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REGULARITY LIFTING RESULT FOR AN INTEGRAL SYSTEM
INVOLVING RIESZ POTENTIALS

YAYUN LI, DEYUN XU

Abstract. In this article, we study the integral system involving the Riesz
potentials

u(x) =
√
p

Z
Rn

up−1(y)v(y)dy

|x− y|n−α
, u > 0 in Rn,

v(x) =
√
p

Z
Rn

up(y)dy

|x− y|n−α
v > 0 in Rn,

where n ≥ 1, 0 < α < n and p > 1. Such a system is related to the study of

a static Hartree equation and the Hardy-Littlewood-Sobolev inequality. We

investigate the regularity of positive solutions and prove that some integrable
solutions belong to C1(Rn). An essential regularity lifting lemma comes into

play, which was established by Chen, Li and Ma [20].

1. Introduction

Recently, many authors have studied the stationary Hartree type equation

(−∆)α/2u = pup−1(|x|α−n ∗ up), u > 0 in Rn, (1.1)

where n ≥ 1, α ∈ (0, n) and p > 1.
When α = 2, (1.1) is a simplified model of the Maxwell-Schrödinger system (cf.

[1, 3, 10] and references therein). It is also [4, Example 3.2.8]. A more general form
is the Choquard type equation in the papers [13, 21]. Paper [8] studied the existence
and the regularity results of positive solutions of the static Schrödinger equation
with the fractional Laplacian. Another interesting work related to (1.1) are paper
[11] and the references therein. Equation (1.1) is also helpful in understanding the
blowing up or the global existence and scattering of the solutions of the dynamic
Hartree equation (cf. [16]), which arises in the study of boson stars and other
physical phenomena, and also appears as a continuous-limit model for mesoscopic
molecular structures in chemistry. Such an equation also arises in the Hartree-Fock
theory of the nonlinear Schrödinger equations (cf. [18]). More related mathematical
and physical background can be found in [9, 12, 22].

2010 Mathematics Subject Classification. 35J10, 35Q55, 45E10, 45G05.
Key words and phrases. Riesz potential; integral system; regularity lifting lemma;

Hartree equation; Hardy-Littlewood-Sobolev inequality.
c©2017 Texas State University.

Submitted May 16, 2017. Published November 14, 2017.

1



2 Y. LI, D. XU EJDE-2017/284

Since (1.1) has a convolution term, it seems difficult to investigate the existence
directly. Write

v(x) =
√
p

∫
Rn

up(y)dy
|x− y|n−α

.

Then v > 0 in Rn. As in [14, 15, 21], we introduce an integral system

u(x) =
√
p

∫
Rn

up−1(y)v(y)dy
|x− y|n−α

, u > 0 in Rn,

v(x) =
√
p

∫
Rn

up(y)dy
|x− y|n−α

, v > 0 in Rn.
(1.2)

According to the results in [6], we can also see that the equivalence between (1.1)
and (1.2) if omitting constants.

In addition, (1.2) is analogous to the system

u(x) =
∫

Rn

vq(y)dy
|x− y|n−α

, u, v > 0 in Rn,

v(x) =
∫

Rn

up(y)dy
|x− y|n−α

, p, q > 0.
(1.3)

It is the Euler-Lagrange equations which the extremal functions of the following
Hardy-Littlewood-Sobolev inequality satisfies∫

Rn

∫
Rn

f(x)g(y)
|x|α|x− y|λ|y|β

dx dy ≤ Cα,β,s,λ,n‖f‖r‖g‖s,

where 1 < s, r < ∞, 0 < λ < n, λ ≤ λ = λ + α + β ≤ n, 1
r + 1

s + λ
n = 2,

α
n < 1 − 1

r < λ+α
n , β

n < 1 − 1
s < λ+β

n . Some classical work can be found in
[2, 5, 7, 17] and many other papers.

The main conclusions of this paper are stated as follows, which are proved in
section 2.

Theorem 1.1. Let n ≥ 1 and 0 < α < n. If 1 < p ≤ n
n−α , (1.2) does not have any

positive solution.

Theorem 1.2. Assume u is a positive solution of (1.2) and 1 < α < n. If
u ∈ L

n(p−1)
α (Rn), then u ∈ C1(Rn).

