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GENERALIZED UNIFORMLY CONTINUOUS SOLUTION
OPERATORS AND INHOMOGENEOUS FRACTIONAL

EVOLUTION EQUATIONS WITH VARIABLE COEFFICIENTS
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Communicated by Mokhtar Kirane

Abstract. We consider Cauchy problem for inhomogeneous fractional evo-

lution equations with Caputo fractional derivatives of order 0 < α < 1 and
variable coefficients depending on x. In order to solve this problem we in-

troduce generalized uniformly continuous solution operators and use them to
obtain the unique solution on a certain Colombeau space. In our solving proce-

dure, instead of the original problem we solve a certain approximate problem,

but therefore we also prove that the solutions of these two problems are asso-
ciated. At the end, we illustrate the applications of the developed theory by

giving some appropriate examples.

1. Introduction

Fractional evolution equations have been studied very often in the previous
decades because of their numerous applications. Many well known problems are,
in fact special cases of fractional evolution equations. For instance, both time frac-
tional diffusion problem and time fractional reaction-advection-diffusion problem
are of that type. In literature, authors have mainly considered several cases: homo-
geneous case, case when f is linear or case with constant coefficients. In this paper,
we want to study semilinear problem which also includes space variable coefficients,
i.e. the equation of the type

CDαt u(t) = Au(t) + f(·, t, u), u(0) = u0, (1.1)

where CDαt is the Caputo’s fractional derivative of order 0 < α < 1 and A is a
linear, closed operator densely defined on some Banach space.

Semilinear fractional Cauchy problem with variable coefficients in general case
has been solved approximately, usually applying different numerical methods. One
of the reasons why we have considered fractional equations in the framework of
the Colombeau theory of generalized functions is the intention that these equations
be treated using operator’s approach, that is, applying the solution operators as
generalization of semigroup of operators.
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In our solving procedure, instead of the original problem (1.1) we consider the
approximate problem

CDαt u(t) = Ãu(t) + f(·, t, u), u(0) = u0, (1.2)

where Ã is a generalized linear bounded operator associated (in certain sense) to
the original operator A. Therefore we will pay special attention to comparison
analysis of these two problems. To solve the approximate problem, we introduce a
notion of generalized uniformly continuous solution operator generated by Ã. This
generalized solutions operator is, in fact, a generalization of generalized uniformly
continuous semigroup of operators. (For α = 1 a generalized solution operator is
defined as a generalized semigroup of operators). Generalized uniformly continuous
semigroups were introduced in [18] and the theory has been developed later in [19] in
order to use the theory of semigroups in solving some partial differential equations
with singularities in some generalized function spaces.

Solution operators as a generalization of C0 semigroups and cosine families of
operators are introduced by Bazhlekova in [5]. In [4] and [5] the corresponding
solution operator theory was developed for solving some homogeneous fractional
evolution problems. We remark that in some literature the solution operator is also
called fractional resolvent family or fractional resolvent operator function (see e.g.
[7, 16]).

In this article, we solve problem (1.2) in the framework of the Colombeau the-
ory. The theory of Colombeau generalized functions is developed in order to make
possible studying some nonlinear differential equations that can not be treated
neither classically (there is no classical solution) nor in distributional sense (non-
linear problems include the multiplication and the multiplication of distribution is
not well defined). For the Colombeau theory in general we refer, for example, to
[6, 8, 17, 20].

In [14] we considered a special case of (1.2) for α = 1 and with Colombeau
generalized operator Ã defined by space fractional derivatives. In this paper we
make a step further by considering the problem with fractional time derivative of
order 0 < α < 1. We obtain the unique solution to the problem (1.2) in a certain
Colombeau space. In case when A is a differential operator (integer of fractional
order) the regularization is necessary in order to obtain bounded operators. Our
method admits variable coefficients in both Ã and A.

This article is organized as follows. Fractional derivatives and some useful esti-
mates involving them are investigated in Section 2. A part of this section is devoted
to the Mittag-Leffler function since it has an important role in defining the solution
operator. Colombeau spaces that we use later in the paper are defined in Section
3. In Section 4 we define uniformly continuous solution operators and prove some
basic properties. In Section 5 we introduce the Colombeau uniformly continuous
solution operators and develop the corresponding theory. After setting the frame-
work theory, in Section 6 we investigate the inhomogeneous problem (1.2). We
prove that the problem has a unique solution in a certain Colombeau space. Since
in the whole paper, instead of the original problem (1.1) we study the corresponding
approximate problem (1.2), Section 7 is devoted to a comparison analysis of these
two problems. Finally, in the last section we illustrate how one can use our the-
ory in solving some fractional evolution problems appearing in applications, such
as time and time-space fractional diffusion equation and also time-space fractional
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reaction-advection-diffusion equation. In these problems the corresponding differ-
ential operators will be in the form of regularized operators, in order to transform
unbounded differential operators into (integral) bounded operators.

2. Time fractional derivatives and some useful estimates

In this section we recall definitions of fractional derivatives with respect to time
variable and give some useful estimates for fractional derivatives and Mittag-Leffler
function that we will use later.

2.1. Fractional derivatives with respect to time variable. The Caputo frac-
tional derivative of order α, m−1 < α ≤ m, m ∈ N, has the form (see, for example,
[1, 2, 15, 23, 26])

CDαt f(t) = Jm−αt f (m)(t), (2.1)
where Jαt , α ≥ 0, is a fractional integral for function f(t) given by

Jαt f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ,

with J0 = I, I is identity operator.
The Riemann-Liouville fractional derivative of order α, m− 1 < α ≤ m, m ∈ N,

is given by
RLDαt f(t) =

dm

dtm
Jm−αt f(t). (2.2)

Recall that CDαt is a left inverse of Jαt , i.e. CDαt Jαt f = f for a continuous
function f , but in general it is not a right inverse [10, Theorems 3.7, 3.8]. In
general, for an absolutely continuous function f and 0 < α < 1, the following holds
JαCt Dαt f(t) = f(t)− f(0).

The following holds for a Riemann-Liouville fractional derivative:

Proposition 2.1 ([28, Lemma 2.1]). For all α ∈ (m− 1,m] and β ≥ 0, it holds

Jβ+α
t f(t) = Jβ+m RL

t Dm−αt f(t). (2.3)

Remark 2.2. Taking into account the properties of Mittag-Leffler function and its
integer order derivatives (especially at zero), the Colombeau space from which we
choose generalized solution operators will be defined using the space Cm−1([0,∞) :
L(E))∩Cm((0,∞) : L(E)) and supposing some additional properties (see Definition
3.1 and Definition 3.2). It is the space of continuously differentiable functions with
respect to t and with values in space L(E), where (E, ‖ · ‖) is a Banach space and
L(E) is the space of all linear continuous mappings from E into E with the norm

‖A‖L(E) = sup
x∈E, x 6=0

‖Ax‖E
‖x‖E

.

The following lemma will play an important role in later proofs.

Lemma 2.3. Let (E, ‖ · ‖) be a Banach space and L(E) the space of all linear
continuous mappings from E into E. Let m − 1 < α < m, m ∈ N. Suppose
that (·, t) → f(·, t) ∈ Cm−1([0,∞) : L(E)) ∩ Cm((0,∞) : L(E)) is such that
limt→0+

∥∥ f(m)(·,t)
tα−m

∥∥
L(E)

= C < +∞. Then

CDαt f(·, t) = lim
η→0+

C
η D

α

t
f(·, t) in L(E), (2.4)
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where
C
η D

α

t
f(·, t) =

1
Γ(m− α)

∫ t

η

f (m)(·, τ)
(t− τ)α−m+1

dτ. (2.5)

Proof. Fix m ∈ N and α such that m− 1 < α < m. Then

‖CDαt f(·, t)− C
η D

α

t
f(·, t)‖L(E)

≤ 1
Γ(m− α)

∫ η

0

‖f (m)(·, τ)‖L(E)

(t− τ)α−m+1
dτ

=
1

Γ(m− α)

∫ η

0

‖f (m)(·, τ)‖L(E)

τα−m
τα−m

(t− τ)α−m+1
dτ

≤ 1
Γ(m− α)

sup
τ∈[0,η]

‖f
(m)(·, τ)
τα−m

‖L(E)

∫ η

0

τα−m

(t− τ)α−m+1
dτ

≤ 1
Γ(m− α)

sup
τ∈[0,η]

‖f
(m)(·, τ)
τα−m

‖L(E)
ηα−m+1

(α−m+ 1)(t− η)α−m+1
.

