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Abstract. In this article, we establish a priori error estimates for the finite

volume approximation of general elliptic optimal control problems. We use
finite volume methods to discretize the state and adjoint equation of the op-

timal control problems. For the variational inequality, we use the variational

discretization methods to discretize the control. We show the existence and
the uniqueness of the solution for discrete optimality conditions. Under some

reasonable assumptions, we obtain some optimal order error estimates for the

state, costate and control variables. On one hand, the convergence rate for the

state, costate and control variables is O(h2) or O(h2
q
| log( 1

h
)|) in the sense

of L2 norm or L∞ norm. On the other hand, the convergence rate for the
state and costate variables is O(h) or O(h| log( 1

h
)|) in the sense of H1 norm

or W 1,∞ norm.

1. Introduction

In recent years, optimal control problems have attracted substantial interest
due to their applications in aero-hydrodynamics, atmospheric, hydraulic pollution
problems, combustion, exploration and extraction of oil and gas resources, and engi-
neering. They must be solved successfully with efficient numerical methods. Finite
element methods are an important numerical method for the problems of partial
differential equations and widely used in the numerical solution of optimal con-
trol problems. There have been extensive studies in convergence of finite element
approximation for optimal control problems. Let us mention two early papers de-
voted to linear optimal control problems by Falk [17] and Geveci [18]. A systematic
introduction of finite element method for optimal control problems can be found
in [6, 8, 9, 10, 26, 27, 28, 29, 30, 31], but there are very less published results on
this topic for finite volume methods for optimal control problems. Recently, the
adaptive finite element method has been investigated extensively and become one
of the most popular methods in the scientific computation and numerical model-
ing. In [20], the authors studied a posteriori error estimates for adaptive finite
element discretizations of boundary control problems. A posteriori error estimates
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and adaptive finite element approximation for parameter estimation problems have
been obtained in [23, 25]. Some related works can also be found in [21, 22].

Finite volume methods have a long history as a class of important numerical tools
for solving differential equations. Because of their local conservative property and
other attractive properties such as the robustness with the unstructured meshes,
the finite volume methods are widely used in computational fluid dynamics. In
general, two different functional spaces are used in the finite volume methods, one
for the trial space and one for the test space. Owing to the two different spaces,
the numerical analysis of the finite volume methods is more difficult than that of
the finite element methods and finite difference methods. So, the analysis of finite
volume methods lags far behind that of finite element and finite difference methods.
Early work for the finite volume methods can be found in [1, 2, 4, 11, 13, 16]. In [1],
Bank and Rose obtain the result that the finite volume approximation is comparable
with the finite element approximation in H1 norm. The optimal L2 error estimate
is obtained in [11] under the assumption that f ∈ H1. In [16], Ewing obtain
the H1 norm and maximum-norm error estimates. In [4], the author proposes a
nonconforming finite volume element method and obtains the L2 norm and H1

norm error estimates. Chou and Ye propose a discontinuous finite volume element
method. Unified error analysis for conforming, nonconforming and discontinuous
finite volume method is presented in [14]. High order finite volume methods can be
found in [5, 12]. For other recently development, we refer reader to see [3, 15, 24, 35].

For optimal control problems, the state and costate variables are discretized by
continuous linear elements and the control variable by piecewise constant or piece-
wise linear polynomials in most references. The convergence rate of the control
variable is O(h) or O(h3/2) in the sense of L2 norm or L∞ norm in [33]. In [19],
Hinze proposes a variational discretization methods for optimal control problems
with control constraints. With the variational discretization concept, the control
variable is not discretized directly, but discretized by a projection of the discrete
costate variable. The convergence rate of the control variable is O(h2). There are
two approaches to find the approximate solution of the optimal control problems
governed by partial differential equation. One is of the optimize-then-discretize
type. One first applies the Lagrange multiplier methods to obtain an optimal sys-
tem, at the continuous level, consisting of the state equation, an adjoint equation
and an optimal condition. Then one use some numerical method to discretize the
resulting system. The other is of the discretize-then-optimize type. One first dis-
cretizes the optimal control problems by some means and then applies the Lagrange
multiplier rule to the resulting discrete optimization problem. The two discrete sys-
tems, determined by the two approaches, are the same when finite element method
is used. In general, these discrete systems are not the same. In [36], the authors
also use the optimize-then-discretize approach to solve the optimal control problem
governed by convection dominated diffusion equation.

