) ∈ X.
Below in this paper I will represent either a bounded interval of the form [0, T ]

with T > 0, or the unbounded interval R+ = [0,+∞). We denote by C(I;X) the
space of continuous functions on I with values in X. In the case I = [0, T ], the
space C(I;X) will be equipped with the norm

‖v‖C([0,T ];X) = max
t∈[0,T ]

‖v(t)‖X . (2.3)

It is well known that if X is a Banach space, then C([0, T ];X) is also a Banach
space. Assume now that I = R+. It is well known that if X is a Banach space, then
C(I;X) can be organized in a canonical way as a Fréchet space, i.e., a complete
metric space in which the corresponding topology is induced by a countable family
of seminorms. The convergence of a sequence {vk}k to the element v, in the space
C(R+;X), can be described as follows: vk → v in C(R+;X) as k →∞ if and only
if

max
r∈[0,n]

‖vk(r)− v(r)‖X → 0 as k →∞ for all n ∈ N. (2.4)

In other words, the sequence {vk}k converges to the element v in the space
C(R+;X) if and only if it converges to v in the space C([0, n];X) for all n ∈ N. In
addition, we denote by C1(I;X) the space of continuously differentiable functions
on I with values in X. Therefore, v ∈ C1(I;X) if and only if v ∈ C(I;X) and
v̇ ∈ C(I;X) where, here and below, v̇ represents the time derivative of the function
v.

History-dependent variational inequalities. We proceed with an abstract ex-
istence and uniqueness result for a special class of time-dependent variational in-
equalities. To this end, we consider a real Hilbert space X and a normed space
Y . Moreover, we consider the operators A : X → X, R : C(I;X) → C(I;Y ), the
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functional ϕ : Y ×X ×X → R and the function f : I → X, and we assume that
the following conditions hold.

(a) There exists mA > 0 such that

(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖2X ∀u1, u2 ∈ X.
(b) There exists MA > 0 such that

‖Au1 −Au2‖X ≤MA ‖u1 − u2‖X ∀u1, u2 ∈ X.

(2.5)

For any compact J ⊂ I, there exists LJ > 0 such that

‖Ru1(t)−Ru2(t)‖Y ≤ LJ
∫ t

0

‖u1(s)− u2(s)‖X ds

for all u1, u2 ∈ C(I;X) and all t ∈ J .

(2.6)

(a) For all y ∈ Y and u ∈ X, ϕ(y, u, ·) : X → R is convex
and lower semicontinuous on X.
(b) There exist c1 ≥ 0 and c2 ≥ 0 such that

ϕ(y1, u1, v2)− ϕ(y1, u1, v1) + ϕ(y2, u2, v1)− ϕ(y2, u2, v2)

≤ c1‖y1 − y2‖Y ‖v1 − v2‖X + c2‖u1 − u2‖X‖v1 − v2‖X
for all y1, y2 ∈ Y , u1, u2, v1, v2 ∈ X.

(2.7)

f ∈ C(I;X). (2.8)
Note that assumption (2.5) shows that A is a Lipschitz continuous strongly

monotone operator. Moreover, following the terminology introduced in [22], condi-
tion (2.6), shows that the operator R is a history-dependent operator. Such kind
of operators arise both in Functional Analysis and Solid Mechanics, as explained
in the recent book [23]. We have the following existence and uniqueness result
for variational inequalities with history-dependent operators, the so-called history-
dependent variational inequalities.

Theorem 2.1. Assume that (2.5)–(2.8) hold. Moreover, assume that

c2 ≥ mA, (2.9)

where mA and c2 are the constants in (2.5) and (2.7), respectively. Then, there
exists a unique function u ∈ C(I;X) such that, for all t ∈ I, it holds

(Au(t), v − u(t))X + ϕ(Ru(t), u(t), v)− ϕ(Ru(t), u(t), u(t))

≥ (f(t), v − u(t))X ∀v ∈ X.
(2.10)

This theorem represents a particular case of a more general result presented in
[23, pag 58]. Its proof is based on arguments of time-dependent quasivariational
inequalities and a fixed point result for history-dependent operators defined on the
Fréchet space C(I;X). A version of Theorem 2.1 could be found in [25].