Letting η → 0+ one easily gets (2.4). �

The following assertion is so-called fractional mean value theorem.

Theorem 2.4 ([21]). Let 0 < α < 1. For t → f(t) ∈ C[a, b] and C
a D

α

t f ∈ C(a, b],
the following holds

f(t) = f(a) +
1

Γ(1 + α)
(Ca D

α

t f)(ξ)(t− a)α, a ≤ ξ ≤ t, t ∈ (a, b],

where C
a D

α

t f is defined as in (2.5).

2.2. Mittag-Leffler function. The two-parameter Mittag-Leffler function Eα,β is
given by

Eα,β(z) =
∞∑
n=0

zn

Γ(β + nα)
, z ∈ C, α > 0, β ∈ C.

When β = 1 we shortly write Eα,1(z) ≡ Eα(z).
If 0 < α < 2 and β > 0 then, for |z| → ∞,

Eα,β(z) =
1
α
z(1−β)/α exp(z1/α) + εα,β(z), |argz| ≤ απ

2
, (2.6)

where

εα,β(z) = −
N−1∑
n=1

z−n

Γ(β − αn)
+O(|z|−N ),

for some N ∈ N, N 6= 1 (see [9]).
Using the previous asymptotic expansion when |z| → ∞, one can get a very

useful estimation for the two-parameter Mittag-Leffler function.

Proposition 2.5. Let 0 < α < 2 and β > 0. Then

Eα,β(ωtα) ≤ Cα,β(1 + ω(1−β)/α)(1 + t1−β) exp(ω1/αt), ω ≥ 0, t ≥ 0. (2.7)

Proof. For ω = 0 and all t ≥ 0, the inequality is trivially satisfied. Fix 0 < α < 2,
β > 0 and ω > 0. Choose an arbitrarily large T > 0. Then from (2.6), for all
t > (Tω )

1
α , follows that there exists a constant C1 > 0 such that

Eα,β(ωtα) ≤ C1(ωtα)(1−β)/α exp
(
(ωtα)1/α

)
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= C1ω
(1−β)/αt1−β exp(ω1/αt)

≤ C1(1 + ω(1−β)/α)(1 + t1−β) exp(ω1/αt).

Since Eα,β is a continuous function, for all t ∈ [0,∞), we have that, for t ∈ [0, (Tω )
1
α ],

there exists a constant C2 such that

Eα,β(ωtα) ≤ C2 ≤ C2(1 + ω(1−β)/α)(1 + t1−β) exp(ω1/αt).

Taking Cα,β = max{C1, C2} we obtain the inequality (2.7). �

The linear Cauchy problem (1.1) with Caputo fractional derivatives has been
considered in [28], but in some special spaces of Lp functions whose Fourier trans-
forms are compactly supported in a some domain G, and the following result was
obtained.

Proposition 2.6 (Fractional Duhamel principle [28]). The solution of the Cauchy
problem (1.1) is given by

u(t) = Eα(tαA)u0 +
∫ t

0

Eα((t− τ)αA)RLD1−α
τ f(τ)dτ. (2.8)

3. Colombeau spaces

Let (E, ‖ · ‖) be a Banach space and L(E) the space of all linear continuous
mappings from E into E.

Definition 3.1. Let m − 1 < α < m, m ∈ N. SEα,mM ([0,∞) : L(E)) is the space
of nets

(Sα)ε : [0,∞)→ L(E), ε ∈ (0, 1),
with the following properties:

(i) t→ (Sα)ε(t) ∈ Cm−1([0,∞) : L(E)) ∩ Cm((0,∞) : L(E)).

(ii) limt→0+ ‖
dm

dtm (Sα)ε(t)

tα−m ‖L(E) = C < +∞.
(iii) For every T > 0 there exist N ∈ N, M > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T )

‖CDγt (Sα)ε(t)‖L(E) ≤Mε−N , ε < ε0, γ ∈ {0, . . . ,m− 1, α},

sup
t∈(0,T )

‖ d
m

dtm
(Sα)ε(t)‖L(E) ≤Mε−N , ε < ε0.

Similarly we define the following space.

Definition 3.2. Let m − 1 < α < m, m ∈ N. SNα,m([0,∞) : L(E)) is the space
of nets

(Nα)ε : [0,∞)→ L(E), ε ∈ (0, 1)
with the following properties:

(i) t→ (Nα)ε(t) ∈ Cm−1([0,∞) : L(E)) ∩ Cm((0,∞) : L(E)).

(ii) limt→0+ ‖
dm

dtm (Nα)ε(t)

tα−m ‖L(E) = C < +∞.
(iii) For every T > 0 and a ∈ R there exist M > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T )

‖CDγt (Nα)ε(t)‖L(E) ≤Mεa, ε < ε0, γ ∈ {0, . . . ,m− 1, α},

sup
t∈(0,T )

‖ d
m

dtm
(Nα)ε(t)‖L(E) ≤Mεa, ε < ε0.

(3.1)
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When m = 1 we denote

SEα,1M ([0,∞) : L(E)) = SEαM ([0,∞) : L(E)),

SNα,1([0,∞) : L(E)) = SNα([0,∞) : L(E)).

In this article, Caputo’s fractional derivative in the problem of consideration is
of order 0 < α < 1 and therefore, from now on, we will consider only that case.
Hence, further we investigate spaces SEαM ([0,∞) : L(E)) and SNα([0,∞) : L(E)),
although all the assertions we give can be extended for all m ∈ N.

Proposition 3.3. The space SEαM ([0,∞) : L(E)) is an algebra with respect to
composition of operators, and SNα([0,∞) : L(E)) is an ideal of SEαM ([0,∞) :
L(E)).

Proof. Fix 0 < α < 1 and let Sα and Tα are from the space SEαM ([0,∞) : L(E)).
Then, it easily follows that Sα(t)Tα(t) satisfies the properties (i) and (ii) from
Definition (3.1). The fact that Sα(t)Tα(t) satisfies the property (iii) for γ ∈ {0, 1},
can be proved in the usual way as in the case of Colombeau spaces with integer
order derivatives.

Let us prove that (iii) is satisfied for γ = α, too. Indeed, for t ∈ (η, T ), where
η > 0 is arbitrarily small and T > 0, using the property (2.4) we have

‖CDαt ((Sα)ε(t)(Tα)ε(t))‖L(E)

≤ 1
Γ(1− α)

lim
η→0+

∫ t

η

‖((Sα)ε(τ)(Tα)ε(τ))′‖L(E)

(t− τ)α
dτ

≤ 1
Γ(1− α)

lim
η→0+

∫ t

η

‖((Sα)ε(τ))′‖L(E)‖(Tα)ε(τ)‖L(E)

(t− τ)α
dτ

+
1

Γ(1− α)
lim
η→0+

∫ t

η

‖(Sα)ε(τ)‖L(E)‖((Tα)ε(τ))′‖L(E)

(t− τ)α
dτ

≤ lim
η→0+

(t− η)1−α

Γ(2− α)
M1ε

−N

≤ T 1−α

Γ(2− α)
M1ε

−N .

Thus, we obtain the moderate bound for t ∈ (0, T ), i.e.

sup
t∈(0,T )

‖CDαt ((Sα)ε(t)(Tα)ε(t))‖L(E) ≤Mε−N .

