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A SIMPLIFIED APPROACH TO GRONWALL’S INEQUALITY
ON TIME SCALES WITH APPLICATIONS TO NEW BOUNDS

FOR SOLUTIONS TO LINEAR DYNAMIC EQUATIONS

CHRISTOPHER C. TISDELL, STEPHEN MEAGHER

Abstract. The purpose of this work is to advance and simplify our under-

standing of some of the basic theory of linear dynamic equations and dynamic

inequalities on time scales.
Firstly, we revisit and simplify approaches to Gronwall’s inequality on time

scales. We provide new, simple and direct proofs that are accessible to those

with only a basic understanding of calculus.
Secondly, we apply the ideas to second and higher order linear dynamic

equations on time scales. Part of the novelty herein involves a strategic choice

of metric, notably the taxicab metric, to produce a priori bounds on solutions.
This choice of metric significantly simplifies usual approaches and extends ideas

from the literature.
Thirdly, we examine mathematical applications of the aforementioned bounds.

We form results concerning the non-multiplicity of solutions to linear problems;

and error estimates on solutions to initial value problems when the initial con-
ditions are imprecisely known.

1. Introduction

For hundreds of years, second and higher order differential equations of linear
type have gained attention from mathematicians, engineers, scientists and educators
due to their simplicity and accessibility [16]. These equations take the form of an
initial value problem, namely

x(n) + an−1(t)x(n−1) + · · ·+ a1(t)x′ + a0(t)x = f(t), (1.1)

x(i)(0) = bi, for i ∈ {0, . . . , n− 1}. (1.2)

Agnew makes the significance of (1.1), (1.2) clear via the now classic statement
that they “are so important that many persons with few mathematical interests
know enough about them to be able to use them in the solution of problems”
Agnew [2, p.95].

As mathematical modelling has developed and matured, we have seen the rise of
linear difference equations in the modelling of discrete phenomena and also as ap-
proximations to differential equations through numerical methods. These equations
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can take the classical form

∆(n)x(t) + an−1(t)∆(n−1)x(t) + · · ·+ a1(t)∆x(t) + a0(t)x(t) = f(t), (1.3)

∆(i)x(0) = bi, for i ∈ {0, . . . , n− 1}. (1.4)

In the case of q−difference equations [5, p.1487], the “dynamic” equation with n = 2
looks like

Dh(Dhx)(t) + a1(t)Dhx(t) + a0(t)x(t) = f(t), t ∈ hZ, h > 1,

where Dhy(t) :=
y(ht)− y(t)

ht− t
.

(1.5)

In the past 20 years, or so, we have seen the birth and evolution of “dynamic
equations on time scales” [7, 14]. The field of dynamic equations on time scales offers
a mathematical framework that encompasses differential equations and difference
equations simultaneously. Prototypical time scales are the set of real numbers
(corresponding to differential equations) and the set of integers (corresponding to
difference equations). This framework provides an opportunity to simultaneously
model continuous, discrete and hybrid processes.

Let T be a time scale (precise definitions will be presented in Section 2). The
general problem of solving an nth order linear “dynamic” equation, with initial
values bi ∈ R, is to find an nth order delta differentiable function x : T → R
satisfying

x∆(n)
+ an−1(t)x∆(n−1)

+ · · ·+ a1(t)x∆ + a0(t)x = f(t), (1.6)

x∆(i)
(0) = bi, for i ∈ {0, . . . , n− 1}. (1.7)

on some suitable interval. Above, the ai : Tκi → R and f : Tκi → R are arbitrary
functions, and 0 ∈ T.

Equations (1.6) and (1.7) simultaneously encompass: (1.1), (1.2); and (1.3),
(1.4); plus many more “in-between” and hybrid cases such as (1.5).

The purpose of this work is to advance and simplify our understanding of some
of the basic theory of linear dynamic equations and dynamic inequalities on time
scales, with Agnew’s famous aforementioned quote taking on even more important
meaning for (1.6), (1.7) given its wide-ranging and flexible characteristics.