A nonlinear implicit equation. Assume in what follows that (X, ‖ · ‖X) is a
normed space and (Y, ‖·‖Y ) is a Banach space. Moreover, assume that the operators
A : X → Y and G : I ×X × Y → Y satisfy the following conditions.

There exists LA > 0 such that

‖Ax1 −Ax2‖Y ≤ LA‖x1 − x2‖X ∀x1, x2 ∈ X. (2.11)
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(a) There exists LG > 0 such that

‖G(t, x1, y1)− G(t, x2, y2)‖Y ≤ LG(‖x1 − x2‖X + ‖y1 − y2‖Y )

for all x1, x2 ∈ X, y1, y2 ∈ Y , t ∈ I.
(b) The mapping t 7→ G(t, x, y) : I → Y is continuous for
all x ∈ X, y ∈ Y .

(2.12)

The following result will be used in the proof of Lemma 5.1 below.

Theorem 2.2. Assume that (2.11)–(2.12) hold. Then:
(1) For each function x ∈ C(I;X), there exists a unique function y ∈ C(I;Y )

such that

y(t) = Ax(t) +
∫ t

0

G(s, x(s), y(s)) ds ∀t ∈ I . (2.13)

(2) There exists a history-dependent operator R : C(I;X) → C(I;Y ) (i.e., an
operator which satisfies condition (2.6)) such that for all functions x ∈ C(I;X) and
y ∈ C(I;Y ), equality (2.13) holds if and only if

y(t) = Ax(t) +Rx(t) ∀t ∈ I. (2.14)

Note that this theorem describes the history-dependence feature of the solution
of the implicit integral equation (2.13). Its proof can be found in [23, pag 52]. A
versions of this theorem was previously obtained in [24], in the case when I = [0, T ]
with T > 0.

Function spaces. Everywhere in this paper Ω denotes a bounded domain of Rd
with a Lipschitz continuous boundary Γ and Γ1, Γ2, Γ3 will represent a partition of Γ
into three measurable parts such that meas(Γ1) > 0. We use x = (xi) for the generic
point in Ω∪Γ. An index that follows a comma will represent the partial derivative
with respect to the corresponding component of the spatial variable x ∈ Ω∪Γ, e.g.
f,i = ∂f/∂xi. Moreover, ν = (νi) denotes the outward unit normal at Γ.

We use standard notation for Sobolev and Lebesgue spaces associated to Ω and
Γ. In particular, we use the spaces L2(Ω)d, L2(Γ2)d, L2(Γ3) and H1(Ω)d, endowed
with their canonical inner products and associated norms. Moreover, we recall that
for an element v ∈ H1(Ω)d we sometimes write v for the trace γv ∈ L2(Γ)d of v
to Γ. In addition, we consider the following spaces:

V = {v ∈ H1(Ω)d : v = 0 on Γ1},
Q = {σ = (σij) : σij = σji ∈ L2(Ω)}.

The spaces V and Q are real Hilbert spaces endowed with the canonical inner
products

(u,v)V =
∫

Ω

ε(u) · ε(v) dx, (σ, τ)Q =
∫

Ω

σ · τ dx. (2.15)

Here and below ε and Div represent the deformation and the divergence operators,
respectively, i.e.,

ε(u) = (εij(u)), εij(u) =
1
2

(ui,j + uj,i), Divσ = (σij,j). (2.16)

The associated norms on these spaces are denoted by ‖ · ‖V and ‖ · ‖Q, respectively.
Also, recall that the completeness of the space V follows from the assumption
meas(Γ1) > 0 which allows the use of Korn’s inequality.
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For any element v ∈ V we denote by vν and vτ its normal and tangential
components on Γ given by vν = v · ν and vτ = v− vνν, respectively. For a regular
function σ : Ω → Sd we denote by σν and στ the normal and tangential stress
on Γ, that is σν = (σν) · ν and στ = σν − σνν, and we recall that the following
Green’s formula holds:∫

Ω

σ · ε(v) dx+
∫

Ω

Divσ · v dx =
∫

Γ

σν · v da for all v ∈ H1(Ω)d. (2.17)

We also recall that there exists c0 > 0 which depends on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V for all v ∈ V. (2.18)

Inequality (2.18) represents a consequence of the Sobolev trace theorem.
Finally, we denote by Q∞ the space of fourth order tensor fields given by

Q∞ = { E = (Eijkl) : Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d }.
The space Q∞ is a real Banach space with the norm

‖E‖Q∞ = max
1≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

Moreover, a simple calculation shows that

‖Eτ‖Q ≤ d‖E‖Q∞‖τ‖Q ∀E ∈ Q∞, τ ∈ Q. (2.19)

In addition to the spaces V , Q, Q∞, whose properties will be used in various
places in the next section, we shall use the space of vectorial functions C(I;X) and
C1(I;X) where X denotes one of the spaces V , Q, Q∞ and, recall, I represents
the time interval of interest.

