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Abstract. We introduce harmonic measure on a Klein surface and obtain a
formula for the solution of the Dirichlet problem on a Klein surface, which is an

analogue for the Poisson integral. We rewrite the Radon-Nikodym derivative

of harmonic measure against the corresponding arc length.

1. Introduction

We study the Dirichlet problem for harmonic functions on Klein surfaces, through
their double covers by symmetric Riemann surfaces in the sense of Klein, that is,
Riemann surfaces endowed with fixed point free antianalytic involutions. We prove
that symmetric conditions on the boundary determine symmetric solutions which
lead to solutions for the similar problems for Klein surfaces. Thus, it is possible to
solve boundary value problems on a Klein surface, once the harmonic measure on
the symmetric Riemann surface is known. The idea of using the double cover has
been successfully used to study objects on a Klein surface by Alling and Greenleaf
[2], Andreian Cazacu [3], Bârză and Ghişa [5, 6].

In this paper, the methods introduced in [2, 4, 9] are used to extend the use
of the Green’s function to the study of harmonic measure for a Klein surface.
Since dianalytic structures of Klein surfaces are related to symmetric conformal
metrics on their double covers, we represent the harmonic measure in terms of such
metrics, using the concept of normal derivative of the k-invariant Green’s function
introduced in [6]. The symmetric harmonic measure provides an explicit formula
for the solution of the Dirichlet problem on a Klein surface, that is an analogue for
the Poisson integral. Also, we rewrite the Radon-Nikodym derivative of harmonic
measure against σ-arc length, the symmetric arc length.

2. Preliminaries

We present some definitions and basic results about the relationship between
Klein surfaces and symmetric Riemann surfaces.

Let O2 be a region in the complex plane, bounded by a finite number of analytic
Jordan curves. Then O2 = O2 ∪ ∂O2 can be conceived as a bordered Riemann
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surface, see [1]. A symmetric Riemann surface is a pair (O2, k), where O2 is a
Riemann surface and k is an antianalytic involution without fixed points.

If (X,A) is a a compact Klein surface, then there exists a symmetric Riemann
surface (O2, k) such that X is dianalytically equivalent with O2/H, where H is the
group generated by k, with respect to the usual composition of functions.Conversely,
if (O2, k) is a symmetric Riemann surface, then on the orbit space O2/H there exists
a dianalytic atlas A, such that (O2/H,A) is a Klein surface, see [2].

Remark 2.1. In this paper, we identify X with the orbit space O2/H. The canon-
ical projection of O2 onto O2/H is denoted by π. Also, we denote with z̃ the H -
orbit of z ∈ O2, namely z̃ = k̃(z) = π(z) = π(k(z)) = {z, k(z)}.

Let F : X → R be a function on X. Its lifting f to O2 is given by

F (z̃) = f(z) = f(k(z)), z ∈ O2, z̃ = π(z). (2.1)

A function f on O2 with the property (2.1) is called a symmetric function.
Conversely, if g : O2 → R is a function on O2, then the function f = g + g ◦ k is

a symmetric function on O2. Thus, relation (2.1) defines a function F on X.
We consider the symmetric metric on O2, defined by dσ = 1

2 (|dz|+ |dw|), where
w = k(z), z ∈ O2. Then

dΣ(z̃) = dσ(z) = dσ(k(z)), z ∈ O2,

is a metric on X. The metric dΣ is invariant with respect to the group of conformal
or anticonformal transition functions of X.

We denote by B(O2) and B(X) the σ-algebra of Borel sets on O2, respectively,
on X. The σ-algebra of symmetric Borel sets of O2 is denoted by Bs(O2) and
Bs(O2) = {U ∪ k(U) : U ∈ B(O2)}, see [5].

Let γ̃ be a piecewise smooth Jordan curve on X. Then γ̃ has exactly two liftings
γ and k ◦ γ on O2 and by definition∫

eγ FdΣ =
∫
γ

fdσ =
∫
k◦γ

fdσ.