Recently, in [32], the authors discussed distributed optimal control problems
governed by elliptic equations by using the finite volume element methods. The
objective functional was 1

2 ||y − yd||2L2(Ω) + 1
2 ||u||

2
L2(Ω). They used finite volume

methods to discretize the state and adjoint equation of the optimal control prob-
lems. Under some reasonable assumptions, they obtained some error estimates. In
this paper, we will use the optimize-then-discretize methods to discretize general
elliptic optimal control problems. We consider the elliptic optimal control with
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objective functional g(y) + j(u). We show the existence and the uniqueness of the
solution for discrete optimality conditions. Finally, we obtain some optimal order
error estimates for the state, costate and control variables.

For 1 ≤ p <∞ and m a nonnegative integer let Wm,p(Ω) = {v ∈ Lp(Ω); Dαv ∈
Lp(Ω) if |α| ≤ m} denote the Sobolev spaces endowed with the norm ‖v‖pm,p =∑
|α|≤m ‖Dαv‖pLp(Ω), and the semi-norm | v |pm,p=

∑
|α|=m ‖Dαv‖pLp(Ω). We set

Wm,p
0 (Ω) = {v ∈ Wm,p(Ω) : v |∂Ω= 0}. For p=2, we denote Hm(Ω) = Wm,2(Ω),

Hm
0 (Ω) = Wm,2

0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2.
We consider the general elliptic optimal control problems

min
u∈U
{g(y) + j(u)}, (1.1)

−div(A∇y) = f + u, in Ω, (1.2)

y = 0, on ∂Ω, (1.3)

where Ω ⊂ R2 is a convex bounded polygon with boundary ∂Ω, g and j are con-
vex functionals, f ∈ H1(Ω), U is denoted by U = {u ∈ L2(Ω) : a ≤ u(x) ≤
b, a.e. in Ω, a, b ∈ R}. Furthermore, we assume that the coefficient matrix
A(x) = (ai,j(x))2×2 ∈ (W 2,∞(Ω))2×2 is a symmetric positive definite matrix and
there is a constant c > 0 satisfying for any vector X ∈ R2, XtAX ≥ c‖X‖2R2 .

This article is organized as follows. In next section, we describe the finite volume
methods briefly and apply the piecewise linear finite volume elements to the optimal
control problems (1.1)-(1.3). In Section 3, we prove the existence and the uniqueness
of the solutions for discrete optimality conditions. And then the optimal order
error estimates in L2 norm are derived for the state, costate and control variables
in Second 4. We estimate the error of the numerical solutions of control, state and
costate in L∞ norm. Finally we estimate W 1,∞ and H1 errors for the state and
costate variables in Second 5.

2. Finite volume element methods

For the convex polygon Ω, we consider a quasi-uniform triangulation Th consist-
ing of closed triangle elements K such that Ω̄ = ∪K∈Th

K. We use Nh to denote the
set of all nodes or vertices of Th. To define the dual partition T ∗h of Th, we divide
each K ∈ Th into three quadrilaterals by connecting the barycenter CK of K with
line segments to the midpoints of edges of K as is shown in Figure 1.

The control volume Vi consists of the quadrilaterals sharing the same vertex zi
as is shown in Figure 2.

The dual partition T ∗h consists of the union of the control volume Vi. Let h =
max{hK}, where hK is the diameter of the triangle K. As is shown in [16], the
dual partition T ∗h is also quasi-uniform, i.e., there exists a positive constant C such
that

C−1h2 ≤ meas(Vi) ≤ Ch2, ∀Vi ∈ T ∗h .
We define the finite dimensional space Vh associated with Th for the trial func-

tions by
Vh = {v ∈ C(Ω) : v|K ∈ P1(K), ∀K ∈ Th, v|∂Ω = 0},

and define the finite dimensional space Qh associated with the dual partition T ∗h
for the test functions by

Qh = {q ∈ L2(Ω) : q|V ∈ P0(V ), ∀V ∈ T ∗h ; q|Vz
= 0, z ∈ ∂Ω},
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Figure 2. Control volume Vi sharing the same vertex zi.

where Pl(K) or Pl(V ) consists of all the polynomials with degree less than or equal
to l defined on K or V .