It remains to prove the moderate bound for ‖CDαt ((Sα)ε(t)(Tα)ε(t))
∣∣
t=0
‖. From

Theorem 2.4 we obtain
CDαt ((Sα)ε(t)(Tα)ε(t))

∣∣
t=0

=
1

Γ(1 + α)
lim
t→0+

(Sα)ε(t)(Tα)ε(t)− (Sα)ε(0)(Tα)ε(0)
tα

=
1

Γ(1 + α)
lim
t→0+

((Sα)ε(t)− (Sα)ε(0))(Tα)ε(t)
tα

+
1

Γ(1 + α)
lim
t→0+

(Sα)ε(0))((Tα)ε(t)− (Tα)ε(0))
tα

= CDαt ((Sα)ε(t))
∣∣
t=0

(Tα)ε(0) + (Sα)ε(0)CDαt ((Tα)ε(t))
∣∣
t=0

.
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Estimating in norm, we obtain a moderate bound for ‖CDαt ((Sα)ε(t)(Tα)ε(t))
∣∣
t=0
‖.

Thus, (iii) is satisfied.
Similarly, one can prove that (Tα)ε(t)(Sα)ε(t), also satisfies all properties from

Definition (3.1). Thus, the space SEαM ([0,∞) : L(E)) is an algebra. One can
similarly prove that the space SNα([0,∞) : L(E)) is an ideal of SEαM ([0,∞) :
L(E)). �

Now we can define a Colombeau-type space as a factor algebra by

SGα([0,∞) : L(E)) =
SEαM ([0,∞) : L(E))
SNα([0,∞) : L(E))

. (3.2)

For every 0 < α < 1 elements of SGα([0,∞) : L(E)) will be denoted by S = [(Sα)ε],
where (Sα)ε is a representative of the class.

Similarly, one can define the following spaces: SEM (E) is the space of nets of
linear continuous mappings

Aε : E → E, ε ∈ (0, 1),

with the property that there exists constants N ∈ N, M > 0 and ε0 ∈ (0, 1) such
that

‖Aε‖L(E) ≤Mε−N , ε < ε0.

SN(E) is the space of nets of linear continuous mappings Aε : E → E, ε ∈ (0, 1),
with the property that for every a ∈ R, there exist M > 0 and ε0 ∈ (0, 1) such that

‖Aε‖L(E) ≤Mεa, ε < ε0.

The Colombeau space of generalized linear operators on E is defined by

SG(E) =
SEM (E)
SN(E)

.

Elements of SG(E) will be denoted by A = [Aε], where Aε is a representative of
the class.

Finally, we introduce the Colombeau space within which we will solve (1.2).
We give the definitions for arbitrary m ∈ N. Let m − 1 < α < m, m ∈ N.
EαM ([0,∞) : Hm(R)) is the space of nets

Gε : [0,∞)× R→ C, ε ∈ (0, 1),

with the following properties:
(i) Gε(·, ·) ∈ Cm−1([0,∞) : Hm(R)) ∩ Cm((0,∞) : Hm(R)).

(ii) limt→0+ ‖
dm

dtmGε(t,·)
tα−m ‖Hm = C < +∞.

(iii) For every T > 0 there exist M > 0, N ∈ N and ε0 > 0 such that

sup
t∈[0,T )

‖CDγt Gε(t, ·)‖Hm ≤Mε−N , ε < ε0, γ ∈ {0, . . . ,m− 1, α},

sup
t∈(0,T )

‖ d
m

dtm
Gε(t, ·)‖Hm ≤Mε−N , ε < ε0.

(3.3)

It is an algebra with respect to multiplication.
Similarly, for m − 1 < α < m, m ∈ N, Nα([0,∞) : Hm(R)) is the space of nets

Gε ∈ EαM ([0,∞) : Hm(R)) with the following properties:
(i) Gε(·, ·) ∈ Cm−1([0,∞) : Hm(R)) ∩ Cm((0,∞) : Hm(R)).

(ii) limt→0+ ‖
dm

dtmGε(t,·)
tα−m ‖Hm = C < +∞.
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(iii) For every T > 0 and a ∈ R there exist M > 0 and ε0 > 0 such that

sup
t∈[0,T )

‖CDγt Gε(t, ·)‖Hm ≤Mεa, ε < ε0, γ ∈ {0, . . . ,m− 1, α},

sup
t∈(0,T )

‖ d
m

dtm
Gε(t, ·)‖Hm ≤Mεa, ε < ε0.

(3.4)

The space Nα([0,∞) : Hm(R)) is an ideal of EαM ([0,∞) : Hm(R)).
The quotient space

Gα([0,∞) : Hm(R)) =
EαM ([0,∞) : Hm(R))
Nα([0,∞) : Hm(R))

is the corresponding Colombeau generalized function space related to the Sobolev
space Hm. Again, in this paper we will consider only the case m = 1 and m = 2, i.e.
the solution of our fractional evolution problem will be an element of Gα([0,∞) :
H1(R)) or Gα([0,∞) : H2(R)).

In a similar way, by omitting variable t, one can define spaces EαM (Hm(R)),
Nα(Hm(R)), and Gα(Hm(R)).

4. Uniformly continuous solution operators

Consider the Cauchy problem for the fractional evolution equation of order α
with 0 < α < 1,

CDαt u(t) = Au(t), t > 0; u(0) = x, (4.1)

where CDαt is the Caputo fractional derivative of order α, and A is a linear and
bounded operator defined on a Banach space E. The more general case when A is
a closed linear operator densely defined in a Banach space E was considered in [5].
As it is pointed out in [5], the problem (4.1) is well-posed if and only if the Volterra
integral equation

u(t) = x+
∫ t

0

gα(t− τ)Au(τ)dτ (4.2)

is well-possed, where gα(t) is defined for α > 0, by

gα(t) =

{
tα−1/Γ(α), t > 0,
0, t ≤ 0.

In the general case when A is a closed linear operator densely defined in a
Banach space E, strongly continuous solution operator for (4.1) is introduced in
[5]. Similarly, when A is linear and bounded, we introduce uniformly continuous
solution operator.

Definition 4.1. A family Sα(t), t ≥ 0, of linear and bounded operators on Banach
space E is called a uniformly continuous solution operator for (4.1) if the following
conditions are satisfied:

(i) Sα(t) is a uniformly continuous function for t ≥ 0 and Sα(0) = I, where I
is identity operator on E.

(ii) ASα(t)x = Sα(t)Ax, for all x ∈ E, t ≥ 0.
(iii) Sα(t)x is a solution of (4.2) for all x ∈ E, t ≥ 0.
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Definition 4.2. The infinitesimal generator A of a uniformly continuous solution
operator Sα(t), α > 0, t ≥ 0, for (4.1) is defined by

Ax = Γ(1 + α) lim
t↓0

Sα(t)x− x
tα

, (4.3)

for all x ∈ E.

The generator A could also be defined as

Ax = (CDαt Sα)(t)x
∣∣
t=0

,

since Jαt
CDαt Sα(t)x = Sα(t)x− x and for all functions v ∈ C(R+;E) holds

lim
t↓0

Jαt v(t)
gα+1(t)

= v(0)

(see [5]).

Remark 4.3. In the case 0 < α ≤ 1, the definition given by (4.3) also follows from
Theorem 2.4.

Definition 4.4 ([5]). The solution operator Sα(t) is called exponentially bounded
if there exist constants M ≥ 1 and ω ≥ 0 such that

‖Sα(t)‖ ≤Meωt, t ≥ 0.

Theorem 4.5 ([5, Theorem 2.5]). Let α > 0. Then exponentially bounded uni-
formly continuous solution operator Sα(t) is the solution operator for the Cauchy
problem (4.1) if and only if A ∈ L(E).

From Definition 4.2 it follows that every solution operator has a unique infini-
tesimal generator. If Sα(t) is a uniformly continuous solution operator satisfying
‖Sα(t)‖ ≤ Meωt, for some M ≥ 1 and ω ≥ 0, its infinitesimal generator is a
bounded linear operator.

