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REGULARITY LIFTING RESULT FOR AN INTEGRAL SYSTEM
INVOLVING RIESZ POTENTIALS

YAYUN LI, DEYUN XU

ABSTRACT. In this article, we study the integral system involving the Riesz

potentials
p—1 d
w@) = vp [ LW g Re,
rn |z -yl
P(y)d:
v(z) = \/p WY o RY,

re |z =y
where n > 1, 0 < @ < n and p > 1. Such a system is related to the study of
a static Hartree equation and the Hardy-Littlewood-Sobolev inequality. We
investigate the regularity of positive solutions and prove that some integrable
solutions belong to C1(R™). An essential regularity lifting lemma comes into
play, which was established by Chen, Li and Ma [20].

1. INTRODUCTION

Recently, many authors have studied the stationary Hartree type equation
(=A) 2y = puPH(|2]* ™ % wP), w>0in R", (1.1)

where n > 1, « € (0,n) and p > 1.

When a = 2, is a simplified model of the Maxwell-Schrédinger system (cf.
[T, 3L 10] and references therein). It is also [, Example 3.2.8]. A more general form
is the Choquard type equation in the papers [I3]2T]. Paper [8] studied the existence
and the regularity results of positive solutions of the static Schrédinger equation
with the fractional Laplacian. Another interesting work related to are paper
[11] and the references therein. Equation is also helpful in understanding the
blowing up or the global existence and scattering of the solutions of the dynamic
Hartree equation (cf. [I6]), which arises in the study of boson stars and other
physical phenomena, and also appears as a continuous-limit model for mesoscopic
molecular structures in chemistry. Such an equation also arises in the Hartree-Fock
theory of the nonlinear Schrédinger equations (cf. [18]). More related mathematical
and physical background can be found in [9, 12| 22].
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Since (1.1)) has a convolution term, it seems difficult to investigate the existence
directly. Write
uP (y)dy
z =yl

v(z) = Vp

R

Then v > 0 in R™. As in [I4] 15l 2], we introduce an integral system

uP~ (y)v(y)dy

Py u > 0 in R",
R -

u(z) = vp
(1.2)
P(y)d
v(z) =+/p L)ngja, v > 0in R™.
rn |7 =y
According to the results in [6], we can also see that the equivalence between (|1.1)
and (1.2)) if omitting constants.
In addition, (1.2) is analogous to the system

1(y)d
u(z):/ _viy)dy u,v > 0in R",
R

|z —ylnme’

v(m):/R Wy p,q>0.

n |z =y

(1.3)

It is the Euler-Lagrange equations which the extremal functions of the following
Hardy-Littlewood-Sobolev inequality satisfies

f(x)g(y)
/n /n ([ — g [gl? dzdy < Cogsxnllflrllglls,

wherel<s,r<oo,0<>\<n,)\<X=)\+a+ﬁ§n71+%+z:2,

T n

S< 1 - % < ’\"’TO‘, % <1- % < # Some classical work can be found in
[2, Bl [7, 17] and many other papers.
The main conclusions of this paper are stated as follows, which are proved in

section 2.

Theorem 1.1. Letn >1and0 < a <n. If1 <p < 2~ (1.2) does not have any
positive solution.

Theorem 1.2. Assume u is a positive solution of (1.2) and 1 < a < n. If
u € L%(R”), then u € CH(R™).

To prove Theorem we need a regularity lifting lemma in [5] which was
established by Chen, Li and Ma [20]. This powerful technique was successfully
applied to obtain the Lipschitz continuity of positive solutions of integral systems
involving the Riesz potential, Bessel potential and the Wolff potential (cf. [13, 20,
25]). In particular, those regularity properties of are helpful to understand well
the shape of the extremal functions of the Hardy-Littlewood-Sobolev inequality.

Let V be a function space equipped with two norms || - ||x and || - ||y. Define

X={veV:|vlx <o}, Y={meV:||vy <o}

Assume that spaces X and Y are complete under the corresponding norms and the
convergence in X or in Y implies the convergence in V.

From [B, Theorem 3.3.5 and Remark 3.3.5], we have the following regularity
lifting lemma.
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Lemma 1.3. Let X = L>®°(R") x L>®(R") and Y = C%}(R") x COL(R™) with the
norms

1 Dlx = [[fllse + llglloe, —and [[(f;9)lly = [Ifllo.x + llglloa-
Define their closed subset

X1 ={(f,9) € X; [lflloc + llglloc < Cl[ulloc + [v]lo0)}
Vi ={(f,9) € Vil flloc + llglloe < Clllulloc + llv[loo)}-

Assume

(i) T is a contraction map from X; — X;
(ii) T is a shrinking map from Y7 — Y;
(111) (F, G) eXinN Yl,'
(iv) T(-,) + (F,G) is a map from X1 NY; to itself.