To connect the trial space and test space, we define a transfer operator Ih : Vh →
Qh as follows:

Ihvh =
∑
zi∈Nh

vh(zi)χi, Ihvh|Vi
= vh(zi), ∀Vi ∈ T ∗h ,

where χi is the characteristic function of Vi. For the operator Ih, it is well known
that there exists a positive constant C such that for all v ∈ Vh,

‖v − Ihv‖0,Ω ≤ Ch‖v‖1,Ω. (2.1)

To address the finite volume methods clearly, we consider the problem

−div(A∇ϕ) = f, in Ω, (2.2)

ϕ = 0, on ∂Ω, (2.3)

where A, Ω, ∂Ω are the same as in (1.2)-(1.3), f ∈ L2(Ω) or H1(Ω).
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The finite volume approximation ϕh of (2.2)-(2.3) is defined as the solution of
the problem: find ϕh ∈ Vh such that

a(ϕh, Ihvh) = (f, Ihvh), ∀vh ∈ Vh, (2.4)

where the bilinear form a(ϕh, Ihvh) is defined by

a(ϕ, Ihv) = −
∑
zi∈Nh

v(zi)
∫
∂Vi

A∇ϕ · nds, ϕ, v ∈ H1
0 (Ω),

where n is the unit outward normal vector to ∂Vi. The bilinear form a(·, ·) is not
symmetric though the problem is self-adjoint. Then for all wh, vh ∈ Vh, there exist
positive constants C and h0 ≥ 0 [13] such that for all 0 < h < h0,

|a(wh, Ihvh)− a(vh, Ihwh)| ≤ Ch‖wh‖1,Ω ‖vh‖1,Ω. (2.5)

It is well known [27, 7] that the optimal control problems (1.1)-(1.3) have a
solution (y, u), and that if a pair (y, u) is the solution of (1.1)-(1.3), then there is
a co-state p ∈ H1

0 (Ω) such that the triplet (y, p, u) ∈ H1
0 (Ω)×H1

0 (Ω)× U satisfies
the optimality conditions:

(A∇y,∇w) = (f + u,w), ∀w ∈ H1
0 (Ω), (2.6)

(A∇p,∇q) = (g′(y), q), ∀q ∈ H1
0 (Ω), (2.7)

(j′(u) + p, v − u) ≥ 0, ∀v ∈ U. (2.8)

If y ∈ H1
0 (Ω)∩C2(Ω) and p ∈ H1

0 (Ω)∩C2(Ω), then optimality conditions (2.6)-(2.8)
can be written as

−div(A∇y) = f + u, ∀x ∈ Ω, (2.9)

y(x) = 0, ∀x ∈ ∂Ω, (2.10)

−div(A∇p) = g′(y), ∀x ∈ Ω, (2.11)

p(x) = 0, ∀x ∈ ∂Ω, (2.12)

(j′(u) + p, v − u) ≥ 0, ∀v ∈ U. (2.13)

We use finite volume methods to discretize the state and costate equation di-
rectly. Then the optimality condition (2.9)-(2.13) can be approximated by: find
(yh, ph, uh) ∈ Vh × Vh × U such that

a(yh, Ihwh) = (f + uh, Ihwh), ∀wh ∈ Vh, (2.14)

a(ph, Ihqh) = (g′(yh), Ihqh), ∀qh ∈ Vh, (2.15)

(j′(uh) + ph, v − uh) ≥ 0, ∀v ∈ U. (2.16)

For simplicity of notation, let j(u) = 1
2‖u‖

2
L2(Ω), then we derive (j′(u), v − u) =

(u, v−u) and (j′(uh), v−uh) = (uh, v−uh). Then the variational inequality (2.13)
can be restated as

(u+ p, v − u) ≥ 0, ∀v ∈ U. (2.17)

Similarly, the variational inequality (2.16) can be rewritten by

(uh + ph, v − uh) ≥ 0, ∀v ∈ U. (2.18)

Now, we introduce a projection [19]:

P[a,b](f(x)) = max(a,min(b, f(x))), (2.19)
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we can denote the variational inequality (2.17) by

u(x) = P[a,b](−p). (2.20)

And the variational inequality (2.18) is equivalent to

uh(x) = P[a,b](−ph). (2.21)

Then the discrete optimality conditions can be rewritten by: find (yh, ph, uh) ∈
Vh × Vh × U such that

a(yh, Ihwh) = (f + uh, Ihwh), ∀wh ∈ Vh, (2.22)

a(ph, Ihqh) = (g′(yh), Ihqh), ∀qh ∈ Vh, (2.23)

uh(x) = P[a,b](−ph). (2.24)

For ϕ ∈Wh, we shall write

g(ϕ)− g(ρ) = −g̃′(ϕ)(ρ− ϕ) = −g′(ρ)(ρ− ϕ) + g̃′′(ϕ)(ρ− ϕ)2, (2.25)

where

g̃′(ϕ) =
∫ 1

0

g′(ϕ+ s(ρ− ϕ))ds,

g̃′′(ϕ) =
∫ 1

0

(1− s)g′′(ρ+ s(ϕ− ρ))ds

are bounded functions in Ω̄ [34].

