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Abstract. In this article, a family of nonlinear diffusion equations involving

multi-term Caputo-Fabrizio time fractional derivative is investigated. Some

maximum principles are obtained. We also demonstrate the application of the
obtained results by deriving some estimation for solution to reaction-diffusion

equations.

1. Introduction

Luchko [8] obtained a maximum principle for the generalized time-fractional
diffusion equation on an open bounded domain by applying an extremum prin-
ciple involving Caputo-Dzherbashyan fractional derivative. Later, the maximum
principles for generalized time-fractional diffusion equations (multi-term diffusion
equation and the diffusion equation of distributed order) with Caputo and Riemann-
Liouville type derivatives were presented by Luchko [9], and Al-Refai and Luchko
[1] respectively. Alsaedi et al. [2] proved an inequality for fractional derivatives
related to the Leibniz rule and used it to derive maximum principles for time and
space fractional heat equations with nonlinear diffusion. For further details on the
topic, see [3, 5, 6, 7, 10, 12].

Here, in contrast to the above referenced works, we study a nonlinear diffu-
sion equation with multi-term Caputo-Fabrizio time fractional derivative (without
singular kernel) given by

P(CFDtu)(x, t) = −L(u)(x, t) + F (x, t, u(x, t)), (1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded open domain in RN with a smooth boundary
∂Ω, L is a uniformly elliptic operator given by

L(u) = −
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂u

∂xi
,

P(CFDtu) = CFD
α

t u+
m∑
i=1

λCFi Dαi
t u, 0 < αm < · · · < α1 < α < 1, λi ≥ 0,
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where i = 1, 2, . . . ,m, CFDα
t denotes Caputo-Fabrizio fractional derivative of order

0 < α < 1 defined by

CFDα
t f(t) =

(2− α)M(α)
2(1− α)

∫ t

0

exp(− α

1− α
(t− s))f ′(s)ds, t ≥ 0,

M(α) is a normalization constant depending on α. For details about fractional
derivative without singular kernel, we refer the reader to [4].

2. Preliminaries

In this section, we present some useful theorems related to our work.

Lemma 2.1. [11, 13] Let u ∈ C2(Ω) be a function attaining its maximum at a
point x0 inside Ω ⊆ Rn and A = (aij)n×n, x ∈ Ω be a positive definite matrix.
Then

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj

∣∣∣
x=x0

≤ 0.

Theorem 2.2. Let 0 < α < 1. Assume that f ∈ C1([0, T ]) attains its maximum
on the interval [0, T ] at the point t0 ∈ (0, T ]. Then

CFDα
t f(t0) ≥ (2− α)M(α)

2(1− α)
exp(− αt0

1− α
)
[
f(t0)− f(0)

]
≥ 0.

Proof. As in [12], we introduce an auxiliary function

y(t) = f(t)− f(t0), t ∈ [0, T ].

It is easy to deduce that y ∈ C1([0, T ]) and the following properties hold:
(1) y(t) ≤ 0, for all t ∈ [0, T ];
(2) y(t0) = y′(t0) = 0;
(3) y(t) = (t− t0)x(t) with x ∈ C([0, T ]) and x(t) ≤ 0 for all t ∈ [0, t0].

In consequence, we obtain

CFDα
t y(t) =

(2− α)M(α)
2(1− α)

∫ t

0

exp(− α

1− α
(t− s))y′(s)ds

=
(2− α)M(α)

2(1− α)

∫ t

0

exp(− α

1− α
(t− s))f ′(s)ds

= CFDα
t f(t).