Much work has been done generalising the basic inequalities found in Chapter 6 of
Bohner and Peterson [7] (see [1] and the introduction of [13] for a recent overview).
There have also been various generalisations to multi-variable situations (see e.g.
[3, 4]), and to situations involving delay equations (see [9] and the references therein
for a recent overview). However, unlike present article, none of these works provide
such a simple and direct approach as we do herein; nor do they prove an inequality
where the bounds depend on the classical real analysis exponential function alone,
and are therefore independent of the time scale. The inequalities and methods that
we show are striking in their simplicity and independence from the time scale.

Our work is organised as follows:
Section 2 briefly recalls some of the basic notation and concepts from the field

of time scales to keep this work reasonably self contained.
In Section 3, we revisit and simplify approaches to Gronwall’s inequality on time

scales. This fundamental inequality has opened up many new directions for scien-
tific investigation and mathematical research into nonlinear problems, and continues
to be a fruitful resource within the area of time scales. Several of our results out
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important and novel and complement existing theorems and, in particular, provide
new, simple and direct proofs that are accessible to those with only a basic un-
derstanding of calculus. Unlike more well–known approaches, the bounds that we
obtain do not rely on the exponential function on times scales, rather they involve
the exponential function from classical real analysis. This means the bounds are
independent of the time scale itself and thus are easily calculable. Our results are
also timely in view of the upcoming centenary of Gronwall’s original results from
1919 [10] for differential inequalities.

In Section 4 we analyse second and higher order linear dynamic equations on
time scales. The novelty herein involves a strategic choice of metric, notably the
taxicab metric [16], to produce a priori bounds on solutions. This choice of metric
significantly simplifies usual approaches and extends ideas from the literature in
the second and higher order cases. Once again, these bounds are in terms of the
classical exponential function and so are easily accessible and computable by a wide
audience.

Finally, in Section 5, we look at mathematical applications of the aforemen-
tioned bounds. We form results concerning the non-multiplicity of solutions to
second and higher order problems; and error estimates on solutions to initial value
problems when the initial conditions are imprecisely known. Once again, the meth-
ods involved are direct and accessible, and differ from the existing literature by not
relying on an understanding of matrix theory.

The present article is motivated by the recent works [15] and [16], where new
Gronwall-type results were derived in the fractional integral operator setting; and
the taxicab metric was applied to obtain a priori bounds on linear, ordinary differ-
ential equations.

2. Review of time scales

We briefly recall some of the basic notation and concepts from the field of time
scales so that this work is reasonably self contained. For more details we refer the
reader to the seminal work of Bohner and Peterson [7].

A time scale T is a closed (and nonempty) subset of R. For each t ∈ T, the
forward jump operator σ : T→ R is defined by

σ(t) :=

{
inf{s ∈ T | s > t}, if tis not the maximum of T;
t, if t is the maximum of T.

E.g. if T = R then σ(t) = t, while if T = Z then σ(t) = t+ 1.
We define the set Tκ to be T if T does not have a discrete maximum,1 otherwise

Tκ is T with its discrete maximum removed. Note that Tκ is itself a time scale.
A function x : T → R is delta differentiable if there is a function x∆ : Tκ → R

such that for each t ∈ Tκ and for each ε > 0 there exists a δ > 0 such that for any
s ∈ T satisfying

|t− s| < δ

we have
|x(σ(t))− x(s)− x∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|.

1In the time scale literature this is called a left-scattered maximum, see below for a definition
of left-scattered.
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For example if T = R then this just the ordinary derivative of x. If T = Z then

x∆(t) = x(t+ 1)− x(t).

Note that Tκ is needed to ensure uniqueness of x∆(t): for if t1 is a discrete maximum
of T, then for ε sufficiently small, s = t1 and therefore σ(t1) = s which would mean
x∆(t1) could take any value.