3. The model

The classical formulation of the rate-and-state frictional contact problem we
consider in this paper is the following.

Problem P. Find a displacement field u : Ω×I → Rd, a stress field σ : Ω×I → Sd
and a surface state variable α : Γ3 × I → R such that

σ(t) = Aε(u̇(t)) + Bε(u(t)) +
∫ t

0

K(t− s)ε(u̇(s)) ds in Ω, (3.1)

Divσ(t) + f0(t) = 0 in Ω, (3.2)

u(t) = 0 on Γ1, (3.3)

σ(t)ν = f2(t) on Γ2, (3.4)

−σν(t) = p(uν(t)) on Γ3, (3.5)

‖στ (t)‖ ≤ µ(‖u̇τ (t)‖;α(t))|σν(t)|

−στ (t) = µ(‖u̇τ (t)‖;α(t))|σν(t)| u̇τ (t)
‖u̇τ (t)‖

if u̇τ (t) 6= 0

 on Γ3, (3.6)

α̇(t) = G(α(t), ‖u̇τ (t)‖) on Γ3, (3.7)

for all t ∈ I and, in addition,

u(0) = u0, α(0) = α0 on Γ3. (3.8)

Problem P describes the evolution of a viscoelastic body under the action of
body forces and surface tractions. In the reference configuration the body occupies
the domain Ω and is in contact with a foundation on the part Γ3 of its boundary.
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For more details on the physical setting and the mathematical modeling of contact
phenomena we send the reader to the monographs [7, 19, 23].

We now provide a description of the equations and the conditions (3.1)–(3.8)
and introduce the assumptions on the data. Note that, here and below, to simplify
the notation, we do not mention explicitly the dependence of various functions on
the spatial variable x ∈ Ω ∪ Γ.

First, equation (3.1) represents the viscoelastic constitutive law, in whichA is the
viscosity operator, B is the elasticity operator, K represents the relaxation tensor
and ε(u) denotes the linearized strain tensor, see (2.16). Various results, examples
and mechanical interpretations in the study of viscoelastic materials of the form
(3.1), can be found in [5] and the references therein. Such kind of constitutive laws
were used in the literature in order to model the behavior of real materials like
rubbers, rocks, metals, pastes and polymers. In particular, equation (3.1) was em-
ployed in [3, 4] in order to model the hysteresis damping in elastomers. Moreover,
incorporating it into equation of motion results in integro-partial differential equa-
tion which is computationally challenging both in simulation and control design
balance, as mentioned in [5]. Note that when K vanishes (3.1) becomes the well-
known Kelvin-Voigt constitutive law, used in [15, 16], for instance. The analysis of
various mathematical models of contact problems with viscoelastic materials of the
form (3.1) was provided in [21, 23, 25], for instance. Below in this paper we assume
that the viscosity operator, the elasticity operator and the relaxation tensor in the
constitutive law (3.1) satisfy the following conditions.

(a) A : Ω× Sd → Sd.
(b) There exists LA > 0 such that

‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖
for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(c) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7→ A(x, ε) is measurable on Ω, for any
ε ∈ Sd.
(e) The mapping x 7→ A(x,0) belongs to Q.

(3.9)

(a) B : Ω× Sd → Sd.
(b) There exists LB > 0 such that

‖B(x, ε1)− B(x, ε2)‖ ≤ LB‖ε1 − ε2‖
for all ε1, ε2 ∈ Sd, a.e.x ∈ Ω.
(c) The mapping x 7→ B(x, ε) is measurable on Ω, for any
ε ∈ Sd.
(d) The mapping x 7→ B(x,0) belongs to Q.

