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IMPROVED LIFESPAN OF SOLUTIONS TO AN INVISCID
SURFACE QUASI-GEOSTROPHIC MODEL

ZHIHONG WEN

Abstract. This article consider the two-dimensional (2D) inviscid surface
quasi-geostrophic (SQG) model. By studying the decay estimate of the opera-

tor eR
2
1t, we obtain an improved lifespan of the solutions to the corresponding

model. More precisely, if the initial data is of size ε, then the lifespan satisfies
Tε ' ε−4/3, which improves the result obtained via hyperbolic methods.

1. Introduction

The classical 2D inviscid surface quasi-geostrophic (SQG) equation has the form

∂tθ + (u · ∇)θ = 0,

u = (−R2θ,R1θ),

θ(x, 0) = θ0(x),
(1.1)

where the real scalar function θ = θ(x, t) represents the potential temperatures of
the fluid, and

R1 := ∂x1Λ−1,R2 := ∂x2Λ−1 (Λ := (−∆)1/2)

are the standard 2D Riesz transforms. The SQG equation is an important model
in geophysical fluid dynamics. In particular, it is the special case of the general
quasi-geostrophic approximations for atmospheric and oceanic fluid flow with small
Rossby and Ekman numbers, see [7, 16] and the references cited there. Mathe-
matically, as pointed out by Constantin, Majda and Tabak [7], the inviscid SQG
equation shares many parallel properties with those of the 3D Euler equations such
as the vortex-stretching mechanism and thus serves as a lower-dimensional model
of the 3D Euler equations.

The mathematical study on the SQG equation is divided into two major cases.
The first case is the dissipative SQG equation with fractional Laplacian, namely
(1.1) adding Λα, which has recently attracted enormous attention and significant
progress has been made on the global well-posedness issue. The global regularity
problem for the SQG equation with subcritical (α > 1) can be found in [9, 17]
Constantin, Córdoba and Wu in [6] first addresses the global regularity issue for
the critical case (α = 1) and obtained a small data global existence result. Since
then, small data global existence results have been obtained in various functional
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settings (see, e.g., [10, 5, 4]). Recently, the global regularity without small condition
for the SQG equation with critical dissipation has been successfully resolved (see,
e.g., [1, 8, 14, 15]). The global regularity issue for the supercritical case (0 < α < 1)
remains outstandingly open (see [11, 18] for the eventual regularity).

The second case is the inviscid case (1.1) which is probably the simplest dy-
namical scalar equation, however, the global regularity problem still remains open.
The local well-posedness and blow-up criterion of (1.1) were first established in
the Sobolev spaces by Constantin, Majda and Tabak [7]. Subsequently, there are
various results available in different function spaces (see for instance [19, 3, 17, 21]).
We remark that aside from local well-posedness and breakdown criteria not much is
known about the well-posedness of the inviscid SQG equation. As a matter of fact,
the global small data well-posednes result of the inviscid case is also an unsolved
problem. Recently, Wu-Xu-Ye [20] established the global smooth solutions to the
damped SQG equation with small initial data.

Cannone, Miao, and Xue [2] proved the existence of global strong solutions to
the following dispersive SQG equation with supercritical dissipation

∂tθ + (u · ∇)θ + Λαθ +KR1θ = 0, 0 < α < 1.

More precisely, they show that for given initial data θ0 there exists K large enough
such that the solution is global. Very recently, Elgindi and Widmayer [13] consid-
ered the following dispersive SQG equation (without any dissipation)

∂tθ + (u · ∇)θ = R1θ,

u = (−R2θ,R1θ),

θ(x, 0) = θ0(x).
(1.2)

By studying the anisotropic linear semigroup eR1t and using the stationary phase
lemma, the lifespan of the above system (1.2) was given in [13] as follows

Tε ' ε−4/3. (1.3)

Let us also point out that Elgindi [12] considered the following inviscid porous
medium equation

∂tθ + (u · ∇)θ = 0,
u = −∇p− θe2,
∇ · u = 0,

θ(x, 0) = θ0(x).

(1.4)

By classifying all stationary solutions of the inviscid porous medium equation under
mild conditions, he proved that sufficiently regular perturbations which are also
small must be globally regular and strongly converge to a steady state.