The higher delta derivatives are defined recursively by

x∆(n)
(t) = (x∆(n−1)

)∆(t)

for t ∈ Tκn

where Tκn

= (Tκn−1
)κ.

The anti-derivative X of x is a function such that X∆ = x, and the delta integral
is given by ∫ t

t0

x(s)∆s = X(t)−X(t0).

From this definition it is easy to see that delta integrals are linear operators in x.
To state existence results for anti-derivatives, we call on the notion of an rd-

continuous function. It turns out that all rd-continuous functions have anti-derivatives.
This necessitates defining the backward jump operator ρ : T→ R

ρ(t) :=

{
sup{s ∈ T | s < t} if t is not the minimum of T;
t if t is the minimum of T.

A point t is called right-dense if σ(t) = t and left-dense if ρ(t) = t, it is called
right-scattered if σ(t) > t and left-scattered if ρ(t) < t.

A function x : T → R is called rd-continuous if it is continuous at right-dense
points and left-continuous at left-dense points.

If a function is delta differentiable it is rd-continuous, and if a function is con-
tinuous it is rd-continuous.

We will use the fact that a function of the form

|x(t)|+ |x∆(t)|+ · · ·+ |x∆(n−1)
(t)|

is rd-continuous if x has nth order delta derivatives.
If I ⊂ R is an interval we denote I ∩ T by IT. If I is compact and x : T → R

is rd-continuous, then x is bounded on IT, and x attains its maximum on T, i.e.
there exists a t1 ∈ IT such that x(t1) = sup{x(t) : t ∈ IT} [7, Theorems 1.60 and
1.65, pp 22-23].

We will use the following facts regarding delta integrals:
If x(s) ≤ y(s) for all s ∈ [t0, t1]T then∫ t

t0

x(s) ∆s ≤
∫ t

t0

y(s) ∆s, for all t ∈ [t0, t1]T (2.1)

(see, e.g. [7, Theorem 1.77, p29]).
In particular if M > 0 is a constant and x ≤M then∫ t

t0

x(s) ∆s ≤M(t− t0). (2.2)

as the anti-derivative of a constant M is Ms (see [7, Example 1.13(ii)]).
If h : [t0, t]→ R is continuous and non-decreasing then∫ t

t0

h(s) ∆s ≤
∫ t

t0

h(s) ds (2.3)
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(see e.g. [11, Theorem 2.3] or [6, Lemma 2.1]).

3. Gronwall-type results for dynamic equations on time scales

In this section, we present some Gronwall–type results on time scales. Gronwall’s
original results [10] are nearly 100 years old and they have had a profound effect
on the study of differential and integral equations. For example, for recent results
in this area, see [15].

There are two important distinctions between our approach and the results al-
ready in the literature [7, Chapter 6] regarding Gronwall’s results on time scales.
Firstly, we provide two methods of proof for the result that simplify existing ap-
proaches. Secondly, our bounds are in terms of the classical exponential function
from real analysis. This means the bounds are independent of the time scale which
means that the bounds are easier to calculate than traditional bounds that use the
time-scale exponential function.

Theorem 3.1. Let a > 0 be a constant and let ρ : [0, a]T → [0,∞) be rd-continuous.
If there are non–negative constants A and B such that

ρ(t) ≤ B +
∫ t

0

Aρ(s) ∆s, for all t ∈ [0, a]T (3.1)

then
ρ(t) ≤ BeAt, for all t ∈ [0, a]T. (3.2)

In the interest of diversity, we present two different styles of proof. They offer
very simple approaches and each only requires a basic understanding of functions
and time scales calculus. The style of first proof is motivated by [17, p82-83] with
appropriate modifications for time scales.