To prove Theorem 1.2, we need a regularity lifting lemma in [5] which was
established by Chen, Li and Ma [20]. This powerful technique was successfully
applied to obtain the Lipschitz continuity of positive solutions of integral systems
involving the Riesz potential, Bessel potential and the Wolff potential (cf. [13, 20,
25]). In particular, those regularity properties of (1.3) are helpful to understand well
the shape of the extremal functions of the Hardy-Littlewood-Sobolev inequality.

Let V be a function space equipped with two norms ‖ · ‖X and ‖ · ‖Y . Define

X = {v ∈ V : ‖v‖X <∞}, Y = {v ∈ V : ‖v‖Y <∞}.

Assume that spaces X and Y are complete under the corresponding norms and the
convergence in X or in Y implies the convergence in V .

From [5, Theorem 3.3.5 and Remark 3.3.5], we have the following regularity
lifting lemma.
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Lemma 1.3. Let X = L∞(Rn)× L∞(Rn) and Y = C0,1(Rn)× C0,1(Rn) with the
norms

‖(f, g)‖X = ‖f‖∞ + ‖g‖∞, and ‖(f, g)‖Y = ‖f‖0,1 + ‖g‖0,1.

Define their closed subset

X1 = {(f, g) ∈ X; ‖f‖∞ + ‖g‖∞ ≤ C(‖u‖∞ + ‖v‖∞)},
Y1 = {(f, g) ∈ Y ; ‖f‖∞ + ‖g‖∞ ≤ C(‖u‖∞ + ‖v‖∞)}.

Assume

(i) T is a contraction map from X1 → X;
(ii) T is a shrinking map from Y1 → Y ;

(iii) (F,G) ∈ X1 ∩ Y1;
(iv) T (·, ·) + (F,G) is a map from X1 ∩ Y1 to itself.

If (u, v) ∈ X is a pair of solutions of the operator equation (f, g) = T (f, g)+(F,G),
then (u, v) ∈ Y .

2. Proof of main results

Theorem 2.1. If 1 < p ≤ n/(n− α), then there is no positive solution of (1.2).

Proof. If u, v are positive solutions, we can deduce a contradiction by the ideas in
[2]. Clearly,

u(x) ≥ c
∫
BR(0)

up−1(y)v(y)dy
|x− y|n−α

≥ c

(R+ |x|)n−α

∫
BR(0)

up−1(y)v(y)dy. (2.1)

Therefore,∫
BR(0)

up(x)dx ≥ c
∫
BR(0)

dx

(R+ |x|)p(n−α)
(
∫
BR(0)

up−1(y)v(y)dy)p

≥ c

Rp(n−α)−n (
∫
BR(0)

up−1(y)v(y)dy)p.
(2.2)

Here c is independent of R. Similarly, from

v(x) ≥ c

(R+ |x|)n−α

∫
BR(0)

up(y)dy, (2.3)

and (2.1), (2.2), we deduce∫
BR(0)

up−1(x)v(x)dx ≥
∫
BR(0)

cup−1(x)dx
(R+ |x|)n−α

∫
BR(0)

up(y)dy

≥ c

R2[p(n−α)−n]
(
∫
BR(0)

up−1(y)v(y)dy)p,

which implies ∫
BR(0)

up−1(x)v(x)dx ≤ CR2[p(n−α)−n]/(p−1). (2.4)

If 1 < p < n/(n− α), then (2.4) with R→∞ leads to ‖up−1v‖L1(Rn) = 0. This
contradicts with up−1v > 0.
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If p = n/(n−α), then (2.4) implies up−1v ∈ L1(Rn) if we let R→∞. Multiplying
(2.3) by up−1 and integrating on AR := BR(0) \BR/2(0), we still have∫

AR

up−1(x)v(x)dx ≥ c(
∫
BR(0)

up−1(y)v(y)dy)p.

Letting R → ∞ and noting up−1v ∈ L1(Rn), we obtain ‖up−1v‖L1(Rn) = 0. It is
also impossible. �

Note that Theorem 2.1 implies

p >
n

n− α
(2.5)

which is the necessary condition of the existence of positive solutions for (1.2).

Theorem 2.2. Assume u is a positive solution of (1.2) with α ∈ (1, n). If u ∈
L
n(p−1)
α (Rn), then u ∈ C1(Rn).

Proof. Step 1. By [24, Lemmas 2.3 and 2.4], we know that u, v are bounded.
Step 2. Moreover, we claim that u, v ∈ C0,1(Rn). We use the regularity lifting
lemma (Lemma 1.3) to prove this claim. Let X = L∞(Rn) × L∞(Rn) and Y =
C0,1(Rn)× C0,1(Rn) with the norms

‖(f, g)‖X = ‖f‖∞ + ‖g‖∞ ,

‖(f, g)‖Y = ‖f‖0,1 + ‖g‖0,1.