(3.10)

K ∈ C(I; Q∞). (3.11)

Next, equation (3.2) represents the equation of equilibrium in which f0 represents
the density of body forces, assumed to have the regularity

f0 ∈ C(I;L2(Ω)d). (3.12)
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We use this equation in the statement of Problem P since we assume that the
mechanical process is quasistatic and, therefore, the inertial terms in the equation
of motion are neglected.

Conditions (3.3) and (3.4) are the displacement and the traction boundary con-
dition, respectively, in which f2 represents the density of surface tractions, assumed
to have the regularity

f2 ∈ C(I;L2(Γ2)d). (3.13)
These conditions show that the body is held fixed on the part Γ1 on his boundary
and is acted upon by time-dependent forces on the part Γ2.

Condition (3.5) is the normal compliance contact condition on Γ3 in which σν
denotes the normal stress, uν is the normal displacement and p is a given normal
compliance function. This condition models the contact with a deformable founda-
tion. It was first introduced in [11] and used in may publications see, e.g., [7, 19, 23]
and the references therein. Moreover, the term normal compliance was first used
in [9, 10]. Below in this paper we assume that the function p satisfies the following
condition

(a) p : Γ3 × R→ R+.
(b) There exists Lp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3.
(c) The mapping x 7→ p(x, r) is measurable on Γ3 for all
r ∈ R.
(d) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.
(e) There exists p∗ > 0 such that p(x, r) ≤ p∗ for all r ∈ R,
a.e. x ∈ Γ3.

(3.14)

A typical example of such function is

p(x, r) =

{
ηr+ if r < r0

ηr0 if r ≥ r0

(3.15)

for all x ∈ Γ3, where r+ denotes the positive part of r, r0 > 0 is a given bound and
η > 0 represents the stiffness coefficient of the foundation.

Condition (3.6) represents the rate-and-state friction law, introduced in Section
1. It is obtained by using the Coulomb law of dry friction (1.1), with the friction
bound (1.2) in which the coefficient of friction depends on the relative slip rate ‖u̇τ‖
and the internal state variable α, as shown in (1.3). For the coefficient of friction
we assume that

(a) µ : Γ3 × R× R→ R+.
(b) There exists Lµ > 0 such that

|µ(·, r1, a1)− µ(·, r2, a2)| ≤ Lµ (|r1 − r2|+ |a1 − a2|)
for all r1, r2, a1, a2 ∈ R, a.e. x ∈ Γ3.
(c) The mapping x 7→ µ(x, r, a) is measurable on Γ3, for all
r, a ∈ R.
(d) There exists µ∗ > 0 such that µ(x, r, a) ≤ µ∗ for all
r, a ∈ R, a.e. x ∈ Γ3.

(3.16)

This assumption shows that µ is a Lipschitz continuous function of its arguments,
which seems very reasonable in many applications. However, there are cases when
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the transition from the static to the dynamic value is rather sharp, and a graph
may better describe the situation.

Next, (3.7) represents the differential equation which describes the evolution of
the surface state variable. Here G is a given function assumed to satisfy

(a) G : Γ3 × R× R→ R.
(b) There exists LG > 0 such that

|G(x, α1, r1)−G(x, α2, r2)| ≤ LG(|α1 − α2|+ |r1 − r2|)
for all α1, α1, r1, r2 ∈ R, a.e. x ∈ Ω.
(c) The mapping x 7→ G(x, α, r) is measurable on Ω, for all
α, r ∈ R.
(d) The mapping x 7→ G(x, 0, 0) belongs to L2(Γ3).

(3.17)

Note that condition (3.17) is satisfied in the case of the total slip rate friction
law (1.6) but is not satisfied for the Dietrich-Ruina model, see (1.5). Nevertheless,
several regularized version of the differential equations (1.5) can be considered, in
which the corresponding function G satisfies assumption (3.17). These regulariza-
tions are obtained by truncation, as explained in [15].

Finally, (3.8) represents the initial conditions in which u0 and α0 denote the
initial displacement and the initial surface state variable, respectively, supposed to
have the regularity

u0 ∈ V, α0 ∈ L2(Γ3). (3.18)

We end this section with the remark that Problem P represents the classical
formulation of the rate-and-state friction problem we consider in this paper. In
general, this problem does not have classical solution, i.e., solution which have
all the necessary classical derivatives. For this reason, as usual in the analysis
of frictional contact problems, there is a need to associate to Problem P a new
problem, the so called variational formulation.