On the other hand, every bounded linear operator A is the infinitesimal generator
of a uniformly continuous solution operator given by

Sα(t) = Eα(tαA) =
∞∑
n=0

tnαAn

Γ(1 + nα)
, α > 0, t ≥ 0.

For every 0 < α ≤ 1 this solution operator is unique as asserted in the following
theorem.

Theorem 4.6. Let 0 < α ≤ 1 and let Sα(t) and Tα(t) be exponential bounded
uniformly continuous solution operators with infinitesimal generators A and B,
respectively. If A = B then Sα(t) = Tα(t), for every t ≥ 0.

Proof. Since Sα(t) is exponential bounded there exist constants M ≥ 1 and ω1 ≥ 0
such that

‖Sα(t)‖ ≤Meω1t, t ≥ 0.

Then for Reλ > ω1 and x ∈ E we have

λα−1R(λα, A)x =
∫ ∞

0

e−λtSα(t)xdt,
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where R(λ,A) = (λI − A)−1 stands for the resolvent operator of A. Similarly, for
Tα(t) there exists ω2 ≥ 0 such that for Reλ > ω2 and x ∈ E we have

λα−1R(λα, A)x =
∫ ∞

0

e−λtTα(t)xdt,

and Sα(t) = Tα(t) follows from the uniqueness of the Laplace transform. �

Proposition 4.7. Let Sα(t), 0 < α ≤ 1, t ≥ 0, be a uniformly continuous solution
operator satisfying ‖Sα(t)‖ ≤Meωt, for some M ≥ 1 and ω ≥ 0. Then

(i) There exists a unique bounded linear operator A such that

Sα(t) = Eα(tαA), t ≥ 0.

(ii) The operator A in (i) is the infinitesimal generator of solution operator
Sα(t).

(iii) For every t ≥ 0,
CDαt Sα(t) = ASα(t) = Sα(t)A.

Proof. Fix 0 < α ≤ 1. From Theorem 4.5 we know that the infinitesimal generator
of Sα(t) is a bounded linear operator A. Also, A is the infinitesimal generator of
Eα(tαA) and therefore by Theorem 4.6, Sα(t) = Eα(tαA). All others assertions of
the proposition follow from (i). �

Integral representation stated in the next proposition will often be used in prov-
ing some auxiliary results as well as in proving our main result.

Proposition 4.8. Let 0 < α < 1 and let Sα(t) be a solution operator generated by
A. Then∫ t

0

Sα(t− τ)RLD1−α
τ f(τ)dτ =

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)f(τ)dτ. (4.4)

Proof. Fix 0 < α < 1. Taking into account the relation 2.3 in Proposition 2.1 one
gets∫ t

0

Sα(t− τ)RLD1−α
τ f(τ)dτ =

∫ t

0

∞∑
n=0

1
Γ(1 + nα)

(t− τ)nαAn RLD1−α
τ f(τ)dτ

=
∞∑
n=0

∫ t

0

1
Γ(1 + nα)

(t− τ)nαAn RLD1−α
τ f(τ)dτ

=
∞∑
n=0

Jnα+1
t An RLD1−α

t f(t) =
∞∑
n=0

Jnα+α
t Anf(t)

=
∞∑
n=0

1
Γ(nα+ α)

∫ t

0

(t− τ)nα+α−1Anf(τ)dτ

=
∫ t

0

(t− τ)α−1
∞∑
n=0

1
Γ(nα+ α)

(t− τ)nαAnf(τ)dτ

=
∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)f(τ)dτ.

�
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Similarly, the first order derivative of the previously integral representation has
the following form.

Proposition 4.9. Let 0 < α < 1 and let Sα(t) be a solution operator generated by
A. Then

d

dt

∫ t

0

Sα(t− τ)RLD1−α
τ f(τ)dτ =

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)∂τfdτ

+ tα−1Eα,α(tαA)f(0).
(4.5)

Proof. Fix 0 < α < 1. From the proof of Proposition 4.8 it follows that

d

dt

∫ t

0

Sα(t− τ)RLD1−α
τ f(τ)dτ =

∞∑
n=0

d

dt
Jnα+α
t Anf(t).

Further, since

d

dt
Jαt f(t) = RLD1−α

t f(t) = CD1−α
t f(t) +

f(0)tα−1

Γ(α)
= Jαt

d

dt
f(t) +

f(0)tα−1

Γ(α)
,

we have
∞∑
n=0

d

dt
Jnα+α
t Anf(t) =

∞∑
n=0

Jnα+α
t An

d

dt
f(t) +

∞∑
n=0

Jnαt tα−1Anf(0)
Γ(α)

=
∞∑
n=0

Jnα+α
t An

d

dt
f(t) +

∞∑
n=0

tnα+α−1

Γ(α+ nα)
Anf(0),

and similarly to the proof of Proposition 4.8 one finally gets the relation (4.5). �

Motivated by Proposition 2.6 we give the fractional Duhamel principle in the
case of solution operator.

Proposition 4.10. The solution of the Cauchy problem (1.1) with Caputo frac-
tional derivative is given by

u(t) = Sα(t)u0 +
∫ t

0

Sα(t− τ)RLD1−α
τ f(·, τ, u)dτ, (4.6)

where Sα(t) is a solution operator generated by A. The solution above is called mild
solution to the problem (1.1).

Proof. Since CDαt Sα(t) = ASα(t), for a continuous function its fractional integral
Jαt is a continuous function too and CDαt is a left inverse of fractional integral Jαt
for all α ≥ 0 and all continuous functions, it can be easily shown that u(t) given by
(4.6) satisfies the Cauchy problem (1.1). �

Remark 4.11. The solution of the Cauchy problem (1.1) can also be represented
by Caputo fractional derivative, but in that case one must additionally suppose
that f(·, 0, u0) = 0.
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5. Generalized uniformly continuous solution operators

First, recall that every linear and bounded operator on Banach space E is a
closed and densely defined operator in E. Therefore, all results in the previous
section continue to be valid in the case of linear and bounded operators on Banach
space.

Instead of the Cauchy problem (4.1) with closed and densely defined operator
A, let us now consider fractional Cauchy problem given by

CDαt u(t) = Ãu(t), t > 0; u(0) = x, (5.1)

where Ã is a generalized linear bounded operator.

Definition 5.1. Let 0 < α < 1. Sα ∈ SGα([0,∞) : L(E)) is called a Colombeau
uniformly continuous solution operator for (5.1) if it has a representative (Sα)ε
which is a uniformly continuous solution operator for (5.1) and for every ε small
enough.

Proposition 5.2. Let 0 < α < 1 and let (Sα)1ε and (Sα)2ε be representatives of a
generalized uniformly continuous solution operator Sα, with infinitesimal generators
Ã1ε and Ã2ε, respectively, for ε small enough. Then

Ã1ε − Ã2ε ∈ SN (E).

Proof. Fix 0 < α < 1. Then we have

Ã1ε − Ã2ε = (CDαt (Sα)1ε)(t)
∣∣
t=0
− (CDαt (Sα)2ε)(t)

∣∣
t=0

= CDαt ((Sα)1ε − (Sα)2ε)(t)
∣∣
t=0

.

Since
(Sα)1ε − (Sα)2ε ∈ SNα([0,∞) : L(E)),

we have that, for every a ∈ R, there exists M > 0 such that

‖CDαt ((Sα)1ε − (Sα)2ε)(t)
∣∣
t=0
‖L(E) ≤Mεa.

It implies that for every a ∈ R there exists M > 0 such that ‖Ã1ε − Ã2ε‖ ≤ Mεa.
Thus, Ã1ε − Ã2ε ∈ SN (E). �

Definition 5.3. Ã ∈ SG(E) is called the infinitesimal generator of a Colombeau
uniformly continuous solution operator Sα ∈ SGα([0,∞) : L(E)), 0 < α < 1, if Ãε
is the infinitesimal generator of the representative (Sα)ε, for every ε small enough.