3. Existence and uniqueness

In this section, we show the existence and uniqueness of the solutions for discrete
optimality conditions. We can easily see that the optimality conditions (2.22)-(2.24)
are the finite volume approximation of (2.6)-(2.8). Now we show the existence and
the uniqueness of the solution for (2.22)-(2.24). Let yh(u) be the solution of

a(yh(u), Ihwh) = (f + u, Ihwh), ∀wh ∈ Vh, (3.1)

and ph(y) be the solution of

a(ph(y), Ihqh) = (g′(y), Ihqh), ∀qh ∈ Vh. (3.2)

For yh(u) and ph(y), note that yh = yh(uh) and ph = ph(yh), we have the following
results.

Lemma 3.1. Assume that yh(u), ph(u) are the solutions of (3.1) and (3.2), re-
spectively. Then

‖ph(y)− ph‖1,Ω ≤ C‖y − yh‖0,Ω, ‖yh(u)− yh‖1,Ω ≤ C‖u− uh‖0,Ω. (3.3)

Proof. Subtracting (2.15) from (3.2), and by using (2.25), we have

a(ph(y)− ph, Ihqh) = (g′(y)− g′(yh), Ihqh) = (g̃′′(y)(y − yh), Ihqh), ∀qh ∈ Vh.
(3.4)

Let qh = ph(y)−ph, by using [16, Lemma 2.2] and the Cauchy-Schwarz’s inequality,
we can easily obtain that

‖ph(y)− ph‖1,Ω ≤ C‖y − yh‖0,Ω. (3.5)

Similarly, subtracting (2.14) from (3.1), we have

a(yh(u)− yh, Ihwh) = (u− uh, Ihwh), ∀wh ∈ Vh, (3.6)
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let wh = yh(y)− yh, we derive

‖yh(u)− yh‖1,Ω ≤ C‖u− uh‖0,Ω. (3.7)

This completes the proof. �

Lemma 3.2. The optimality conditions (2.14)-(2.16) admit an unique solution for
sufficiently small h.

Proof. We first introduce a projection Pk : L2(Ω)→ U defined by

‖z − Pk(z)‖0,Ω = min
zh∈U

‖z − zh‖0,Ω. (3.8)

The projection Pk has the property that

‖Pk(z′)− Pk(z′′)‖0,Ω ≤ ‖z′ − z′′‖0,Ω, ∀z′, z′′ ∈ L2(Ω). (3.9)

For a given vh ∈ L2(Ω), let (yh(vh), ph(vh)) be the solution of the following auxiliary
problem: find (yh(vh), ph(vh)) ∈ Vh × Vh such that

a(yh(vh), Ihwh) = (vh + f, Ihwh), ∀wh ∈ Vh, (3.10)

a(ph(vh), Ihqh) = (g′(yh(vh)), Ihqh), ∀qh ∈ Vh. (3.11)

Define a mapping Φ : L2(Ω)→ L2(Ω) by

Φ(zh) = zh − ρ(zh + ph(zh)), ∀zh ∈ L2(Ω), ρ > 0. (3.12)

Let T (zh) = PkΦ(zh), then the existence and uniqueness of (2.14)-(2.16) is to show
that T (zh) is a contractive mapping. It follows from (3.9) that for all z′h, z

′′
h ∈ L2(Ω),

‖T (z′h)− T (z′′h)‖20,Ω = ‖Pk(Φ(z′h))− Pk(Φ(z′′h))‖20,Ω
≤ ‖Φ(z′h)− Φ(z′′h)‖20,Ω = (Φ(z′h)− Φ(z′′h),Φ(z′h)− Φ(z′′h)).