Note that y(t) ≤ 0 for all t ∈ [0, t0] and y(t0) = 0. Then, integrating by parts, we
obtain

CFDα
t y(t0) =

(2− α)M(α)
2(1− α)

∫ t0

0

exp(− α

1− α
(t0 − s))y′(s)ds

=
(2− α)M(α)

2(1− α)
exp(− α

1− α
(t0 − s))y(s)

∣∣∣t0
0

− (2− α)M(α)α
2(1− α)(1− α)

∫ t0

0

exp(− α

1− α
(t0 − s))y(s)ds

≥ − (2− α)M(α)
2(1− α)

exp(− αt0
1− α

[f(0)− f(t0)])
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=
(2− α)M(α)

2(1− α)
exp(− αt0

1− α
[f(t0)− f(0)]) ≥ 0.

�

3. Some maximum principles

In the section, we derive some maximum principles for the following parabolic
type fractional differential operator without singular kernel

Qα(u) = P (CFDtu)(x, t) + L(u)− h(x, t)u

= P (CFDtu)(x, t)−
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj

+
n∑
i=1

bi(x, t)
∂u

∂xi
− h(x, t)u,

(3.1)

where h(x, t) ≤ 0 ((x, t) ∈ Ω × [0, T ]) is a bounded function. Let us begin with a
weak maximum principle.

Theorem 3.1. If u ∈ C(Ω × [0, T ]) ∩ C2,1(Ω × (0, T )) satisfies Qα(u) ≤ 0 (Q is
defined by (3.1)), then the following inequality holds:

u(x, t) ≤ max
{

max
x∈Ω

u(x, 0), max
(x,t)∈∂Ω×(0,T ]

u(x, t), 0
}
.

Proof. Assume that the function u(x, t) attains its positive maximum u(x0, t0) at
a point (x0, t0) ∈ Ω× (0, T ]. By Lemma 2.1, we obtain

Lu(x, t)|(x0,t0) = −
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
|(x0,t0) +

n∑
i=1

bi(x, t)
∂u

∂xi
|(x0,t0) ≥ 0. (3.2)

By Theorem 2.2, we have

P(CFDtu)(x0, t0)

= CFDα
t u(x0, t0) +

m∑
i=1

λi
CFDαi

t u(x0, t0)

=
(2− α)M(α)

2(1− α)
exp(− αt0

1− α
)
[
u(x0, t0)− u(x0, 0)

]
+

m∑
i=1

λi
(2− αi)M(αi)

2(1− αi)
exp(− αit0

1− αi
)
[
u(x0, t0)− u(x0, 0)

]
> 0.

(3.3)

Applying the condition h(x, t) ≤ 0, one can easily deduce from inequalities (3.2)
and (3.3) that

(Qαu)(x0, t0) > P (CFDt)u(x0, t0)− h(x0, t0)u(x0, t0) > 0,

which contradicts the condition (Qαu)(x, t) ≤ 0 for all (x, t) ∈ Ω× (0, T ]. �

Analogously, we can prove the following minimum principle.

Theorem 3.2. If u ∈ C(Ω × [0, T ]) ∩ C2,1(Ω × (0, T )) satisfies Qα(u) ≥ 0, then
the following inequality holds:

u(x, t) ≥ min
{

min
x∈Ω

u(x, 0), min
(x,t)∈∂Ω×(0,T ]

u(x, t), 0
}
.
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4. Applications of maximum and minimum principles

Here we present some new results for multi-dimensional time-fractional diffusion
equation by using the maximum and minimum principles derived in the previous
section. Consider the linear problem

P (CFDtu)(x, t) + L(u)− h(x, t)u = f(x, t), (x, t) ∈ Ω× (0, T ],

u(x, 0) = g(x), x ∈ Ω,

u(x, t) = µ(x, t), (x, t) ∈ ∂Ω× (0, T ).

(4.1)

A direct application of Theorems 3.1 and 3.2 leads to the following two comparison
results for the problem (4.1).

Theorem 4.1. Assume that f(x, t) ≤ 0, g(x) ≤ 0 and µ(x, t) ≤ 0. If u(x, t) ∈
C2,1(Ω×(0, T )) is a solution of the problem (4.1), then u(x, t) ≤ 0, (x, t) ∈ Ω×[0, T ].