Proposition 5.4. Let 0 < α < 1. Let Ã be the infinitesimal generator of a
Colombeau uniformly continuous solution operator Sα, and B̃ the infinitesimal gen-
erator of a Colombeau uniformly continuous solution operator Tα. If Ã = B̃, then
Sα = Tα.

Proof. Fix 0 < α < 1 and let Ñε = Ãε − B̃ε ∈ SN (E). Then from the property
(iii) in Proposition 4.7 we obtain

CDαt ((Sα)ε − (Tα)ε)(t)x = Ãε((Sα)ε − (Tα)ε)(t)x+ Ñε(Tα)ε(t)x.

By using fractional Duhamel principle (4.6) and since (Sα)ε(0) = (Tα)ε(0) = I, one
gets

((Sα)ε − (Tα)ε)(t)x =
∫ t

0

(Sα)ε(t− τ)RLD1−α
τ Ñε(Tα)ε(τ)xdτ. (5.2)



EJDE-2017/293 GENERALIZED UNIFORMLY CONTINUOUS SOLUTION OPERATORS 13

Then, from the integral representation given in Proposition 4.8 we have

((Sα)ε − (Tα)ε)(t)x =
∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)Ñε(Tα)ε(τ)xdτ

=
∫ t

0

(t− τ)α−1
∞∑
n=0

(t− τ)nαÃnε
Γ(α+ nα)

Ñε(Tα)ε(τ)xdτ

=
∫ t

0

∞∑
n=0

(t− τ)(n+1)α−1Ãnε
Γ((n+ 1)α)

Ñε(Tα)ε(τ)xdτ

=
∞∑
n=1

∫ t

0

(t− τ)nα−1Ãn−1
ε

Γ(nα)
Ñε(Tα)ε(τ)xdτ.

For t ∈ [0, T ), T > 0, we obtain estimate

‖((Sα)ε − (Tα)ε)(t)‖ ≤
∞∑
n=1

1
Γ(nα)

∫ t

0

(t− τ)nα−1‖Ãn−1
ε Ñε(Tα)ε(τ)‖dτ

≤ ‖Ñε‖ sup
t∈[0,T )

‖(Tα)ε(t)‖
∞∑
n=1

‖Ãε‖n−1 1
Γ(nα)

Tnα

nα

≤ ‖Ñε‖ sup
t∈[0,T )

‖(Tα)ε(t)‖
Tα

α

∞∑
n=0

Tnα‖Ãε‖n

Γ(α+ nα)

= ‖Ñε‖ sup
t∈[0,T )

‖(Tα)ε(t)‖
Tα

α
Eα,α(Tα‖Ãε‖),

and using the estimate (2.7) for Eα,α we have

‖((Sα)ε − (Tα)ε)(t)‖

≤ ‖Ñε‖ sup
t∈[0,T )

‖(Tα)ε(t)‖
Tα

α
Cα(1 + ‖Ãε‖(1−α)/α)(1 + T 1−α) exp(T‖Ãε‖1/α)

=
Cα
α
‖Ñε‖ sup

t∈[0,T )

‖(Tα)ε(t)‖(1 + ‖Ãε‖(1−α)/α)(T + Tα) exp(T‖Ãε‖1/α).

Now, we consider the case γ = α. For t ∈ [0, T ), T > 0, one similarly gets

‖CDαt ((Sα)ε − (Tα)ε)(t)‖ ≤ ‖Ñε‖ sup
t∈[0,T )

‖(Tα)ε(t)‖
∞∑
n=0

‖Ãε‖n

Γ(nα)
· T

nα

nα

= ‖Ñε‖ sup
t∈[0,T )

‖(Tα)ε(t)‖ · Eα(Tα‖Ãε‖).

Differentiation of integral representation (5.2) with respect to t, using integral
representation (4.5) one gets

d

dt
((Sα)ε − (Tα)ε)(t)x

=
∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)Ñε
d

dτ
(Tα)ε(τ)xdτ + tα−1Eα,α(tαÃε)Ñεx.

Then, for every T1 > 0 and t ∈ [T1, T ), the estimate in norm is

‖ d
dt

((Sα)ε − (Tα)ε)(t)‖
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≤ lim
η→0+

∫ t

η

(t− τ)α−1‖Eα,α((t− τ)αÃε)Ñε
d

dτ
(Tα)ε(τ)‖dτ

+ tα−1Eα,α(tα‖Ãε‖)‖Ñε‖

≤ lim
η→0+

sup
τ∈[η,T )

Eα,α((T − τ)α‖Ãε‖)‖Ñε‖ sup
τ∈[η,T )

‖ d
dτ

(Tα)ε(τ)‖ (T − η)α

α

+ Tα−1
1 Eα,α(Tα‖Ãε‖)‖Ñε‖.

Finally, since Ñε ∈ SN (E) it follows that for every a ∈ R there exists M > 0
such that

sup
t∈[0,T )

‖CDγt ((Sα)ε − (Tα)ε)(t)‖L(E) ≤Mεa, γ ∈ {0, α},

sup
t∈(0,T )

‖ d
dt

((Sα)ε − (Tα)ε)(t)‖L(E) ≤Mεa,

i.e. (Sα)ε − (Tα)ε ∈ SNα([0,∞) : L(E)). �

Definition 5.5. Let hε be a positive net satisfying hε ≤ ε−1. It is said that
Ã ∈ SG(E) is of hε-type if it has a representative Ãε such that

‖Ãε‖L(E) = O(hε), ε→ 0.

An element G ∈ Gα([0,∞) : H1(R)) is said to be of hε-type if it has a representative
Gε such that

‖Gε‖H1 = O(hε), ε→ 0.

The following proposition holds for generalized operators.

Proposition 5.6. Let 0 < α < 1. Every Ã ∈ SG(E) of hε-type, where hε ≤
C(log 1/ε)α, is the infinitesimal generator of some generalized uniformly continuous
solution operator Sα ∈ SGα([0,∞) : L(E)).

Proof. Fix 0 < α < 1. From Theorem 4.5 one knows that every linear and bounded
operator Ãε is the infinitesimal generator of some uniformly continuous solution
operator (Sα)ε(t) defined by

(Sα)ε(t) = Eα(tαÃε) =
∞∑
n=0

tnαÃnε
Γ(1 + nα)

.

Let us show that (Sα)ε ∈ SEαM ([0,∞) : L(E)). From the inequality for Mittag-
Leffler function it follows that there exists constant M > 0 such that

‖(Sα)ε(t)‖ ≤M exp(t‖Ãε‖1/α).

Since hε ≤ C(log 1/ε)α, we have

sup
t∈[0,T )

‖(Sα)ε(t)‖ ≤Mε−TC
1/α
,

for ε small enough. Also, since CDαt (Sα)ε(t) = Ãε(Sα)ε(t), for every t ≥ 0, we have
for every ε small enough

‖CDαt (Sα)ε(t)‖ ≤ ‖Ãε‖‖(Sα)ε(t)‖ ≤ C(log
1
ε

)αMε−TC
1/α
≤ CMε−α−TC

1/α
.
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It remains to prove the moderate bound for ‖ ddt (Sα)ε(t)‖. First, we have

d

dt
(Sα)ε(t) =

∞∑
n=0

t(n+1)α−1

Γ(α+ nα)
Ãn+1
ε

= tα−1Ãε

∞∑
n=0

tnα

Γ(α+ nα)
Ãnε

= tα−1ÃεEα,α(tαÃε).