Note that

(Φ(z′h)− Φ(z′′h),Φ(z′h)− Φ(z′′h))

= (1− 2ρ)(z′h − z′′h , z′h − z′′h)− 2ρ(z′h − z′′h , ph(z′h)− ph(z′′h))

+ ρ2‖z′h − z′′h + ph(z′h)− ph(z′′h)‖20,Ω.
Then we have

‖T (z′h)− T (z′′h)‖20,Ω
=≤ (1− 2ρ)(z′h − z′′h , z′h − z′′h)− 2ρ(z′h − z′′h , ph(z′h)− ph(z′′h))

+ ρ2‖z′h − z′′h + ph(z′h)− ph(z′′h)‖20,Ω.
(3.13)

For z′h, z
′′
h ∈ L2(Ω), it follows from (3.10)-(3.11) and (2.25) that

a(yh(z′h)− yh(z′′h), Ihwh) = (z′h − z′′h , Ihwh), ∀wh ∈ Vh,
a(ph(z′h)− ph(z′′h), Ihqh) = (g̃′′(yh(z′h))(yh(z′h)− yh(z′′h)), Ihqh), ∀qh ∈ Vh.

Let wh = ph(z′h)− ph(z′′h) and qh = yh(z′h)− yh(z′′h), we have

(z′h − z′′h , ph(z′h)− ph(z′′h))

= (g̃′′(yh(z′h))(yh(z′h)− yh(z′′h)), Ih(yh(z′h)− yh(z′′h)))

+ a(yh(z′h)− yh(z′′h), Ih(ph(z′h)− ph(z′′h)))

− a(ph(z′h)− ph(z′′h), Ih(yh(z′h)− yh(z′′h)))

+ (z′h − z′′h , (ph(z′h)− ph(z′′h))− Ih(ph(z′h)− ph(z′′h)))
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≥ a(yh(z′h)− yh(z′′h), Ih(ph(z′h)− ph(z′′h)))

− a(ph(z′h)− ph(z′′h), Ih(yh(z′h)− yh(z′′h)))

+ (z′h − z′′h , (ph(z′h)− ph(z′′h))− Ih(ph(z′h)− ph(z′′h))),

where we have used the fact that (vh, Ihvh) ≥ 0. Using [13, Lemma 2.4] and Lemma
3.1, we have

a
(
yh(z′h)− yh(z′′h), Ih(ph(z′h)− ph(z′′h))

)
− a
(
ph(z′h)− ph(z′′h), Ih(yh(z′h)− yh(z′′h))

)
≥ −c0h‖ph(z′h)− ph(z′′h)‖1,Ω · ‖yh(z′h)− yh(z′′h)‖1,Ω
≥ −c0c1h‖z′h − z′′h‖20,Ω.

(3.14)

Note that by (2.1) and Lemma 3.1, we have

(z′h − z′′h , (ph(z′h)− ph(z′′h))− Ih(ph(z′h)− ph(z′′h)))

≥ −c2h‖ph(z′h)− ph(z′′h)‖1,Ω · ‖z′h − z′′h‖0,Ω
≥ −c2c3h‖z′h − z′′h‖20,Ω.

(3.15)

Combining (3.14) and (3.15), we deduce that

(z′h − z′′h , ph(z′h)− ph(z′′h)) ≥ −(c0c1 + c2c3)h‖z′h − z′′h‖20,Ω. (3.16)

Now, it is easy to see that

‖z′h − z′′h + ph(z′h)− ph(z′′h)‖20,Ω ≤ c4‖z′h − z′′h‖20,Ω. (3.17)

Then it follows from (3.13), (3.16), and (3.17) that

‖T (z′h)− T (z′′h)‖20,Ω ≤ C‖z′h − z′′h‖20,Ω. (3.18)

For sufficiently small h we can ensure 0 < C < 1. Therefore T (zh) is a contrac-
tive mapping and hence the optimality conditions (2.14)-(2.16) admit an unique
solution. �

4. Optimal-order L2 error estimates

In this section, we derive an optimal-order L2 error estimates for the finite volume
methods with the minimal regularity assumption for the exact solution u. Owing
to the property of the variational inequality, we first estimate the error of the
approximate control in L2 norm. Using the properties of the control, we then
estimate the errors of the numerical solutions for the state and the costate.