4. Variational Formulation

In this section we derive the variational formulation of Problem P and state our
main existence and uniqueness result, Theorem 4.1. To this end, we start by using
use the Riesz representation theorem to define the function f : I → V by equality

(f(t),v)V =
∫

Ω

f0(t) · v dx+
∫

Γ

f2(t) · v da, (4.1)

for all v ∈ V and t ∈ I. The regularities (3.12), (3.13) imply that

f ∈ C(I;V ). (4.2)

Next, we assume (u,σ, α) are sufficiently regular functions which satisfies (3.1)–
(3.8). Let v ∈ V and t ∈ I be given. We use the Green formula (2.17) and the
equilibrium equation (3.2) to deduce that∫

Ω

σ(t) · (ε(v)− ε(u̇(t))) dx

=
∫

Ω

f0(t) · (v − u̇(t)) dx+
∫

Γ

σ(t)ν · (v − u̇(t)) da .
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Then, we split the surface integral over Γ1, Γ2 and Γ3, use equalities v − u̇(t) = 0
on Γ1 and σ(t)ν = f2(t) on Γ2 and definition (4.1) to deduce that

(σ(t), ε(v)− ε(u̇(t)))Q = (f(t),v − u̇(t))V +
∫

Γ3

σ(t)ν · (v − u̇(t)) da. (4.3)

On the other hand, the boundary conditions (3.5), (3.6) combined with the
positivity of the function p yield

σν(t)(vν − u̇ν(t)) = −p(uν(t))(vν − u̇ν(t)),

στ (t) · (vτ − u̇τ (t)) ≥ µ(‖u̇τ (t)‖;α(t))p(uν(t))(‖u̇τ (t)‖ − ‖vτ‖)

on Γ3. Therefore, since

σ(t)ν · (v − u̇(t)) = σν(t)(vν − u̇ν(t)) + στ (t) · (vτ − u̇τ (t)) on Γ3,

we deduce that∫
Γ3

σ(t)ν · (v − u̇(t)) da ≥ −
(
p(uν(t)), vν − u̇ν(t)

)
L2(Γ3)

+
(
µ(‖u̇τ (t)‖;α(t))p(uν(t)), ‖u̇τ (t)‖ − ‖vτ‖

)
L2(Γ3)

.

We now combine this inequality with (4.3) to obtain

(σ(t), ε(v)− ε(u̇(t)))Q +
(
p(uν(t)), vν − u̇ν(t)

)
L2(Γ3)

+
(
µ(‖u̇τ (t)‖;α(t))p(uν(t)), ‖vτ‖ − ‖u̇τ (t)‖

)
L2(Γ3)

≥ (f(t),v − u̇(t))V .

Finally, we substitute the constitutive law (3.1) in the previous inequality and
gather the resulting inequality with the differential equation (3.7) and the initial
conditions (3.8) to obtain the following variational formulation of Problem P.

Problem PV . Find a displacement field u : I → V and an surface state variable
α : I → L2(Γ3) such that u(0) = u0, α(0) = α0 and, for any t ∈ I, the following
hold:

(Aε(u̇(t)) + Bε(u(t)) +
∫ t

0

K(t− s)ε(u̇(s)) ds, ε(v)− ε(u̇(t)))Q

+
(
p(uν(t)), vν − u̇ν(t)

)
L2(Γ3)

+
(
µ(‖u̇τ (t)‖;α(t))p(uν(t)), ‖vτ‖ − ‖u̇τ (t)‖

)
L2(Γ3)

≥ (f(t),v − u̇(t))V ∀v ∈ V,
α̇(t) = G(α(t), ‖u̇τ (t)‖).

Note that Problem PV represents a system which couples a differential equation
for the surface state variable with a variational inequality for displacement field.
Therefore, following the notion introduced in [2], it represents a differential varia-
tional inequality. In the study of this problem we have the following existence and
uniqueness result.
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Theorem 4.1. Assume that (3.9)–(3.18) hold and, moreover, assume that

c20 p
∗Lµ ≤ mA. (4.4)

Then, Problem PV has a unique solution with regularity

u ∈ C1(I;V ), α ∈ C1(I;L2(Γ3)). (4.5)

A solution (u, α) of Problem PV is called a weak solution to the contact problem
P. We conclude that Theorem 4.1 states the unique weak solvability of Problem
P, under the smallness assumption (4.4) on the normal compliance function and
the coefficient of friction.