In this article, we consider system (1.2) when replacing R1θ by R2
1θ. More

precisely, we consider
∂tθ + (u · ∇)θ = R2

1θ,

u = (−R2θ,R1θ),

θ(x, 0) = θ0(x).

(1.5)

By establishing the decay estimate of the operator eR
2
1t (see Lemma 2.1), we also

obtain the lifespan (1.3) for the above system (1.5). Precisely, the main result can
be stated as follows.
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Theorem 1.1. Let s1 > 4, s2 > 3 and ε be a sufficiently small positive constant. If
‖θ0‖Hs1 +‖θ0‖W s2,1 ≤ ε, then there exists a unique solution θ ∈ C([0, Tε];Hs1(R2))
of the system (1.5), where Tε satisfies

Tε ' ε−4/3.

Moreover,
‖θ(t)‖Hs1 . ε, ∀t ∈ [0, T ].

It is well-known that by using hyperbolic methods, it is easy to get the maximal
existence time Tε with Tε ≥ C

ε . Thus, it is clear that Theorem 1.1 improves this
result.

Remark 1.2. Theorem 1.1 still holds for the system

∂tθ + (u · ∇)θ = R2
2θ,

u = (−R2θ,R1θ),

θ(x, 0) = θ0(x).

(1.6)

The proof is the same as that of Theorem 1.1.

2. Proof of Theorem 1.1

We first apply (I + Λ)s (s > 0) to the equation (1.5) and multiply the resultant
by (I + Λ)sθ, add them up to to conclude that

d

dt
‖θ(t)‖2Hs + ‖R1θ‖2Hs = −

∫
(I + Λ)s(u · ∇θ)(I + Λ)sθ dx, (2.1)

where we have used∫
(I + Λ)sR2

1θ(I + Λ)sθ dx = −
∫

(I + Λ)sR1θ (I + Λ)sR1θ dx = ‖R1θ‖2Hs .

Thanks to the Kato-Ponce inequality and the divergence condition, we have∫
(I + Λ)s(u · ∇θ)(I + Λ)sθ dx =

∫
[(I + Λ)s, u · ∇]θ(I + Λ)sθ dx

≤ C(‖∇u‖L∞ + ‖∇θ‖L∞)‖θ‖2Hs .
(2.2)

Putting (2.2) into (2.1) yields

d

dt
‖θ(t)‖2Hs + ‖R1θ‖2Hs ≤ C(‖∇u‖L∞ + ‖∇θ‖L∞)‖θ‖2Hs .

By integrating the above inequality in time, we obtain

‖θ(t)‖2Hs +
∫ t

0

‖R1θ(τ)‖2Hs dτ ≤ ‖θ0‖2HseC
R t
0 (‖∇u(τ)‖L∞+‖∇θ(τ)‖L∞ ) dτ . (2.3)

Next, our goal is to estimate ‖∇u‖L∞ and ‖∇θ‖L∞ at the right-hand side of (2.3).
To this end, we apply the Duhamel principle to the first equation of the system
(1.5) to show

θ(x, t) = eR
2
1tθ0 −

∫ t

0

eR
2
1(t−τ)(u · ∇θ)(τ) dτ. (2.4)

The following lemma concerns the decay estimate of the operator eR
2
1t, which is a

key component in proving our main result.



4 Z. WEN EJDE-2017/290

Lemma 2.1. For any ρ > 2, it holds

‖eR
2
1tf‖L∞ ≤ C(1 + t)−1/2‖f‖Wρ,1 , (2.5)

‖eR
2
1tR1f‖L∞ ≤ C(1 + t)−1/2‖f‖Wρ,1 , (2.6)

‖eR
2
1tR2f‖L∞ ≤ C(1 + t)−1/2‖f‖Wρ,1 . (2.7)

Proof of Lemma 2.1. We first prove (2.5). Using the polar coordinates ξ1 = r cosα,
ξ2 = r sinα, we get the estimate

‖eR
2
1tf‖L∞ ≤ ‖e

− ξ21
|ξ|2

t
f̂(ξ)‖L1

≤ C
∫ 2π

0

e−t cos
2 α

∫ ∞
0

|f̂(ξ)|r dr︸ ︷︷ ︸
N

dα.

Now we show that N can be bounded by

N ≤ C‖f‖Wρ,1 .