For more details about measure and integration on Klein surfaces, see [4].
Let u be a C1- function defined in a neighborhood of the σ-rectifiable Jordan

curve γ, parameterized in terms of the arc σ-length. Therefore, γ : z = z(s) =
x(s) + iy(s), s ∈ [0, l], where l is the σ-length of γ. The normal derivative of u
on γ with respect to dσ, denoted by ∂u

∂nσ
, is the directional derivative of u in the

direction of the unit normal vector nσ = ( dydσ ,−
dx
dσ ).

Given Ω a relatively compact region of X, bounded by a finite number of σ-
rectifiable Jordan curves, then π−1(Ω) = D is a symmetric subset of O2, since k is
an antianalytic involution, without fixed points and π ◦ k = π. For details about
Green’s identities for the symmetric region D in terms of dσ, see [6].

Let F be a continuous real-valued function on ∂Ω. The Dirichlet problem on X
for the region Ω, consists in finding a harmonic function U in Ω with prescribed
values F on ∂Ω. We define f = F ◦ π on ∂D. Then f = f ◦ k on ∂D, thus f is a
symmetric, continuous real-valued functions on ∂D. The Dirichlet problem on X,

∆U = 0, in Ω
U = F, on ∂Ω

(2.2)
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is equivalent with the Dirichlet problem on O2

∆u = 0, in D

u = f, on ∂D,
(2.3)

see [5, 9].
The Dirichlet problem for the region D and the boundary function f has a

unique solution, provided that ∂D has only regular points, see [10]. The symmetric
conditions on the boundary imply symmetric solutions for the problem (2.3), for
details see [5] and the original source [10].

Proposition 2.2. The solution u of (2.3) is a symmetric function in D.

3. Symmetric harmonic measure

First we recall some notions and results about harmonic measure. An extensive
study of the harmonic measure is developed in [7].

Let D be a symmetric region in the complex plane and Bs(∂D) the σ-algebra of
symmetric Borel sets of ∂D. The harmonic measure for D is known (see [8]) to be
a function ωD : D × Bs(∂D)→ [0, 1] such that:

(1) for each ζ ∈ D, the map B → ωD(ζ,B) is a Borel probability measure on
∂D;

(2) if f : ∂D → R is a continuous function, then the solution of the Dirichlet
problem, for D and the boundary function f , is the generalized Poisson
integral of f on D, PDf(z), given by

PDf(ζ) =
∫
∂D

f(z)dωD(ζ, z), ζ ∈ D. (3.1)

Remark 3.1. The uniqueness of ωD is a consequence of the Riesz representation
theorem.

A method of determining the harmonic measure is given by the following char-
acterization (see [8]).

Proposition 3.2. The function ωD(·, B), is the solution of the generalized Dirichlet
problem with boundary function f = 1B.

Remark 3.3. The function ωD(·, B) is well defined on a compact Riemann surface.

The harmonic measure for D is related to another conformal invariant, the
Green’s function for the symmetric region D. We are using the following integral
Barza’s representation [6]:

Theorem 3.4. Let D be a symmetric region, whose boundary ∂D consists of a
finite number of pairwise disjoint σ-rectifiable Jordan curves . If u ∈ C(D) is
harmonic on D, then for all ζ in D,

u(ζ) =
1

2π

∫
∂D

u(z)
∂gD(z; ζ)
∂nσ

dσ(z). (3.2)

Because of (3.2),

Pζ(z) =
1

2π
∂gD(z; ζ)
∂nσ

is called the Poisson kernel for the region D.
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Using the above theorem and the fact that Borel measures are determined by
their actions on continuous functions, we obtain a representation of the harmonic
measure in terms of the normal derivative of the Green’s function with respect to
dσ.