Theorem 4.2. Assume that f(x, t) ≥ 0, g(x) ≥ 0 and µ(x, t) ≥ 0. If u(x, t) ∈
C2,1(Ω×(0, T )) is a solution of the problem (4.1), then u(x, t) ≥ 0, (x, t) ∈ Ω×[0, T ].

Theorem 4.3. There exists at most one solution for the problem (4.1).

Proof. Let us suppose that (4.1) has two solutions u1 and u2. Letting u = u1− u2,
we obtain

P (CFDtu)(x, t) + L(u)− h(x, t)u = 0, (x, t) ∈ Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ).

By Theorems 4.1 and 4.2, it follows that u = 0, that is, u1 = u2. �

Theorem 4.4. The solution u of (4.1) depends continuously on the given initial
value g(x) and the boundary value µ(x, t).

Proof. Let ui denote the solution of (4.1) with the corresponding data gi(x) and
µi(x, t), i = 1, 2. Fix η = ε

2 , ε > 0 and suppose that maxx∈Ω |g1(x) − g2(x)| ≤ η
and max(x,t)∈∂Ω×(0,T ) |µ1(x, t)− µ2(x, t)| ≤ η. Taking u = u1 − u2, we obtain

P (CFDtu)(x, t) + L(u) = 0, (x, t) ∈ Ω× (0, T ),

u(x, 0) = g1(x)− g2(x), x ∈ Ω,

u(x, t) = µ1(x, t)− µ2(x, t) (x, t) ∈ ∂Ω× (0, T ).

Since h(x, t) ≤ 0, it follows by Theorems 3.1 and 3.2 that

u(x, t) ≤ max
{

max
x∈Ω

(g1 − g2), max
(x,t)∈∂Ω×(0,T ]

(µ1 − µ2), 0
}
< ε,

u(x, t) ≥ min
{

min
x∈Ω

(g1 − g2), min
(x,t)∈∂Ω×(0,T ]

(µ1 − µ2), 0
}
> −ε.

�

Next, we consider the nonlinear problem

P (CFDtu)(x, t) + L(u) = F (x, t, u), (x, t) ∈ Ω× (0, T ],

u(x, 0) = g(x), x ∈ Ω,

u(x, t) = µ(x, t), (x, t) ∈ ∂Ω× (0, T ).

(4.2)
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Theorem 4.5. Let F (x, t, u) be a smooth function. If ∂F
∂u ≤ 0, then (4.2) has at

most one solution.

Proof. Suppose that nonlinear problem (4.2) has two solutions u1 and u2. Letting
u = u1 − u2, we obtain

P (CFDtu)(x, t) + L(u) = F (x, t, u1)− F (x, t, u2), (x, t) ∈ Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

Since F is a smooth function, there exists ξ = (1−λ)u1 +λu2(λ ∈ (0, 1)) such that

F (x, t, u1)− F (x, t, u2) =
∂F

∂u
(ξ)u.

Using the condition ∂F
∂u < 0 together with Theorems 4.1 and 4.2, we obtain u = 0.

This implies that u1 = u2. �

Theorem 4.6. Let F (x, t, u) be a smooth function such that ∂F
∂u ≤ 0. Then the

solution u of (4.2) depends continuously on the given initial and boundary data
g(x) and µ(x, t) respectively.

Proof. Let ui be the solutions of (4.2) with the corresponding data gi(x) and
µi(x, t), i = 1, 2. Fixing η = ε

2 , ε > 0, assume that maxx∈Ω |g1(x)− g2(x)| ≤ η and
max(x,t)∈∂Ω×(0,T ) |µ1(x, t)− µ2(x, t)| ≤ η. Define u = u1 − u2 so that u satisfies

P (CFDtu)(x, t) + L(u) = F (x, t, u1)− F (x, t, u2), (x, t) ∈ Ω× (0, T ),

u(x, 0) = g1(x)− g2(x), x ∈ Ω,

u(x, t) = µ1(x, t)− µ2(x, t), (x, t) ∈ ∂Ω× (0, T ).