As a matter of fact, it is not hard to see that

N =
∫ ∞

0

|(1 + |ξ|)ρf̂(ξ)|r
(1 + |ξ|)ρ

dr

=
∫ ∞

0

| ̂(1 + Λ)ρf(ξ)|r
(1 + r)ρ

dr

≤ C
∫ ∞

0

‖(1 + Λ)ρf‖L1 r

(1 + r)ρ
dr

≤ C‖f‖Wρ,1

∫ ∞
0

r

(1 + r)ρ
dr ≤ C‖f‖Wρ,1 .

It directly gives

‖eR
2
1tf‖L∞ ≤ C‖f‖Wρ,1

∫ 2π

0

e−t cos
2 αdα. (2.8)

By the simple calculation, we get∫ 2π

0

e−t cos
2 αdα = 4

∫ π/2

0

e−t cos
2 αdα

= 4
∫ π/4

0

e−t cos
2 αdα+ 4

∫ π/2

π/4

e−t cos
2 αdα

≤ 4
∫ π/4

0

e−t(
√

2
2 )2dα+ 4

√
2

∫ π/2

π/4

e−t cos
2 α sinαdα

≤ πe−t/2 − 4
√

2t−1/2

∫ π/2

π/4

e−t cos
2 αd(t1/2 cosα)

≤ C(1 + t)−1/2.

(2.9)

Combining (2.8) and (2.9) implies the desired estimate (2.5). Noting the simple
fact that | sinα|, | cosα| ≤ 1, the estimates (2.6) and (2.7) follow directly from the
proof of (2.6). Thus, the proof is complete. �
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The estimate (2.6) can be improved as

‖eR
2
1tR1f‖L∞ ≤ C(1 + t)−1‖f‖Wρ,1 .

The estimate (2.6) itself would suffice our purpose.
If we denote L1 = ∇∇⊥Λ−1 and L2 = ∇, then L1θ = ∇u and L2θ = ∇θ.

Applying Li (i = 1, 2) to the first equation of the system (1.5) and using the
Duhamel principle yield

Liθ(x, t) = eR
2
1tLiθ0 −

∫ t

0

eR
2
1(t−τ)Li(u · ∇θ)(τ) dτ. (2.10)

Recalling the above mentioned estimates of Lemma 2.1 and invoking some simple
embedding allows us to deduce

‖Liθ‖L∞

≤ ‖eR
2
1tLiθ0‖L∞ +

∫ t

0

‖eR
2
1(t−τ)Li(u · ∇θ)(τ)‖L∞ dτ

≤ C(1 + t)−1/2‖∇θ0‖W s2−1,1 + C

∫ t

0

(1 + t)−1/2‖∇(u · ∇θ)(τ)‖W s1−2,1 dτ

≤ C(1 + t)−1/2‖θ0‖W s2,1 + C

∫ t

0

(1 + t)−1/2‖(u · ∇θ)(τ)‖W s1−1,1 dτ

≤ C(1 + t)−1/2‖θ0‖W s2,1 + C

∫ t

0

(1 + t)−1/2‖θ(τ)‖2Hs1 dτ.

(2.11)

If we assume for any t ∈ [0, T ] that ‖θ(t)‖Hs1 ≤ 2ε, then from (2.11) we deduce
that

‖Liθ‖L∞ ≤ C̃εt−1/2 + C̃ε2t1/2, (2.12)

where C̃ > 0 is an absolute constant. The above estimate together with the estimate
(2.3) yields for any t ∈ [0, T ] that

‖θ(t)‖Hs1 ≤ ‖θ0‖Hs1 e
C
2

R t
0 (‖∇u(τ)‖L∞+‖∇θ(τ)‖L∞ ) dτ

≤ ‖θ0‖Hs1 e
C
2

R t
0 ( eCετ−1/2+ eCε2τ1/2) dτ

≤ ‖θ0‖Hs1 e
C
2 (2 eCεt1/2+ 2 eC

3 ε2t3/2).

(2.13)

Thus, if

‖θ(t)‖Hs1 ≤ 2ε, ∀ t ∈ [0, T ],

then it suffices that

CC̃εT 1/2 +
CC̃

3
ε2T 3/2 = ln 2,

which further implies T ' ε−4/3. This completes the proof of Theorem 1.1
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