Theorem 4.1. Let (y, p, u) ∈ (H2(Ω) ∩ H1
0 (Ω)) × (H2(Ω) ∩ H1

0 (Ω)) × U and
(yh, ph, uh) ∈ Vh × Vh × U be the solutions of (2.6)-(2.8) and (2.14)-(2.16), re-
spectively. Assume that u ∈ H1(Ω). Then there exists an h0 > 0 such that for all
0 < h ≤ h0,

‖u− uh‖ ≤ Ch2(‖y‖2,Ω + ‖p‖2,Ω). (4.1)
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Proof. Let v = u in (2.16) and v = uh in the variational inequality of (2.13), by
using (3.6), (2.17), and (2.18), then we have

(u− uh, u− uh) ≤(p− ph, uh − u)

=(p− ph(y), uh − u) + (ph(y)− ph, uh − u)

=(p− ph(y), uh − u) + (Ih(ph(y)− ph), uh − u)

+ ((ph(y)− ph)− Ih(ph(y)− ph), uh − u)

=(p− ph(y), uh − u) + a(yh − yh(u), Ih(ph(y)− ph))

+ ((ph(y)− ph)− Ih(ph(y)− ph), uh − u).

(4.2)

By using (2.25) and (3.4), the second term on the right hand side of (4.2) can be
written by

a(yh − yh(u), Ih(ph(y)− ph))

= a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

+ a(ph(y)− ph, Ih(yh − yh(u)))

= a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

+ (g̃′′(y)(y − yh), Ih(yh − yh(u)))

= a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

+ (g̃′′(y)(y − yh(u)), Ih(yh − yh(u)))

− (g̃′′(y)(yh − yh(u)), Ih(yh − yh(u)))

≤ (g̃′′(y)(y − yh(u)), Ih(yh − yh(u))) + a(yh − yh(u), Ih(ph(y)− ph))

− a(ph(y)− ph, Ih(yh − yh(u))),

(4.3)

where we have used that (g̃′′(y)(yh − yh(u)), Ih(yh − yh(u))) ≥ 0. Connecting (4.2)
and (4.3), we obtain

α(u− uh, u− uh)

≤ (g̃′′(y)(y − yh(u)), Ih(yh − yh(u))) + (p− ph(y), uh − u)

+ ((ph(y)− ph)− Ih(ph(y)− ph), uh − u)

+ a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))
≡ E1 + E2 + E3 + E4.

(4.4)

Note that

(g̃′′(y)(y − yh(u)), Ih(yh − yh(u))) = (g̃′′(y)(y − yh(u)), yh − yh(u)). (4.5)

By using Lemma 3.1 and (4.5), we have

E1 = (g̃′′(y)(y − yh(u)), Ih(yh − yh(u)))

≤ ‖y − yh(u)‖0,Ω · ‖yh − yh(u)‖0,Ω
≤ ‖y − yh(u)‖0,Ω · ‖uh − u‖0,Ω ≤ Ch2‖y‖2,Ω · ‖uh − u‖0,Ω.

(4.6)

Now, we can easily obtain
E2 = (p− ph(y), uh − u)

≤ ‖p− ph(y)‖0,Ω · ‖uh − u‖0,Ω
≤ ‖p− ph(y)‖0,Ω · ‖uh − u‖0,Ω
≤ Ch2‖p‖2,Ω · ‖uh − u‖0,Ω,

(4.7)
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where we have used the estimate in [16, Theorem 3.5]. Furthermore, by using
Lemma 3.1, (2.1), and the triangle inequality, we derive

E3 = ((ph(y)− ph)− Ih(ph(y)− ph), uh − u)

≤ Ch‖ph(y)− ph‖1,Ω · ‖uh − u‖0,Ω
≤ Ch‖y − yh‖0,Ω · ‖uh − u‖0,Ω
≤ Ch‖y − yh‖1,Ω · ‖uh − u‖0,Ω
≤ Ch(‖y − yh(u)‖1,Ω + ‖yh(u)− yh‖1,Ω) · ‖uh − u‖0,Ω
≤ Ch(Ch‖y‖2,Ω + ‖uh − u‖0,Ω)‖uh − u‖0,Ω
≤ Ch‖uh − u‖20,Ω.

(4.8)

Using (2.5) and Lemma 3.1, we have

E4 = (a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

≤ Ch‖yh − yh(u)‖1,Ω · ‖ph(y)− ph‖1,Ω
≤ Ch‖uh − u‖0,Ω · ‖y − yh‖0,Ω
≤ Ch‖y − yh‖1,Ω · ‖uh − u‖0,Ω
≤ Ch(‖y − yh(u)‖1,Ω + ‖yh(u)− yh‖1,Ω) · ‖uh − u‖0,Ω
≤ Ch(Ch‖y‖2,Ω + ‖uh − u‖0,Ω) ‖uh − u‖0,Ω
≤ Ch‖uh − u‖20,Ω.