Define their closed subset

X1 = {(f, g) ∈ X; ‖f‖∞ + ‖g‖∞ ≤ C(‖u‖∞ + ‖v‖∞)},
Y1 = {(f, g) ∈ Y ; ‖f‖∞ + ‖g‖∞ ≤ C(‖u‖∞ + ‖v‖∞)}.

Let d > 0. Set

T1(f, g) =
√
p

∫
Bd(x)

fp−1(y)g(y)dy
|x− y|n−α

,

T2(f) =
√
p

∫
Bd(x)

fp(y)dy
|x− y|n−α

,

F (x) =
√
p

∫
Rn\Bd(x)

up−1(y)v(y)dy
|x− y|n−α

,

G(x) =
√
p

∫
Rn\Bd(x)

up(y)dy
|x− y|n−α

,

and T (f, g) = (T1(f, g), T2(f)). Then (u, v) solves the operator equation

(f, g) = T (f, g) + (F,G).

Claim 1. T is a contracting map from X1 to X. In fact, for two functions
(f1, g1), (f2, g2) ∈ X1, we deduce that

‖T1(f1, g1)− T1(f2, g2)‖∞

≤ C(‖
∫
Bd(x)

|g1(fp−1
1 − fp−1

2 )|
|x− y|n−α

dy‖∞
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+ ‖
∫
Bd(x)

|(g1 − g2)fp−1
2 |

|x− y|n−α
dy‖∞).

By the mean value theorem and noting the definition of X1, we obtain

‖T1(f1, g1)− T1(f2, g2)‖∞
≤ Cdα(‖u‖∞ + ‖v‖∞)p−1[‖g1 − g2‖∞ + ‖f1 − f2‖∞].

Similarly, we obtain

‖T2(f1)− T2(f2)‖∞ ≤ Cdα(‖u‖∞ + ‖v‖∞)p−1‖f1 − f2‖∞.

Choose d sufficiently small such that C(‖u‖∞ + ‖v‖∞)p−1dα < 1, then T is a
contracting map.
Claim 2. T is a shrinking map from Y1 to Y . In fact, for (f, g) ∈ Y1 and for any
x1, x2 ∈ Rn, we have

|T1(f, g)(x1)− T1(f, g)(x2)|

≤ C|
∫
Bd(0)

|y|α−n((gfp−1)(y + x1)− (gfp−1)(y + x2))dy|

≤ Cdα(‖u‖∞ + ‖v‖∞)p−1(‖f‖0,1 + ‖g‖0,1)|x1 − x2|.

(2.6)

Choosing d sufficiently small, we have

|T1(f, g)(x1)− T1(f, g)(x2)|
|x1 − x2|

≤ 1
3

(‖f‖0,1 + ‖g‖0,1).

Similarly, we deduce that

|T2(f)(x1)− T2(f)(x2)|
|x1 − x2|

≤ Cdα(‖u‖∞ + ‖v‖∞)p−1‖f‖0,1 ≤
1
3
‖f‖0,1.

Thus, T is a shrinking map.
Claim 3. (F,G) ∈ X1 ∩ Y1. First, (1.2) and the definitions of F and G imply
F ≤ u and G ≤ v. So (F,G) ∈ X1.

Next, for any x1, x2 ∈ Rn satisfying |x1 − x2| := δ < d/3, we have

|F (x2)− F (x1)|/√p

≤
∫

Rn\Bd(x1)

||x2 − y|α−n − |x1 − y|α−n|up−1(y)v(y)dy

+
∫
Bd(x1)\Bd−δ(x1)

|x2 − y|α−nup−1(y)v(y)dy

:= I1 + I2.

Using the mean value theorem and the integrability, we obtain

I1 ≤ C‖u‖p−1
s ‖v‖∞

(∫ ∞
d

rn−t(n−α+1) dr

r

)1/t

|x1 − x2| ≤ Cδ,

where p−1
s + 1

t = 1 with s = n+ε
n−α . Here ε > 0 is suitably small such that n <

t(n− α+ 1). On the other hand,

I2 ≤ C‖u‖p−1
∞ ‖v‖∞

∫
Bd(x1)\Bd−δ(x1)

|x2 − y|α−ndy ≤ Cδ.