Proof 1: The case A = 0 is trivial, so let A > 0. Since ρ is non–negative and
rd-continuous on [0, a]T, there is a constant M > 0 such that

0 ≤ ρ(t) ≤M, for all t ∈ [0, a]T. (3.3)

Inserting (3.3) into the right–hand side of (3.1) and using (2.2) we obtain, for all
t ∈ [0, a]T:

ρ(t) ≤ B +
∫ t

0

AM ∆s = B +MAt. (3.4)

Now, in a similar fashion, inserting (3.4) into (3.1) and then applying (2.1) and
(2.3) with h(s) = B +MAs, we obtain:

ρ(t) ≤ B +
∫ t

0

A[B +MAs] ∆s

≤ B +
∫ t

0

A[B +MAs] ds

= B +BAt+
MA2t2

2!
.

Continuing with this process, we see that the n-th iteration is

ρ(t) ≤ B
n−1∑
k=0

(At)k

k!
+
M(At)n

n!
. (3.5)

Taking limits as n→∞ in (3.5) we obtain (3.2). �
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Proof 2: The case A = 0 is trivial, so let A > 0. For t ∈ [0, a]T, define

g(t) :=
ρ(t)
eAt

. (3.6)

Since g is rd-continuous on a compact interval, it must attain its maximum value
at some point t1 ∈ [0, a]T. Let

m := max
t∈[0,a]T

g(t) = g(t1).

Thus, from (3.6) we see that
ρ(t1) = meAt1 . (3.7)

Using (3.7), (3.6) and (3.1) we have

meAt1 = ρ(t1)

≤ B +
∫ t1

0

Aρ(s) ∆s

= B +
∫ t1

0

AeAsg(s) ∆s

≤ B +
∫ t1

0

AeAsm∆s

≤ B +
∫ t1

0

AeAsmds

= B +m[eAt1 − 1]

where, in the second last line we applied the fundamental inequality (2.3).
Thus, we have

meAt1 ≤ B +m[eAt1 − 1]

from which we can eliminate the exponential function and simplify to

m ≤ B. (3.8)

Thus, from (3.6) and (3.8), for each t ∈ [0, a]T we have

ρ(t) = g(t)eAt ≤ meAt ≤ BeAt. (3.9)

�

Remark 3.2. We make no claim that inequality (3.2) is “sharp” (i.e., the least
upper bound) for all time scales. Indeed, it can be considered as a rather “rough”
estimate. There is a natural trade-off between our simple methods of proof and
the degree of sharpness of the conclusion of Theorem 3.1. The significance, interest
and distinction from existing literature is in the method of proof.

While inequality (3.2) could be classed as a “rough” estimate, this does not affect
its applications in the remainder of this paper. Indeed, the value and importance
of rough inequalities like (3.2) has been confirmed by well–known mathematicians
such as Nirenberg and Friedrichs, who “often stressed the applicability of rough
inequalities to various problems!” [12, p483].

The following generalisation of Theorem 3.1 is now presented.
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Theorem 3.3. Let A be a non-negative constant; let B : [0, a]T → [0,∞) be rd-
continuous and nondecreasing; and let ρ : [0, a]T → [0,∞) be rd-continuous. If

ρ(t) ≤ B(t) +
∫ t

0

Aρ(s) ∆s, for all t ∈ [0, a]T (3.10)

then
ρ(t) ≤ B(t)eAt, for all t ∈ [0, a]T. (3.11)

Proof. If (3.10) holds then, for each t1 ∈ T with 0 ≤ t ≤ t1 ≤ a we have B(t) ≤
B(t1). Therefore

ρ(t) ≤ B(t1) +
∫ t

0

Aρ(s) ∆s, t ∈ [0, t1]T

where t1 is now regarded as a constant. The conditions of Theorem 3.1 hold and
the conclusion (3.2) can then be applied, so that we have

ρ(t) ≤ B(t1)eAt. (3.12)

Thus replacing t with t1 in (3.12) we obtain

ρ(t1) ≤ B(t1)eAt1 , for all t1 ∈ [0, a]T.

so that (3.11) holds. �

4. A priori bounds via a taxicab approach

In this section we present our results concerning a priori bounds for the general
homogeneous problem associated with (1.6), (1.7), namely

x∆(n)
+ an−1(t)x∆(n−1)

+ · · ·+ a1(t)x∆ + a0(t)x = 0, (4.1)

x∆(i)
(0) = bi, for i ∈ {0, . . . , n− 1}. (4.2)

Our methodology involves the taxicab size of a solution to homogeneous problems
combined with applications of our earlier Gronwall inequalities from the previous
section.