5. Proof of Theorem 4.1

The proof of Theorem 4.1 is carried out in several steps. Everywhere below we
assume that (3.9)–(3.18) hold and we consider the operator S : C(I;V )→ C(I;V )
defined by

Sw(t) =
∫ t

0

w(s) ds+ u0, (5.1)

for all w ∈ C(I;V ) and t ∈ I. Note that

‖Sw1(t)− Sw2(t)‖V ≤
∫ t

0

‖w1(s)−w2(s)‖V ds, (5.2)

for all w1, w2 ∈ C(I;V ) and t ∈ I, and, therefore the operator S is a history-
dependent operator. The first step in the proof of Theorem 4.1 is the following.

Lemma 5.1. (1) For each function w ∈ C(I;V ), there exists a unique function
α ∈ C1(I;L2(Γ3)) such that

α̇(t) = G(α(t), ‖wτ (t)‖) ∀t ∈ I, (5.3)

α(0) = α0. (5.4)

(2) There exists a history-dependent operator R1 : C(I;V )→ C(I;L2(Γ3)) such
that for all functions w ∈ C(I;V ) and α ∈ C(I;L2(Γ3)), the following statements
are equivalent:

(a) α ∈ C1(I;L2(Γ3)) and equalities (5.3)–(5.4) hold;
(b) α(t) = α0 +R1w(t) for all t ∈ I.

Proof. Let w ∈ C(I;V ). Then, using assumptions (3.17), (3.18) it is easy to see
that the function α is a solution to the Cauchy problem (5.3)–(5.4) with regularity
α ∈ C1(I, L2(Γ3)) if and only if α ∈ C(I, L2(Γ3)) and

α(t) = α0 +
∫ t

0

G(α(s); ‖wτ (s)‖) ds. (5.5)

Then Lemma 5.1 is a direct consequence of Theorem 2.2 applied with X = V ,
Y = L2(Γ3) and

Aw ≡ α0, G(t,w, α) = G(α; ‖wτ‖), (5.6)

for all w ∈ V , α ∈ L2(Γ3) and t ∈ I. �

We now state the following equivalence result whose proof is a direct consequence
of Lemma 5.1 and definition (5.1).
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Lemma 5.2. The couple (u, α) is a solution of Problem PV with regularity (4.5)
if and only if there exists a function w ∈ C(I;V ) such that

u(t) = Sw(t), (5.7)

α(t) = α0 +R1w(t) (5.8)

and, moreover, for all t ∈ I, the inequality below holds:

(Aε(w(t)) + Bε((Sw)(t)) +
∫ t

0

K(t− s)ε(w(s)) ds, ε(v)− ε(w(t)))Q

+
(
p((Sw)ν(t)), vν − wν(t)

)
L2(Γ3)

+
(
µ(‖wτ (t)‖;α0 +R1w(t))p((Sw)ν(t)), ‖vτ‖ − ‖wτ (t)‖

)
L2(Γ3)

≥ (f(t),v −w(t))V ∀v ∈ V.

(5.9)

Note that in (5.9) and below, (Sw)ν(t) represents the normal component of the
element (Sw)(t) ∈ V . The next step in the proof of Theorem 4.1 consists to obtain
the unique solvability of the variational inequality (5.9) for the velocity field w = u̇.
We have the following existence and uniqueness result.

Lemma 5.3. There exists a unique solution w of (5.9). Moreover, the solution
satisfies

w ∈ C(I;V ). (5.10)

Proof. We consider the product Hilbert space Λ = L2(Γ3) × Q × L2(Γ3) and the
set K defined by

K = {z ∈ L2(Γ3) : 0 ≤ z ≤ p∗ a.e. on Γ3}. (5.11)

We note that K is a nonempty closed subset of the space L2(Γ3) and we denote
by PK : L2(Γ3) → K the projection map on K. Next, we define the operators
A : V → V , R2 : C(I;V ) → C(I;Q), R3 : C(I;V ) → C(I;L2(Γ3)) and R :
C(I;V )→ C(I; Λ) by equalities

(Au,v)V = (Aε(u), ε(v))Q, (5.12)