If (u,v) € X is a pair of solutions of the operator equation (f,g9) =T (f,g9)+ (F,G),
then (u,v) €Y.
2. PROOF OF MAIN RESULTS

Theorem 2.1. If1 <p <n/(n— «), then there is no positive solution of (1.2).

Proof. If u,v are positive solutions, we can deduce a contradiction by the ideas in
[2]. Clearly,

w(z) > P~ (y)v(y)dy c L\
(€)= /BR(O) Tyl Z<R+|x|>w/BR(O) Wty @1)

Therefore,

dz
uP(x)dx > c/ —(/ uP~H(y)o(y)dy)”
/BR<0> Br(0) (B + [2[)PC=) " g o)

. (2.2)
> e ( / uP~H(y)o(y)dy)”.
Rp(n—a)—n Br(0)
Here c is independent of R. Similarly, from
c
o) 2 s [ @, (23)
(R+12))" JBro)
and (2.1)), (2.2]), we deduce
cuP~1(x)dx
uP Y (z)v(x)dx > / 7/ uP (y)dy
/BR(O) Bro) (R+[2))"~ J5,0
¢ p—1 P
> e R UEn
which implies
/ uwPH(z)o(z)de < CR2P(—e)=nl/(p=1), (2.4)
Br(0)

If 1 <p<n/(n—a), then (2.4) with R — oo leads to |[u?~'v| 11gn) = 0. This
contradicts with uP~1v > 0.
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If p = n/(n—a), then (2.4) implies u?~tv € L'(R") if we let R — co. Multiplying
([2.3) by uP~* and integrating on Ag := Bg(0) \ Br/2(0), we still have

/ uP~ Y (x)v(x)dx > c(/ uP~ (y)v(y)dy)P.
Ar Br(0)

Letting R — oo and noting u?~*v € L'(R™), we obtain |[u?~'v| f1gn) = 0. Tt is
also impossible. O

Note that Theorem [2.1] implies

D> (2.5)

n—ao
which is the necessary condition of the existence of positive solutions for (|1.2)).
Theorem 2.2. Assume u is a positive solution of (1.2)) with o € (1,n). Ifu €
J (R™), then u € CH(R™).
Proof. Step 1. By [24) Lemmas 2.3 and 2.4], we know that u, v are bounded.
Step 2. Moreover, we claim that u,v € C%1(R"). We use the regularity lifting
lemma (Lemma to prove this claim. Let X = L*(R") x L*(R") and Y =
CYH(R") x C%1(R™) with the norms

1(F 9)llx = I flloo + llgllso ,

1Cf Dy = 11fllox + llgllo,a-
Define their closed subset

X1 =A{(f19) € X; [ flloo + llglloc < C(llullec + [[v]loc)}
Yi={(f.9) € Y;|fllo + llglloc < C([ulloc + [[v]loc)}-
Let d > 0. Set
P w)g(y)dy
Bu(z) |T—y["™®
fP(y)dy

Bu(x) |2 —y[" ™

uP~ (y)v(y)dy
F(o) = | o Wlol)dy
R™\Bg(z) |T yl

Glo) = \/]3/]R u?(y)dy

"M\ Ba(z) [T —ynm

Tl(fag) = \/ﬁ

)

Ta(f) = Vp

and T(f,g) = (T1(f,9), T=(f)). Then (u,v) solves the operator equation
(f,9) =T(f,9) + (F,G).

Claim 1. 7T is a contracting map from X; to X. In fact, for two functions
(f1,91), (f2,92) € X1, we deduce that

1Ty (f1,91) — T1(f2, 92)]l 00

p—1 p—1

SC(H |gl( 17 _n72a )|

dyll o
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(91 — g2) 5|
Bux) |T—y|"me
By the mean value theorem and noting the definition of X7, we obtain
IT1(f1,91) — T1(f2, 92) |
< Cd*([Julloo + ”vHOO)p_l[”gl = g2loe + 11 = f2lloo]-
Similarly, we obtain
IT2(f1) = Ta(f2) oo < Cd™([Julloc + 10lloc)? I f1 = folloo-

Choose d sufficiently small such that C(||ullec + [|v]|oc)? 1d® < 1, then T is a
contracting map.

+1 dylloo)-

Claim 2. T is a shrinking map from Y; to Y. In fact, for (f,g) € Y7 and for any
1,22 € R™, we have

Ty (f, 9)(x1) = Ta(f, 9)(22)]

<C| lyl* " (9P~ )(y + 21) — (9" )y + x2))dy| (2.6)
Ba(0)

< Cd*(Julloc + [[v]loc)”
Choosing d sufficiently small, we have

Ty (f,9)(x1) — To(f,g)(x2)| 1

<
|71 — 22

[fllo.x + llgllo,1) w1 — 2.