(4.9)

Hence, the estimate (4.1) follows from (4.4) and (4.6)-(4.9). �

Theorem 4.2. Let (y, p, u) ∈ (H2(Ω) ∩ H1
0 (Ω)) × (H2(Ω) ∩ H1

0 (Ω)) × U and
(yh, ph, uh) ∈ Vh × Vh × U be the solutions of (2.6)-(2.8) and (2.14)-(2.16), re-
spectively. Assume that u ∈ L2(Ω). Then there exists an h0 > 0 such that for all
0 < h ≤ h0,

‖y − yh‖0,Ω + ‖p− ph‖0,Ω ≤ Ch2(‖y‖2,Ω + ‖p‖2,Ω). (4.10)

Proof. Using the triangle inequality, we have

‖y − yh‖0,Ω ≤ ‖y − yh(u)‖0,Ω + ‖yh(u)− yh‖0,Ω,
‖p− ph‖0,Ω ≤ ‖p− ph(y)‖0,Ω + ‖ph(y)− ph‖0,Ω.

Lemma 3.1 implies that
‖y − yh‖0,Ω ≤ ‖y − yh(u)‖0,Ω + C‖yh(u)− yh‖1,Ω

≤ ‖y − yh(u)‖0,Ω + C‖u− uh‖0,Ω,
(4.11)

and
‖p− ph‖0,Ω ≤ ‖p− ph(y)‖0,Ω + C‖ph(y)− ph‖1,Ω

≤ ‖p− ph(y)‖0,Ω + C‖y − yh‖0,Ω.
(4.12)

By using [16, Theorem 3.5], we can easily obtain

‖y − yh(u)‖0,Ω ≤ Ch2‖y‖2,Ω. (4.13)

From (4.11), (4.13), and Theorem 4.1, we derive

‖y − yh‖0,Ω ≤ Ch2‖y‖2,Ω. (4.14)

Connecting (4.12), (4.14), and ‖p− ph(y)‖0,Ω ≤ Ch2‖p‖2,Ω, we have

‖p− ph‖0,Ω ≤ Ch2‖p‖2,Ω. (4.15)
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From (4.14)-(4.15) we can immediately obtain (4.10). �

5. Optimal-order maximum-norm and H1 error estimates

In this section, we first estimate the errors of the numerical solutions of control,
state and costate in L∞ norm. Then we estimate W 1,∞ errors for the state and
costate variables.

Theorem 5.1. Let (y, p, u) ∈ (H2(Ω) ∩ H1
0 (Ω)) × (H2(Ω) ∩ H1

0 (Ω)) × U and
(yh, ph, uh) ∈ Vh × Vh × U be the solutions of (2.6)-(2.8) and (2.14)-(2.16), re-
spectively. Assume that u ∈ H1(Ω). Then there exists an h0 > 0 such that for all
0 < h ≤ h0,

‖u− uh‖0,∞ + ‖y − yh‖0,∞ + ‖p− ph‖0,∞ ≤ Ch2

√
| log(

1
h

)|. (5.1)

Proof. Using the definition of P[a,b](·) and (2.20)-(2.21), we have

‖u− uh‖0,∞ ≤ C‖p− ph‖0,∞
≤ C(‖p− ph(y)‖0,∞ + ‖ph(y)− ph‖0,∞)

≤ C‖p− ph(y)‖0,∞ + C

√
| log(

1
h

)|‖ph(y)− ph‖1,Ω

≤ C‖p− ph(y)‖0,∞ + C

√
| log(

1
h

)|‖y − yh‖0,Ω

≤ Ch2

√
| log(

1
h

)|,

(5.2)

where we have used the inverse inequality, Lemma 3.1, [16, Theorem 3.11], and
Theorem 4.1. Similarly, we obtain

‖y − yh‖0,∞ ≤ ‖y − yh(u)‖0,∞ + ‖yh(u)− yh‖0,∞

≤ ‖y − yh(u)‖0,∞ + C

√
| log(

1
h

)|‖yh(u)− yh‖1,Ω

≤ ‖y − yh(u)‖0,∞ + C

√
| log(

1
h

)|‖u− uh‖0,Ω

≤ Ch2

√
| log(

1
h

)|.