R2w(t) = Bε(Sw(t)) +
∫ t

0

K(t− s)ε(w(s)) ds, (5.13)

R3w(t) = p((Sw)ν(t)), (5.14)

Rw(t) = (α0 +R1w(t),R2w(t),R3w(t)) (5.15)

for all u,v ∈ V , w ∈ C(I;V ) where, recall, R1 is the operator defined in Lemma
5.1. We also define the functional ϕ : Λ× V × V → R by equality

ϕ(λ,w,v) = (y, ε(v))Q + (z, vν)L2(Γ3) + (µ(‖wτ‖;x)PKz, ‖vτ‖)L2(Γ3) (5.16)

for all λ = (x,y, z) ∈ Λ and w,v ∈ V . With these data we consider the problem of
finding a function w : I → V such that, for all t ∈ I, the following inequality holds:

(Aw(t),v −w(t))V + ϕ(Rw(t),w(t),v)− ϕ(Rw(t),w(t),w(t))

≥ (f(t),v −w(t))V ∀v ∈ V.
(5.17)

We use the bound (3.14) (e) to see that for any function w ∈ C(I;V ) we have
0 ≤ p((Sw)ν(t)) ≤ p∗ a.e. on Γ3 for all t ∈ I. Therefore, using definition (5.11)
of the set K it follows that PKp((Sw)ν(t)) = p((Sw)ν(t)) for all t ∈ I. Using
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this equality and the definitions (5.12)–(5.16) it is easy to see that a function
w ∈ C(I;V ) is a solution of (5.9) if and only if w is a solution of the inequality
(5.17). For this reason, our aim in what follows is to prove the unique solvability
of this problem and, to this end, we check the assumptions of Theorem 2.1 with
X = V and Y = Λ.

First, we use assumptions (3.9) to deduce that A satisfies (2.5) with

mA = mA and MA = LA. (5.18)

Let J ⊂ I, t ∈ J and let u,v ∈ C(I;V ). Lemma 5.1 (2) guarantees that R1 is a
history dependent operator and, therefore, there exists L1

J > 0 such that

‖R1u(t)−R1v(t)‖L2(Γ3) ≤ L1
J

∫ t

0

‖u(s)− v(s)‖V ds. (5.19)

On the other hand, definition (5.13), assumptions (3.10), (3.11) and inequalities
(5.2), (2.19) imply that

‖R2u(t)−R2v(t)‖Q ≤
(
LB + dmax

r∈J
‖K(r)‖Q∞

) ∫ t

0

‖u(s)− v(s)‖V ds. (5.20)

Finally, we use again inequality (5.2), assumption (3.14) and inequality (2.18) to
deduce that

‖R3u(t)−R3v(t)‖L2(Γ3) ≤ c0Lp
∫ t

0

‖u(s)− v(s)‖V ds. (5.21)

We now combine inequalities (5.19)–(5.21) to obtain that

‖Ru(t)−Rv(t)‖Λ

≤
(
L1
J + LB + dmax

r∈J
‖K(r)‖Q∞ + c0Lp

) ∫ t

0

‖u(s)− v(s)‖V ds
(5.22)

which shows that the operator R satisfies condition (2.6) with

LJ = L1
J + LB + dmax

r∈J
‖K(r)‖Q∞ + c0Lp.

On the other hand, it is easy to see that that the functional ϕ satisfies condition
(2.7)(a). To satisfy condition (2.7)(b) let λ1 = (x1,y1, z1),λ2 = (x2,y2, z2) ∈ Λ
and w1,w2,v1,v2 ∈ V . We use definition (5.16) to deduce that

ϕ(λ1,w1,v2)− ϕ(λ1,w1,v1) + ϕ(λ2,w2,v1)− ϕ(λ2,w2,v2)

= (y1 − y2, ε(v2)− ε(v1))Q + (z1 − z2, v2ν − v1ν)L2(Γ3)

+
(
µ(‖w1τ‖;x1)PKz1 − µ(‖w2τ‖;x2)PKz2, ‖v2τ‖ − ‖v1τ‖

)
L2(Γ3)

.