Then, for every T1 > 0 and t ∈ [T1, T ), the estimate in norm is

‖ d
dt

(Sα)ε(t)‖ ≤ Tα−1
1 ‖Ãε‖Eα,α(tα‖Ãε‖)

≤ Tα−1
1 ‖Ãε‖Cα(1 + ‖Ãε‖(1−α)/α) · exp(‖Ãε‖1/αT )(1 + T 1−α)

≤ Tα−1
1 Cα(‖Ãε‖+ ‖Ãε‖1/α) · exp(‖Ãε‖1/αT )(1 + T 1−α)

≤ Tα−1
1 Cα((log

1
ε

)α + log
1
ε

) · exp(C1/αT log
1
ε

)(1 + T 1−α)

≤ 2Tα−1
1 Cα(1 + T 1−α)ε−1−C1/αT .

Thus finally we have (Sα)ε ∈ SEαM ([0,∞) : L(E)). �

Note that a Colombeau uniformly continuous solution operator always possess
an infinitesimal generator and it is unique. That follows from the fact that its
representative is a classical uniformly continuous solution operator for which there
exists a unique infinitesimal generator.

6. Existence and uniqueness result

In this section we specify the Banach space, i.e. we take E = L2(R). Instead
of the Cauchy problem (4.1) with closed and densely defined operator A on L2(R)
with domain D(A) = H1(R), we will consider fractional Cauchy problem given by

CDαt u(t) = Ãu(t), t > 0; u(0) = x,

where Ã is a generalized linear bounded operator L2-associated with A, i.e., for
every u ∈ H1(R), the following holds

‖(A− Ãε)u‖L2 → 0, ε→ 0.

Theorem 6.1. Let 0 < α < 1. Suppose that u0 ∈ Gα(H1(R)) and let the func-
tion f(x, t, u) be continuously differentiable with respect to t, globally Lipschitz with
respect to x and u with bounded second order derivative with respect to u and
f(x, t, 0) = 0. Also, suppose that ∂xf(x, t, u) and ∂tf(x, t, u) are globally Lips-
chitz function with respect to u. Let g1(x, t, u) := ∂uf(x, t, u) and g2(x, t, u) :=
∂tf(x, t, u) satisfy the same conditions as f(x, t, u).

Let the operator Ã ∈ SG(H1(R)) be of hε-type, with hε = o
(
(log(log 1/ε)α)α

)
,

such that ‖Ãεuε‖L2 ≤ hε‖uε‖L2 , for uε ∈ H1(R).
Then for every 0 < α < 1 there exists a unique generalized solution u ∈

Gα([0,∞) : H1(R)) to the Cauchy problem

CDαt u(t) = Ãu(t) + f(·, t, u), u(0) = u0. (6.1)
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An equivalent integral equation for the solution (i.e. mild solution) is given by

uε(t) = (Sα)ε(t)u0ε +
∫ t

0

(Sα)ε(t− τ)RLD1−α
τ f(·, τ, uε)dτ, (6.2)

where Sα ∈ SGα([0,∞) : L(H1(R))) is a Colombeau uniformly continuous solution
operator generated by Ã.

Remark 6.2. The existence of a solution for integral equation (6.2) can be proved
using a Banach principle of a fixed point.

Proof of Theorem 6.1. Fix 0 < α < 1. Since the operator Ã is of hε-type, with
hε = o((log log 1/ε)α), it is obvious that the operator Ã is the infinitesimal generator
of a Colombeau solution operator Sα ∈ SGα([0,∞) : L(H1(R))) given by Sα(t) =
Eα(tαÃ) (see Proposition 5.6). Also, from (4.6) we know that (6.2) represents a
solution to (6.1).

Let us show that this solution is an element of Gα([0,∞) : H1(R)). First, we
show that the solution satisfies

lim
t→0+

‖
d
dtuε(t, ·)
tα−1

‖H1 = C < +∞. (6.3)

Indeed, after differentiation of (6.2) with respect to t, using the first order derivative
of integral representation (4.5) one gets

d

dt
uε(t, ·)

=
d

dt
(Sα)ε(t)u0ε +

∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)∂τf(·, τ, uε(τ))dτ

+ tα−1Eα,α(tαÃε)f(·, 0, u0ε),

(6.4)

and by to the notation g1(x, t, u) = ∂uf(x, t, u) and g2(x, t, u) = ∂tf(x, t, u), we
have

‖ d
dt
uε(t, ·)‖L2 ≤ ‖ d

dt
(Sα)ε(t)u0ε‖L2

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖∂τf(·, τ, uε(τ))‖L2dτ

+ tα−1Eα,α(tα‖Ãε‖)‖f(·, 0, u0ε)‖L2

≤ ‖ d
dt

(Sα)ε(t)u0ε‖L2

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖g1‖L∞‖∂τuε(τ)‖L2dτ

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖g2‖L∞‖uε(τ)‖L2dτ

+ tα−1Eα,α(tα‖Ãε‖)‖f(·, 0, u0ε)‖L2 .

(6.5)

After applying the Gronwall’s inequality to (6.5) one gets

lim
t→0+

‖
d
dtuε(t, ·)
tα−1

‖L2 = C < +∞.
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Further, differentiation of (6.4) with respect to x, we have

‖∂x
d

dt
uε(t, ·)‖L2

≤ ‖ d
dt

(Sα)ε(t)∂xu0ε‖L2

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖∂x∂τf(·, τ, uε(τ))‖L2dτ

+ tα−1Eα,α(tα‖Ãε‖)‖∂xf(·, 0, u0ε)‖L2

≤ ‖ d
dt

(Sα)ε(t)∂xu0ε‖L2

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖∂xg1‖L∞‖∂τuε(τ)‖L2dτ

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖g1‖L∞‖∂x∂τuε(τ)‖L2dτ

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖∂xg2‖L∞‖uε(τ)‖L2dτ

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖g2‖L∞‖∂xuε(τ)‖L2dτ

+ tα−1Eα,α(tα‖Ãε‖)[‖∂uf(·, 0, u0ε)‖L∞‖∂xu0ε‖L2

+ ‖∂xf(·, 0, u0ε)‖L∞‖u0ε‖L2 ].

(6.6)

Again, after applying the Gronwall’s inequality one gets

lim
t→0+

‖
∂x

d
dtuε(t, ·)
tα−1

‖L2 = C < +∞,

and finally we have that property (6.3) is satisfied.
Further, we prove that one has the moderate bound for ‖CDγt uε(t, ·)‖H1 , γ ∈

{0, α}, and ‖ ddtuε(t, ·)‖H1 . First, we prove the moderate bound for ‖CDγt uε(t, ·)‖H1 ,
and consider the cases:

Case 1: γ = 0. From the representation (6.2) and Proposition 4.8 we obtain

‖uε(t)‖L2 ≤ ‖(Sα)ε(t)u0ε‖L2 +
∫ t

0

(t− τ)α−1‖Eα,α((t− τ)αÃε)‖ ‖f(·, τ, uε)‖L2dτ.

Next, using the estimate for Eα,α one gets

‖Eα,α(tαÃε)‖ ≤
∞∑
n=0

tnα‖Ãε‖n

Γ(α+ nα)
= Eα,α(tα‖Ãε‖)

≤ Cα(1 + ‖Ãε‖(1−α)/α)(1 + t1−α) exp(t‖Ãε‖1/α).

Denote
M̃T := sup

t∈[0,T )

‖Eα,α(tαÃε)‖. (6.7)

Note that for α = 1 it follows M̃T := supt∈[0,T ) ‖S(t)‖, where S(t) is a generalized
uniformly continuous semigroup of operators generated by the operator Ã (see [14]).
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Next,

M̃T ≤ Cα(1 + o((log log 1/ε)1−α))(1 + T 1−α) exp(T · o(log log 1/ε))

= O(log 1/ε),
(6.8)

by the well known properties of Landau’s symbol o. From

‖uε(t)‖L2 ≤ ‖(Sα)ε(t)u0ε‖L2 + M̃T

∫ t

0

(t− τ)α−1‖f(·, τ, uε)‖L2dτ

≤ ‖(Sα)ε(t)u0ε‖L2 + CM̃T

∫ t

0

(t− τ)α−1‖uε(τ)‖L2dτ,

using Gronwall’s inequality we obtain the moderate bound for ‖uε(t)‖L2 .
After differentiation of (6.2) with respect to x, using similar integral representa-

tion as the one in Proposition 4.8 we have

∂xuε(t) = (Sα)ε(t)∂xu0ε +
∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)∂xf(·, τ, uε)dτ

and

‖∂xuε(t)‖L2

≤ ‖(Sα)ε(t)∂xu0ε‖L2 +
∫ t

0

(t− τ)α−1‖Eα,α((t− τ)αÃε)‖‖∂x(f(·, τ, uε))‖L2dτ

≤ ‖(Sα)ε(t)∂xu0ε‖L2 + M̃T

∫ t

0

(t− τ)α−1‖∂uf‖L∞‖∂xuε(τ)‖L2dτ

+ M̃T

∫ t

0

(t− τ)α−1‖∂xf‖L∞‖uε(τ)‖L2dτ.