Combining the estimates of I1 and I2, we see F ∈ C0,1(Rn).
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Finally, we prove G ∈ C0,1(Rn). Interchanging the order of integration, we
obtain

G(x) =
√
p(n− α)(

∫ 1

d

∫
Bt(x)

up(y)dy

tn−α
dt

t
+
∫ ∞

1

∫
Bt(x)

up(y)dy

tn−α
dt

t
)

:=
√
p(n− α)[G1(x) +G2(x)].

For any x1, x2 ∈ Rn satisfying |x1 − x2| := δ < 1/3, by scaling we obtain

G2(x2) ≤
∫ ∞

1

∫
Bt+δ(x1)

up(y)dy

tn−α
dt

t
≤ G2(x1)(1 + δ)n−α+1.

Therefore, |G2(x2)−G2(x1)| ≤ G2(x1)[(1 + δ)n−α+1 − 1] ≤ Cδ. In addition,

|G1(x2)−G1(x1)| ≤ C
∫ 1

d

∫
Bt+δ(x1)\Bt(x1)

up(y)dy

tn−α
dt

t
≤ C‖u‖p∞δ.

Thus, we deduce G ∈ C0,1(Rn). Hence, (F,G) ∈ Y . Claim 3 is complete.
Claim 4. T (·, ·)+(F,G) is a map from X1∩Y1 to itself. In fact, for (f, g) ∈ X1∩Y1,

‖T (f, g)‖∞ = ‖T1(f, g)‖∞ + ‖T2(f)‖∞
≤ C(‖u‖∞ + ‖v‖∞)pdα.

(2.7)

Similar to (2.6), we have

‖T (f, g)‖0,1 = ‖T1(f, g)‖0,1 + ‖T2(f)‖0,1 ≤ C.
Thus, T (f, g) ∈ X ∩ Y .

In addition, (2.7) implies ‖T (f, g)‖∞ ≤ ‖u‖∞ + ‖v‖∞ as long as d is chosen
suitably small. Thus,

‖T (f, g) + (F,G)‖∞ ≤ ‖T (f, g)‖∞ + ‖(F,G)‖∞ ≤ C(‖u‖∞ + ‖v‖∞).

Claim 4 is verified.
Since (u, v) solves (f, g) = T (f, g) + (F,G), claims 1-4 lead to u, v ∈ C0,1(Rn)

by Lemma 1.3.
Step 3. We claim that u ∈ C1(Rn). We use the classical potential estimation to
verify u ∈ C1(Rn) and ∇u can be expressed formally as

∇u(x) = (α− n)
∫

Rn
up−1(y)v(y)

x− y
|x− y|n−α+2

dy. (2.8)

Write

J1 = (α− n)
∫

Rn\Bd(x)
up−1(y)v(y)

x− y
|x− y|n−α+2

dy

J2 =
∫
Bd(x)\Bε(x)

up−1(y)v(y)∇(|x− y|α−n)dy.

We claim that the improper integral J1 converges uniformly about x. In fact,

|J1| ≤ C
∫

Rn\Bd(x)

up−1(y)v(y)dy
|x− y|n−α+1

≤ C‖u‖p−1
s ‖v‖∞(

∫ ∞
d

ρn−(n−α+1)t dρ

ρ
)1/t,

where p−1
s + 1

t = 1. Let s = n+δ
n−α . Here δ > 0 is sufficiently small such that

1
t <

n−α+1
n . Thus, from the integrability it follows J1 <∞.
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Clearly,

|J2| ≤
∫
Bd(x)\Bε(x)

|up−1(y)v(y)− up−1(x)v(x)|
|x− y|n−α+1

dy

+ up−1(x)v(x)|
∫
Bd(x)\Bε(x)

∇(|x− y|α−n)dy|

:= J21 + J22.

In view of u, v ∈ C0,1(Rn),

J21 ≤ C(‖up−1‖∞‖v‖0,1 + ‖up−2‖∞‖v‖∞‖u‖0,1)
∫
Bd(x)\Bε(x)

|x− y|dy
|x− y|n−α+1

<∞.

On the other hand, integration by parts yields

J22 ≤ C‖u‖p−1
∞ ‖v‖∞|

∫
∂(Bd(x)\Bε(x))

|x− y|α−nds| <∞

as long as α > 1. Hence, Jε is convergent uniformly about x when ε→ 0.
Combining the estimates of J1 and J2, we know that (2.8) makes sense, and

hence u ∈ C1(Rn). �
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