(I lloa =+ llgllo,1)-

Wl

Similarly, we deduce that

[ To(f) (1) = To(f) (22)]

< Cd” p—1
o1 — 2] < Cd*([Julloe + llvlloc)” ™ ILf

1
lo1 < §Hf||o,1-

Thus, T is a shrinking map.

Claim 3. (F,G) € X1 NY;. First, (1.2) and the definitions of F' and G imply
F <wuand G<w. So (F,G) € X;.
Next, for any x1,zo € R™ satisfying |x1 — z2| := § < d/3, we have

|F(22) = F(z1)|/v/p

< / 22 — 1o — 1 — g [P (g)o(y)dy
R\ Bg(z1)

4 / 22 — 5" (y)o(y)dy
Ba(z1)\Ba-s(z1)
= Il + 12.

Using the mean value theorem and the integrability, we obtain

o0 dry\1/t
B< Ol ol ([ ooy Py g < 0,
d T

where 2=% 4+ % =1 with s = % Here ¢ > 0 is suitably small such that n <
).

t(n — a+1). On the other hand,

I < OllulZ ollso / s — y|*"dy < C8.
Ba(z1)\Ba—s(x1)

Combining the estimates of I; and Iz, we see F € C%(R").
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Finally, we prove G € C%!(R"). Interchanging the order of integration, we

Obtain
G(l‘) n o / f t / f}t() )

tn—o t
= vp(n — a)[Gi () + Gz(l’)]-
For any 1, zo € R™ satisfying |z — :EQ| := 0 < 1/3, by scaling we obtain

o) YY)y
o < [ ot MW G0 ppe

Therefore, |Ga(z2) — Ga(z1)| < Gg(l'l)[(l +0)r—etl — 1] < 06. In addition,
\By(z1) ¥ uP(y )dy dt

tn—a

< Clluli&.

1
|G1(22) — Gi(z1)| < C/ th+a($1)
d

Thus, we deduce G € C%*(R"). Hence, (F,G) € Y. Claim 3 is complete.
Claim 4. T(-,-)+(F, G) is a map from X;NY7 to itself. In fact, for (f,g) € X1NY7,

IT(f; 9 lloo = IT1(f; 9)lloo + 1 T2(f) oo

o (2.7)
< C([lullos + [[v]loo)Pd™.

Similar to (2.6]), we have
IT(fs9)llox = IT1(f, Do + [ T2(F)llo < C-

Thus, T(f,g) € X NY.
In addition, (2.7) implies ||T(f, 9)]lcc < |t|lco + ||v|loc @s long as d is chosen
suitably small. Thus,

IT(f,9) + (F, G)lloo < NT(f; 9o + 1(F, G)lloo < Cl[ulloc +[[v]]o0)-

Claim 4 is verified.
Since (u,v) solves (f,g) = T(f,9) + (F,G), claims 1-4 lead to u,v € C%1(R")
by Lemma

Step 3. We claim that u € C'(R"). We use the classical potential estimation to
verify u € C1(R™) and Vu can be expressed formally as

Vu(a) = (a=n) [ 0t @ote) o=z (2.9

Write

_ r—1Y
7= (a—n) / P )oly) — Yy
R\ By(z) |z — y[r—ot?

n- | W (y)o(y)V (1~ 51" dy.
Ba(x)\B:(
We claim that the improper integral J; converges uniformly about z. In fact,

wP~Hy)v(y)d
e o
R™\ By(x) lz -yl
— > n—(n—o dp
< Cllllz ol | g ey,
where p% + % = 1. Let s = %. Here § > 0 is sufficiently small such that

% < ”%‘“'H Thus, from the integrability it follows J; < oo.
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Clearly,
| </ [uP~ 1 (y)v(y) —U”_l(iﬁ)v(%)ldy
" JB4(2)\B.(z) |z — y[r—ott
+r @) [ V(Jz — y*")dy]
Ba(a)\B. (x)
= Jog + Joo.

In view of u,v € C%1(R"),

_ _ |z — yldy
Jo1 < (P~ oo [l0llo,1 + [P 2‘||ocIIU\IooHuIIo,l)/ T —gln—ati <
m@A&@H$—M

On the other hand, integration by parts yields

Tz < CllulZ o]l / & — y[*"ds] < oo
9(Ba(z)\B:(x))

as long as a > 1. Hence, J; is convergent uniformly about z when € — 0.
Combining the estimates of J; and Jo, we know that (2.8)) makes sense, and
hence u € C1(R™). O
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