Since f is Lipschitz with respect to u and x the moderate bound for ‖∂xuε(t)‖L2

again follows from the Gronwall’s inequality.

Case 2: γ = α. From (6.1) we have

‖CDαt uε(t)‖L2 ≤ ‖Ãεuε(t)‖L2 + ‖f(·, t, uε)‖L2 .

Since f is globally Lipschitz with respect to u and f(x, t, 0) = 0, it follows the
moderate bound for ‖CDαt uε(t)‖L2 .

Differentiation of (6.1) with respect to x we have

‖∂Cx Dαt uε(t)‖L2 ≤ ‖∂x(Ãεuε(t))‖L2 + ‖∂x(f(·, t, uε))‖L2

≤ C(log 1/ε)α‖uε(t)‖H1 + ‖∂uf‖L∞‖∂xuε(t)‖L2

+ ‖∂xf‖L∞‖uε(t)‖L2 ,

and the moderate bound for ‖∂Cx Dαt uε(t)‖L2 immediately follows.
The moderate bound for ‖ ddtuε(t, ·)‖H1 follows after applying the Gronwall’s

inequality to inequalities (6.5) and (6.6).
To prove that this solution is unique in Colombeau space Gα([0,∞) : H1(R)),

suppose that there exist two solutions u and v to (6.1) and set ωε = uε − vε. This
difference satisfies

CDαt ωε(t) = Ãεωε(t) + f(·, t, uε)− f(·, t, vε) + Ñε(t), ωε(0) = ω0ε, (6.9)
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where Ñε(t) ∈ Nα([0,∞) : H1(R)) and ω0ε ∈ Nα(H1(R)). Then

ωε(t) = (Sα)ε(t)ω0ε +
∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)(f(·, τ, uε)

− f(·, τ, vε))dτ +
∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)Ñε(τ)dτ,
(6.10)

and

‖ωε(t)‖L2 ≤ ‖(Sα)ε(t)ω0ε‖L2 +
∫ t

0

(t− τ)α−1‖Eα,α((t− τ)αÃε)‖ · ‖f(·, τ, uε)

− f(·, τ, vε)‖L2dτ +
∫ t

0

(t− τ)α−1‖Eα,α((t− τ)αÃε)‖ · ‖Ñε(τ)‖L2dτ.

Since ‖Eα,α((t− τ)αÃε)‖ ≤ M̃T , 0 ≤ t ≤ T , 0 ≤ τ ≤ t, where M̃T is estimated by
(6.8) and since f is a Lipschitz function with respect to u, we obtain the N -bound
for ‖ωε(t)‖L2 .

Equation (6.9) implies

‖CDαt ωε(t)‖L2 ≤ ‖Ãεωε(t)‖L2 + ‖f(·, t, uε)− f(·, t, vε)‖L2 + ‖Ñε(t)‖L2 ,

and the N -bound for ‖CDαt ωε(t)‖L2 immediately follows.
Differentiation of (6.10) with respect to x we have

‖∂xωε(t)‖L2

≤ ‖(Sα)ε(t)∂xω0ε‖L2

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖∂uf(·, τ, uε)∂xuε − ∂uf(·, τ, vε)∂xvε‖L2dτ

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖∂xf(·, τ, uε)uε − ∂xf(·, τ, vε)vε‖L2dτ

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)α‖Ãε‖)‖∂xÑε(τ)‖L2dτ.

However, f has bounded second order derivative with respect to u, and similarly
to [14] we have

‖∂uf(·, τ, uε)∂xuε − ∂uf(·, τ, vε)∂xvε‖L2

≤ C1‖∂xuε(τ)‖L2‖ωε(τ)‖H1 + C2‖∂xωε(τ)‖L2 .

Also, since ∂xf is Lipschitz with respect to u we have

‖∂xf(·, τ, uε)uε − ∂xf(·, τ, vε)vε‖L2

≤ ‖∂xf(·, τ, uε)‖L∞‖ωε(τ)‖L2 + ‖vε(τ)‖H1‖∂2
uf(·, τ, ỹ)‖L∞‖ωε(τ)‖L2 ,

for some function ỹ ∈ H1(R), and the N -bound for ‖∂xωε(t)‖L2 follows from the
Gronwall’s inequality.

Differentiation of (6.9) with respect to x yields

‖∂Cx Dαt ωε(t)‖L2 ≤ ‖∂x(Ãεωε(t))‖L2 + ‖∂x(f(·, t, uε)− f(·, t, vε))‖L2 + ‖∂xÑε(t)‖L2 ,

and the N -bound for ‖∂Cx Dαt ωε(t)‖L2 immediately follows.
The N -bound for ‖ ddtωε(t)‖H1 can be obtained in a similar manner: first by dif-

ferentiating equation (6.10) with respect to t, then differentiating this new equation
with respect to x, and, at the end, by applying the Gronwall’s inequality.
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Finally, it follows that ωε := uε − vε ∈ Nα([0,∞) : H1(R)), i.e. the solution is
unique. �

Remark 6.3. If Ã ∈ SG(H2(R)) is an operator of hε-type with

hε = o
(

(log(log 1/ε)α)α
)
,

similarly one can prove that solution to (6.1) is also represented by (6.2) and this
unique solution belongs to Gα([0,∞) : H2(R)).

Definition 6.4. The solution u of problem (6.1) introduced in Theorem 6.1 is
called generalized solution of the equation

CDαt u(t) = Ãu(t) + f(·, t, u)

with generalized operators.

7. Comparison of solutions to the original and approximate problems

In this section we prove that, under certain additional conditions, the solutions
of problem (4.1) and corresponding approximate problem (5.1) are L2-associated.

Theorem 7.1. Let 0 < α < 1. Assume that there exists the solution, uε ∈ H2(R),
of the equation

CDαt uε(x, t) = Auε(x, t) + f(x, t, uε(x, t)), t > 0, x ∈ R, uε(0) = u0ε, (7.1)

where A is a closed linear operator densely defined in the Banach space L2(R) with
domain D(A) = H1(R) and property A : H2(R) → H1(R). Let vε be a solution of
the corresponding approximate equation with the same initial data:

CDαt vε(x, t) = Ãεvε(x, t) + f(x, t, vε(x, t)), t > 0, x ∈ R, vε(0) = u0ε, (7.2)

where f and Ã ∈ SG(H1(R)) are given as in Theorem 6.1. Additionally, let the
generalized operator Ã satisfies:

(i) ‖Ãεuε‖L2 ≤ C‖uε‖H1 , for uε ∈ H2(R), where C does not depend on ε.
(ii) ‖(A− Ãε)uε‖H1 → 0, for uε ∈ H2(R), when ε→ 0.

Then the solutions uε and vε are L2−associated, i.e., for every T > 0,

sup
t∈[0,T )

‖uε(t)− vε(t)‖L2 → 0, as ε→ 0.

Remark 7.2. The generalized operator Ã satisfying properties (i) and (ii) can
be obtained, for instance, by regularization of space fractional or integer order
derivatives appearing in the operator A. For details we refer to [14].