Proposition 3.5. Let D be a symmetric region, whose boundary ∂D consists of a
finite number of pairwise disjoint σ-rectifiable Jordan curves. If ζ ∈ D, then

dωD(ζ, z) =
∂gD(z; ζ)
∂nσ

· dσ(z)
2π

, z ∈ ∂D.

Thus, harmonic measure for ζ ∈ D is absolutely continuous to arc σ-length on ∂D
and, the density is

dωD
dσ

=
1

2π
∂gD(z; ζ)
∂nσ

= Pζ(z), on ∂D.

For ζ, a point inside D, let g(k)
D (z; ζ̃) be the k-invariant Green’s function for the

region D, with singularities at ζ and k(ζ), defined by

g
(k)
D (z; ζ̃) =

1
2

[gD(z; ζ) + gD(z; k(ζ))] on D\{ζ, k(ζ)}.

For additional information on this topic we refer to [6, 9]. One can also derive the
following statement (see [6]).

Proposition 3.6. For every symmetric region D, the function g
(k)
D (·; ζ̃) is k-

invariant on D, i.e.

g
(k)
D (z; ζ̃) = g

(k)
D (k(z); ζ̃), for every z ∈ D.

Let ω(k)
D : D × Bs(∂D)→ [0, 1] be the function defined by

ω
(k)
D (ζ̃;B) =

1
2

[ωD(ζ,B) + ωD(k(ζ), B)], ζ̃ = {ζ, k(ζ)}, ζ ∈ D, B ∈ Bs(∂D).

Remark 3.7. The symmetry of the region D, implies that the function ω(k)
D (ζ̃;B)

is symmetric with respect to B on Bs(∂D), i.e. for every B ∈ Bs(∂D):

ω
(k)
D (ζ̃;B) = ω

(k)
D (ζ̃; k(B)).

The function ω
(k)
D (ζ̃;B) is called the symmetric harmonic measure for D. The

function

P
(k)eζ (z) =

1
2π

∂g
(k)
D (z; ζ̃)
∂nσ

, z ∈ D

is called the symmetric Poisson kernel for the region D.

4. Integral representation on the double cover

The next theorem yields a formula for the symmetric solution of problem (2.3).

Theorem 4.1. Let D be a symmetric region bounded by a finite number of pairwise
disjoint σ-rectifiable Jordan curves. Let f be a symmetric, continuous function on
∂D. There exists a unique symmetric function u on D, which is harmonic on D,
continuous on D, such that u = f on ∂D. For all ζ in D,

u(ζ) =
1
2

∫
∂D

f(z)[dωD(ζ, z) + dωD(k(ζ), z)]. (4.1)
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Proof. Since k is an involution of D, the function u(ζ)+u(k(ζ))
2 is a symmetric func-

tion on D. By (3.1),

u(ζ) =
∫
∂D

f(z)dωD(ζ, z), ζ ∈ D. (4.2)

Replacing ζ with k(ζ) in (4.2), we get

u(k(ζ)) =
∫
∂D

f(z)dωD(k(ζ), z), ζ ∈ D. (4.3)

Adding (4.2) to (4.3) and dividing by 2, it follows that

u(ζ) + u(k(ζ))
2

=
1
2

∫
∂D

f(z)[dω(ζ, z) + dω(k(ζ), z)], ζ ∈ D.

By Proposition 2.2, f is a symmetric function on D, then the left-hand side of the
last equality is u(ζ) and we conclude that for all ζ in D,

u(ζ) =
1
2

∫
∂D

f(z)[dωD(ζ, z) + dωD(k(ζ), z)].

The uniqueness of the solution of the Dirichlet problem for harmonic functions
implies (4.1). �

By Theorem 4.1, we obtain the Radon-Nikodym derivative of symmetric har-
monic measure for D against σ-arc length.