(5.23)

Next, using the definition of the norm in the product space Λ and the trace in-
equality (2.18), it is easy to see that

(y1 − y2, ε(v2)− ε(v1))Q ≤ ‖λ1 − λ2‖Λ‖v1 − v2‖V , (5.24)

(z1 − z2, v2ν − v1ν)L2(Γ3) ≤ c0‖λ1 − λ2‖Λ‖v1 − v2‖V . (5.25)

We denote
µ(‖w1τ‖;x1) = µ1, µ(‖w2τ‖;x2) = µ2.
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Then, using inequalities |µ1| ≤ µ∗, 0 ≤ PKz2 ≤ p∗ a.e. on Γ3, guaranteed by
(3.16)(d) and (5.11), respectively, combined with the nonexpansivity of the projec-
tion map and assumption (3.16)(b), it is easy to see that(

µ(‖w1τ‖;x1)PKz1 − µ(‖w2τ‖;x2)PKz2, ‖v2τ‖ − ‖v1τ‖
)
L2(Γ3)

= (µ1(PKz1 − PKz2), ‖v2τ‖ − ‖v1τ‖)L2(Γ3)

+ ((µ1 − µ2)PKz2, ‖v2τ‖ − ‖v1τ‖)L2(Γ3)

≤ µ∗(|PKz1 − PKz2|, ‖v1 − v2‖)L2(Γ3)

+ p∗(|µ1 − µ2|, ‖v1 − v2‖)L2(Γ3)

≤ µ∗‖PKz1 − PKz2‖L2(Γ3)‖v1 − v2‖L2(Γ3)d

+ p∗Lµ(‖w1 −w2‖+ |x1 − x2|, ‖v1 − v2‖)L2(Γ3)

≤ µ∗‖z1 − z2‖L2(Γ3)‖v1 − v2‖L2(Γ3)d

+ p∗Lµ(‖w1 −w2‖L2(Γ3)d + ‖x1 − x2‖L2(Γ3))‖v1 − v2‖L2(Γ3)d .

Therefore, using again the definition of the norm in the product space Λ and the
trace inequality (2.18) yields(

µ(‖w1τ‖;x1)PKz1 − µ(‖w2τ‖;x2)PKz2, ‖v2τ‖ − ‖v1τ‖
)
L2(Γ3)

≤ c0µ∗‖λ1 − λ2‖Λ‖v1 − v2‖V
+ c20p

∗Lµ‖w1 −w2‖V ‖v1 − v2‖V + c0p
∗Lµ‖λ1 − λ2‖Λ‖v1 − v2‖V .

(5.26)

We now combine equality (5.23) with inequalities (5.24)–(5.26) to find that

ϕ(λ1,w1,v2)− ϕ(λ1,w1,v1) + ϕ(λ2,w2,v1)− ϕ(λ2,w2,v2)

≤ (1 + c0 + c0µ
∗ + c0p

∗Lµ)‖λ1 − λ2‖Λ‖v1 − v2‖V
+ c20p

∗Lµ‖w1 −w2‖V ‖v1 − v2‖V .
(5.27)

This inequality shows that the functional ϕ satisfies condition (2.7)(b) with

c1 = 1 + c0 + c0µ
∗ + c0p

∗Lµ and c2 = c20p
∗Lµ. (5.28)

Therefore, it follows from (5.18), (5.28) and (4.4) that the smallness condition (2.9)
holds. Finally, taking into account the regularity (4.2) we find that (2.8) holds, too.
We are now in a position to apply Theorem 2.1 and we deduce in this way that
inequality (5.17) has a unique solution w ∈ C(I;V ), which completes the proof. �

We now have all the ingredients to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Let w denote the unique solution of inequality (5.9) ob-
tained in Lemma 5.3 and let u = Sw, α = α0 +R1w. Then, Lemma 5.2 implies
that (u, α) is a solution of Problem PV . This proves the existence part of the theo-
rem. The uniqueness of the solution is now a consequence of the unique solvability
of the variational inequality (5.9), guaranteed by Lemma 5.3, combined with the
equivalence result in Lemma 5.2. �
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Avenue de Paul Alduy, 66 860 Perpignan, France

E-mail address: sofonea@univ-perp.fr


	1. Introduction
	2. Notation and preliminaries
	General notation
	History-dependent variational inequalities
	A nonlinear implicit equation
	Function spaces

	3. The model
	Problem P

	4. Variational Formulation
	 Problem PV

	5. Proof of Theorem 4.1
	References