Proof of Theorem 7.1. Fix 0 < α < 1. Since uε and vε satisfy the equations (7.1)
and (7.2), respectively, one gets

CDαt (uε(x, t)− vε(x, t)) = Ãε(uε(x, t)− vε(x, t)) + (A− Ãε)uε(x, t)
+ f(x, t, uε)− f(x, t, vε).

(7.3)

Put ωε = uε − vε. Then (7.3) becomes
CDαt ωε(t) = Ãεωε(t) + f(·, t, uε)− f(·, t, vε) +Nε(t), ωε(0) = 0,
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where Nε(t) = (A− Ãε)uε(·, t). Then ωε satisfies

ωε(t) =
∫ t

0

(Sα)ε(t− τ)RLD1−α
τ (f(·, τ, uε)− f(·, τ, vε))dτ

+
∫ t

0

(Sα)ε(t− τ)RLD1−α
τ Nε(τ)dτ,

and from integral representation (4.4) it follows that

ωε(t) =
∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)(f(·, τ, uε)− f(·, τ, vε))dτ

+
∫ t

0

(t− τ)α−1Eα,α((t− τ)αÃε)Nε(τ)dτ.

The estimation in the norm gives

‖ωε(t)‖L2 ≤
∫ t

0

(t− τ)α−1‖Eα,α((t− τ)αÃε)(f(·, τ, uε)− f(·, τ, vε))‖L2dτ

+
∫ t

0

(t− τ)α−1‖Eα,α((t− τ)αÃε)Nε(τ)‖L2dτ.

By assumption (i) we have ‖Ãεuε‖L2 ≤ C‖uε‖H1 , where C does not depend on
ε. Therefore

‖Eα,α(tαÃε)uε‖L2 ≤ Eα,α(tαC)‖uε‖H1 ,

for uε ∈ H2(R). Further, from the assumption (ii) it follows

‖Eα,α((t− τ)αÃε)Nε(τ)‖L2 → 0,

as ε→ 0. Using that ‖∂uf‖L∞ ≤ C1 <∞ and the estimate

‖f(·, s, uε)− f(·, s, vε)‖L2 ≤ ‖∂uf‖L∞ · ‖uε(s)− vε(s)‖L2 ≤ C1‖ωε(s)‖L2 ,

Gronwall’s inequality gives supt∈[0,T ) ‖ωε(t)‖L2 → 0, as ε→ 0. �

Remark 7.3. The similar result can be obtained in the case when A is a closed
linear operator densely defined in the Banach space L2(R) with domain D(A) =
H2(R) and property A : H4(R) → H2(R), assuming that there exists the solution
uε ∈ H4(R).

8. Applications to fractional differential equations with space
variable coefficients

In this section we give the explicit examples and illustrate how one can obtain
the approximate operator Ã for a given (integer or fractional) differential operator
A. In these examples, the corresponding generalized operators will be in the form
of regularized operators. The regularization is necessary in order to transform
unbounded differential operators into bounded operators. In all examples that we
list below, one can prove that the operators A and Ã satisfy similar properties (i)
and (ii) from Theorem 7.1 (for details we refer [14]).
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8.1. Time fractional reaction-diffusion equation. Let 0 < α < 1 and let
f(x, t, u(x, t)) describes the outer force in the Cauchy problem for equation with
space variable coefficients, i.e.

CDαt u(x, t) = λ(x)∂2
xu(x, t) + f(x, t, u(x, t), t > 0, x ∈ R,

where the function f satisfy conditions from the Theorem 6.1 and λ(x) is a such that
the operator A = λ(x)∂2

x satisfies the conditions from Remark 7.3 (for example, one
can choose λ ∈ L∞(R)). The equation of this type is very important in the theory
of fractional Brownian motion and anomalous transport of premises [27]. Also, this
equation is used in population biology to model the spread of invasive species. In
that case, u(x, t) is the population density at location x ∈ R and time t > 0. The
first term on the right-hand side is the diffusion term (λ(x) is a diffusion coefficient)
and it models migration, while the second term f(x, t, u(x, t)) is the reaction term
that models population growth.

Instead of the previous problem let us consider the corresponding approximate
problem

CDαt u(x, t) = Ãu(x, t) + f(x, t, u(x, t)), t > 0, x ∈ R,
where the operator Ã ∈ SG(H2(R)) is represented by the nets of operators

Ãε : H2(R)→ H2(R),

Ãεuε = λε(x)(∂2
xuε ∗ φhε),

such that λε ∈ H2(R), ‖λε‖H2(R) = O
(

(log(log 1/ε)α)α/2
)

, φhε(x) = hεφ(xhε),

where hε = o
(

(log(log 1/ε)α)α/5
)

, φ ∈ C∞0 (R), φ(x) ≥ 0 and
∫
φ(x)dx = 1.

Then, the mild solution is given by (6.2) and the solution belongs to Colombeau
space Gα([0,∞) : H2(R)).

8.2. Time-space fractional reaction-diffusion equation. Instead of the Cauchy
problem for the time-space fractional equation with variable coefficients and with
f satisfying conditions from the Theorem 6.1, let us consider the corresponding
approximate problem, i.e.

CDαt u(t) = Ãβu(t) + f(·, t, u),

where 0 < α < 1, 1 < β < 2, the operator Ãβ ∈ SG(H2(R)) is represented by the
nets of operators

(Ãβ)ε : H2(R)→ H2(R),

(Ãβ)εuε = λε(x)(Dβ+uε ∗ φhε),

where Dβ+ is the left Liouville fractional derivative of order β on the whole axis R
given by

(Dβ+u)(x) =
1

Γ(2− β)
( d
dx

)2 ∫ x

−∞

u(ξ)
(x− ξ)β−1

dξ,

λε ∈ H2(R) and φhε(x) satisfies the same properties as in the case of time fractional
diffusion equation.

Then, the mild solution is given by (6.2) and the solution belongs to Colombeau
space Gα([0,∞) : H2(R)). The same result holds if instead of left βth Liouville
fractional derivative in the fractional operator Ãβ , 1 < β < 2, one uses right βth
Liouville fractional derivative or Riesz βth fractional derivative.



EJDE-2017/293 GENERALIZED UNIFORMLY CONTINUOUS SOLUTION OPERATORS 23

8.3. Time-space fractional reaction-advection-diffusion equation. Let 0 <
α < 1, 0 < β ≤ 1, 1 < γ ≤ 2 and consider fractional equation

CDαt u(t) = −a(x)Dβ+u(t) + b(x)Dγ+u(t) + f(·, t, u),

where a(x) and b(x) are such that corresponding differential operator A again sat-
isfies the conditions from Remark 7.3.

Such equation has a physical meaning, since it is an appropriate model for many
interesting phenomena. For example, it models the transport of a chemical or
biological tracer carried by water through a medium that is uniform, porous and
saturated. In that case, u is a solute concentration, a(x) and b(x) represent fluid
velocity and the dispersion, respectively, while f is a given contaminant source
which is common in hydrogeological phenomena.

Again we consider the corresponding approximate Cauchy problem for the time-
space fractional reaction-advection-diffusion equation with variable coefficients and
with f satisfying conditions from the Theorem 6.1, i.e.

CDαt u(t) = Ãβ,γu(t) + f(·, t, u),

where 0 < α < 1, 0 < β ≤ 1, 1 < γ ≤ 2 and the operator Ãβ,γ ∈ SG(H2(R)) is
represented by the nets of operators

(Ãβ,γ)ε : H2(R)→ H2(R),

(Ãβ,γ)εuε = −aε(x)(Dβ+uε ∗ φhε) + bε(x)(Dγ+uε ∗ φhε),

assuming that functions aε and bε satisfy similar conditions as λε in time fractional
diffusion equation.

The mild solution is given by (6.2), the solution belongs to Colombeau space
Gα([0,∞) : H2(R)) and one can uses right Liouville fractional derivative or Riesz
fractional derivative instead of the left Liouville fractional derivative.
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