In [5] the a priori bounds on solutions to the basic second order (n = 2) form of
(1.6), (1.7) with constant coefficients were obtained via an approach that used the
Euclidean size of a solution, namely

d1(t) :=
√

(x(t))2 + (x′(t))2.

While the Euclidean approach to a priori bounds on solutions is somewhat man-
ageable in the proofs concerning second–order, linear problems with constant co-
efficients, we believe it is not optimal. Moreover, the Euclidean method becomes
unwieldy in the proofs involving higher-order cases, for example, when attempting
to apply

dn−1(t) :=
√

(x(t))2 + (x′(t))2 + · · ·+ (x(n−1)(t))2

to nth order problems.
The purpose of this section is to propose a simpler approach that establishes a

priori bounds on solutions by considering a different way of measuring the size of
a solution to linear dynamic equations. We shall refer to this as the taxicab (or
Manhattan) size, namely

ρ(t) := |x(t)|+ |x∆(t)|+ · · ·+ |x∆(n−1)
(t)| (4.3)
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for each t in an interval.
Taxicab geometry (in Rn) dates back to mathematician Hermann Minkowski

in the 19th century where the distance between points is the sum of the absolute
difference of the Cartesian coordinates, as opposed to the straight line Euclidean
distance.

The taxicab form (4.3) of the size of a solution to linear differential equations
enables a simplification and extension of the mathematical literature such as [5],
to higher order equations. For instance, there is no need to apply the AM–GM
inequality ad nauseam in the proofs; and the product rule for delta differentiation is
not required. The ideas are widely accessible to to those who have an understanding
of the Fundamental Theorem of Calculus and the classic exponential function.

Theorem 4.1. Consider the homogeneous IVP (4.1), (4.2) where each function
ai : [0, a]κ

i

T → R and ai is rd-continuous. If x = x(t) is a solution to (4.1), (4.2) on
[0, a]T then

|x∆(i)
(t)| ≤ BeAt, for i = 0, 1, . . . , n− 1 for each t ∈ [0, a]κ

n−1

T (4.4)

where

|ai| ≤ Ai, on [0, a]κ
n−1

T , i = 0, 1 . . . , n− 1;

A := max{A0, A1, . . . , An−1}+ (n− 1);

B := |b0|+ |b1|+ · · ·+ |bn−1|.

The proofs of Theorems 4.1 and 4.2 are motivated by [8, Theorem B, p284]
(which applies only to [0,∞)), except that we make the constants explicit.

Proof. The constants Ai defined as if each ai is rd-continuous on the compact set
[0, a]κ

i

T then they are uniformly bounded on [0, a]κ
i

T .
Let x = x(t) be a solution to (4.1) on [0, a]T. We have for each t ∈ [0, a]κ

i

T and
each i = 0, 1, . . . , n− 2

|x∆(i)
(t)| =

∣∣bi +
∫ t

0

x∆(i+1)
(s) ∆s

∣∣
≤ |bi|+

∣∣ ∫ t

0

|x∆(i+1)
(s)|∆s

∣∣
≤ |bi|+

∣∣ ∫ t

0

|x(s)|+ |x∆(s)|+ · · ·+ |x∆(n−1)
(s)|∆s

∣∣
(4.5)

In addition, using the dynamic equation (4.1) we have for each t ∈ [0, a]κ
n−1

T

|x∆(n−1)
(t)|

≤ |bn−1|+
∣∣∣ ∫ t

0

|x∆(n)
(s)|∆s

∣∣∣
= |bn−1|+

∣∣∣ ∫ t

0

∣∣− [an−1(s)x∆(n−1)
(s) + · · ·+ a1(s)x∆(s) + a0(s)x(s)