Proposition 4.2. Let D be a symmetric region whose boundary ∂D consists of a
finite number of pairwise disjoint σ- rectifiable Jordan curves. If ζ ∈ D, then

dω
(k)
D (ζ̃; z) =

∂g
(k)
D (z; ζ̃)
∂nσ

· dσ(z)
2π

, z ∈ ∂D.

Thus, symmetric harmonic measure for D is absolutely continuous to arc σ-length
on ∂D and, the density is

dω
(k)
D

dσ
=

1
2π

∂g
(k)
D (z; ζ̃)
∂nσ

= P
(k)eζ (z), on ∂D.

5. Integral representations on a Klein surface

Let X be compact Klein surface and let Ω be a region of X bounded by a
finite number of pairwise disjoint σ- rectifiable Jordan curves. Then there exists a
symmetric Riemann surface (O2, k) such that X is dianalytically equivalent with
O2/H, where H is the group generated by k, with respect to the usual composition
of functions. Then, Ω is obtained from the symmetric region D by identifying the
corresponding symmetric points.

The harmonic measure for Ω, ωΩ : Ω× B(∂Ω)→ [0, 1], is defined by

ωΩ(ζ̃, B̃) = ω
(k)
D (ζ̃, B) = ω

(k)
D (ζ̃, k(B)), ζ̃ ∈ Ω, B̃ = π(B) ∈ B(∂Ω)

The function
Peζ(z̃) = P

(k)eζ (z) = P
(k)eζ (k(z)), z ∈ D

is called the Poisson kernel for the region Ω.

Remark 5.1. From Remark 3.7, it follows that the function ωΩ is well defined.
From Proposition 3.6, it follows that the function Peζ is well defined.
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By Theorem 4.1, we obtain the following representation of the solution of the
problem (2.3) on a symmetric region D, in terms of the symmetric harmonic mea-
sure.

Theorem 5.2. Let D be a symmetric region bounded by a finite number of dis-
joint σ- rectifiable Jordan curves. Let f be a symmetric, continuous function on
∂D. There exists a unique symmetric function u on D , which is harmonic on D,
continuous on D, such that u = f on ∂D. For all ζ in D we have

u(ζ) =
∫
∂D

f(z)dω(k)
D (ζ̃, z).

The symmetric solutions on O2 determine the solutions of the similar problems
on the Klein surface X.

We obtain the solution of the problem (2.2) on the region Ω, with respect to the
harmonic measure for the region Ω.

Theorem 5.3. Let F be a continuous real-valued function on the border ∂Ω. The
solution of the problem (2.2) with the boundary function F is the function U defined
on Ω, by the relation u = U ◦ π, where π is the canonical projection of O2 on X
and u is the solution (4.1) of the problem (2.3) on the symmetric region D, with
the boundary function f = F ◦ π.

Proof. By definition, ∆U(ζ̃) = ∆u(ζ) = 0, for all ζ̃ ∈ Ω, where ζ̃ = π(ζ), thus U is
a harmonic function. The symmetry of the function f on ∂D, implies

U(ζ̃) = u(ζ) = f(ζ) = f(k(ζ)) = F (ζ̃), for all ζ̃ ∈ ∂Ω.

Due to the uniqueness of the solution, the function U defined on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

for all ζ̃ in Ω, where ζ̃ = π(ζ), is the solution of the problem (2.2) on Ω. �

By Proposition 4.2, we obtain the Radon-Nikodym derivative of harmonic mea-
sure for Ω against Σ-arc length.

Proposition 5.4. Let Ω be a region bounded by a finite number of disjoint σ-
rectifiable Jordan curves. If ζ̃ ∈ Ω, then

dωΩ(ζ̃; z̃) = dω
(k)
D (ζ̃, z) = dω

(k)
D (ζ̃, k(z)), z ∈ ∂D.

Thus, harmonic measure for Ω is absolutely continuous to arc Σ-length on ∂Ω and,
the density is

dωΩ

dσ
= Peζ(z̃), on ∂Ω.
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