As in the proof of Theorem 4.5, we have

F (x, t, u1)− F (x, t, u2) =
∂F

∂u
(ξ)u,

where ξ is between u1 and u2. Since ∂F
∂u ≤ 0, by Theorems 3.1 and 3.2 it follows

that

u(x, t) ≤ max
{

max
x∈Ω

(g1 − g2), max
(x,t)∈∂Ω×(0,T ]

(µ1 − µ2), 0
}
< ε,

u(x, t) ≥ min
{

min
x∈Ω

(g1 − g2), min
(x,t)∈∂Ω×(0,T ]

(µ1 − µ2), 0
}
> −ε.

�

Acknowledgments. The authors thank the editor and the reviewers for their
constructive remarks that led to the improvement of the original manuscript. This
work is partially supported by National Natural Science Foundation of China (No.
11501342) and the Natural Science Foundation for Young Scientists of Shanxi
Province, China (No. 201701D221007).

References

[1] M. Al-Refai, Y. Luchko; Maximum principle for the multi-term time-fractional diffusion equa-
tions with the Riemann-Liouville fractional derivatives, Appl. Math. Comput., 257 (2015),

40–51.
[2] A. Alsaedi, B. Ahmad, M. Kirane; Maximum principle for certain generalized time and space

fractional diffusion equations, Quart. Appl. Math., 73 (2015), 163-175.



6 L. ZHANG, B. AHMAD, G. WANG EJDE-2017/289

[3] H. Brunner, H. Han, D. Yin; The maximum principle for time-fractional diffusion equations

and its application, Numer. Funct. Anal. Optim. , 36 (2015), 1307–1321.

[4] M. Caputo, M. Fabrizio; A new definition of fractional derivative without singular kernel,
Progr. Fract. Differ. Appl., 1 (2015), 73–85.

[5] M. H. Duong; Comparison and maximum principles for a class of flux-limited diffusions with

external force fields, Adv. Nonlinear Anal. 5 (2016), 167–176.
[6] J. Jia, K. Li; Maximum principles for a time-space fractional diffusion equation, Appl. Math.

Lett., 62 (2016), 23–28.

[7] Y. Liu; Strong maximum principle for multi-term time-fractional diffusion equations and its
application to an inverse source problem, Comput. Math. Appl., 73 (2017), 96–108.

[8] Y. Luchko; Maximum principle for the generalized time-fractional diffusion equation, J. Math.

Anal. Appl., 351 (2009), 218-223.
[9] Y. Luchko; Maximum principle and its application for the time-fractional diffusion equations,

Fract. Calc. Appl. Anal., 14 (2011), 110–124.
[10] Y. Luchko; Initial-boundary-value problems for the one-dimensional time-fractional diffusion

equation, Fract. Calc. Appl. Anal., 15 (2012), 141–160,

[11] M. H. Protter, H. F. Weinberger; Maximum Principles in Differential Equations, Springer,
Berlin, 1999.

[12] A. Shi, S. Zhang; Upper and lower solutions method and a fractional differential equation

boundary value problem, Electron. J. Qual. Theory Differ. Equ. (2009), No. 30, 13 pp.
[13] W. Walter; On the strong maximum principle for parabolic differential equations, Proc.

Edinb. Math. Soc., 29 (1986), 93–96.

Lihong Zhang

School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi
041004, China

E-mail address: zhanglih149@126.com

Bashir Ahmad

Department of Mathematics, Faculty of Science, King Abdulaziz University P.O. Box.

80203, Jeddah 21589, Saudi Arabia
E-mail address: bashirahmad qau@yahoo.com

Guotao Wang
School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi

041004, China
E-mail address: wgt2512@163.com


	1. Introduction
	2. Preliminaries
	3. Some maximum principles
	4. Applications of maximum and minimum principles
	Acknowledgments

	References