(5.3)

Then we complete the proof of (5.1). �

Theorem 5.2. Let (y, p, u) ∈ (H2(Ω) ∩ H1
0 (Ω)) × (H2(Ω) ∩ H1

0 (Ω)) × U and
(yh, ph, uh) ∈ Vh × Vh × U be the solutions of (2.6)-(2.8) and (2.14)-(2.16), re-
spectively. Assume that u ∈ H1(Ω). Then there exists an h0 > 0 such that for all
0 < h ≤ h0,

‖p− ph‖1,∞ + ‖y − yh‖1,∞ ≤ Ch| log(
1
h

)|. (5.4)
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Proof. Using the inverse inequality, Lemma 3.1, and [16, Theorem 3.10], we have

‖∇(p− ph)‖0,∞ ≤ ‖∇(p− ph(y))‖0,∞ + ‖∇(ph(y)− ph)‖0,∞
≤ ‖∇(p− ph(y))‖0,∞ + Ch−1‖∇(ph(y)− ph)‖0,Ω
≤ ‖∇(p− ph(y))‖0,∞ + Ch−1‖y − yh‖0,Ω

≤ Ch | log(
1
h

)|+ Ch ≤ Ch | log(
1
h

)|.

(5.5)

Similarly, we obtain

‖∇(y − yh)‖0,∞ ≤ ‖∇(y − yh(u))‖0,∞ + ‖∇(yh(u)− yh)‖0,∞
≤ ‖∇(y − yh(u))‖0,∞ + Ch−1‖yh(u)− yh‖0,Ω
≤ ‖∇(y − yh(u))‖0,∞ + Ch−1‖u− uh‖0,Ω

≤ Ch | log(
1
h

)|+ Ch ≤ Ch | log(
1
h

)|.

(5.6)

Then we complete the proof of (5.4). �

Now, we consider the errors of the state and costate in H1 norm.

Theorem 5.3. Let (y, p, u) ∈ (H2(Ω) ∩ H1
0 (Ω)) × (H2(Ω) ∩ H1

0 (Ω)) × U and
(yh, ph, uh) ∈ Vh × Vh × U are the solutions of (2.6)-(2.8) and (2.14)-(2.16), re-
spectively. Then there exists an h0 > 0 such that for all 0 < h ≤ h0,

‖y − yh‖1,Ω + ‖p− ph‖1,Ω ≤ Ch(‖y‖2,Ω + ‖p‖2,Ω). (5.7)

Proof. Using the triangle inequality, we have

‖y − yh‖1,Ω ≤ ‖y − yh(u)‖1,Ω + ‖yh(u)− yh‖1,Ω,
‖p− ph‖1,Ω ≤ ‖p− ph(y)‖1,Ω + ‖ph(y)− ph‖1,Ω.

Lemma 3.1 implies

‖y − yh‖1,Ω ≤ ‖y − yh(u)‖1,Ω + C‖u− uh‖0,Ω, (5.8)

‖p− ph‖1,Ω ≤ ‖p− ph(y)‖1,Ω + C‖y − yh‖0,Ω. (5.9)

By using [16, Theorem 3.3], we obtain

‖y − yh(u)‖1,Ω ≤ Ch‖y‖2,Ω, ‖p− ph(y)‖1,Ω ≤ Ch‖p‖2,Ω. (5.10)

From Theorem 4.2 and (5.8)-(5.10) we can easily obtain (5.7). �

6. Conclusion and future works

In this article, we presented the finite volume approximation of general elliptic
optimal control problems. We prove the existence and the uniqueness of the so-
lution for discrete optimality conditions. Under some reasonable assumptions, we
obtain some optimal order error estimates for the state, costate and control vari-
ables. The convergence rate for the state, costate and control variables is O(h2) or

O(h2
√
| log( 1

h )|) in the sense of L2 norm or L∞ norm. The convergence rate for

the state and costate variables is O(h) or O(h| log( 1
h )|) in the sense of H1 norm or

W 1,∞ norm.
We presented a priori error estimates for the finite volume approximation of

general elliptic optimal control problems. To our best knowledge in the context
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of optimal control problems, these priori error estimates for the general elliptic
optimal control problems are new.

In the future, we shall consider the finite volume approximation of parabolic op-
timal control problems. Furthermore, we shall consider a posteriori error estimates
and super-convergence of the finite volume solutions for parabolic optimal control
problems.
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