]∣∣∆s∣∣∣
≤ |bn−1|+

∣∣∣ ∫ t

0

[
|an−1(s)| |x∆(n−1)

(s)|+ · · ·+ |a1(s)| |x∆(s)|+ |a0(s)| |x(s)|
]

∆s
∣∣∣

≤ |bn−1|+
∣∣∣ ∫ t

0

(A− (n− 1))
[
|x∆(n−1)

(s)|+ · · ·+ |x∆(s)|+ |x(s)|
]

∆s
∣∣∣.
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≤ |bn−1|+ (A− (n− 1))
∣∣∣ ∫ t

0

[
|x∆(n−1)

(s)|+ · · ·+ |x∆(s)|+ |x(s)|
]

∆s
∣∣∣. (4.6)

Summing the inequalities in (4.5) with (4.6), for all t ∈ [0, a]κ
n−1

T , we obtain

|x(t)|+ |x∆(t)| + · · ·+ |x∆(n−1)
(t)|

≤ |b0|+ |b1|+ · · ·+ |bn−1|

+ (n− 1)
∣∣∣ ∫ t

0

|x(s)|+ |x∆(s)|+ · · ·+ |x∆(n−1)
(s)|∆s

∣∣∣
+
∣∣∣ ∫ t

0

(A− (n− 1))
[
|x∆(n−1)

(s)|+ · · ·+ |x∆(s)|+ |x(s)|
]

∆s
∣∣∣

= B +
∣∣∣ ∫ t

0

A
[
|x∆(n−1)

(s)|+ · · ·+ |x∆(s)|+ |x(s)|
]

∆s
∣∣∣.

(4.7)

For each t ∈ [0, a]κ
n−1

T , define ρ via

ρ(t) := |x(t)|+ |x∆(t)|+ · · ·+ |x∆(n−1)
(t)|

so that (4.7) now simplifies to

ρ(t) ≤ B +
∫ t

0

Aρ(s) ∆s, for all t ∈ [0, a]κ
n−1

T .

Note that ρ is rd-continuous and non-negative. Thus, applying Theorem 3.1, we
obtain

ρ(t) ≤ BeAt, for all t ∈ [0, a]κ
n−1

T

which, in turn, implies (4.4). �

We now examine the concept of exponential boundedness of solutions to the
inhomogeneous problem (1.6), (1.7). We say that a function ρ : IT → R is expo-
nentially bounded on IT if there exist non-negative constants M and L such that
for each t ∈ IT we have

|ρ(t)| ≤MeLt, for all t ∈ IT.

Theorem 4.2. Let each ai : [0, a]T → R be rd-continuous and let f be exponentially
bounded on [0, a]T. If x is a solution of (1.6), (1.7) on [0, a]T then x∆(i)

is also
exponentially bounded for i = 0, . . . , n, and the bound is independent of i. In
particular, for all t ∈ [0, a]κ

n−1

T we have

|x∆(i)
(t)| ≤

(
B +

M

L

)
e(L+A)t

where

|ai| ≤ Ai, on [0, a]κ
n−1

T , i = 0, 1 . . . , n− 1;

A := max{A0, A1, . . . , An−1}+ (n− 1);

B := |b0|+ |b1|+ · · ·+ |bn−1|;

|f(t)| ≤MeLt for all t ∈ [0, a]κ
n−1

T ,

where M and L are non-negative constants independent of t.
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Proof. The argument is very similar to that of Theorem 4.1 except that the in-
equality (4.6) is modified as follows. For all t ∈ [0, a]κ

n−1

T we have

|x∆(n−1)
(t)| ≤ |bn−1|+

∣∣∣ ∫ t

0

|x∆(n)
(s)|∆s

∣∣∣
= |bn−1|+

∣∣∣ ∫ t

0

∣∣f(s)−
[
an−1(s)x∆(n−1)

(s) + · · ·+ a1(s)x∆(s)

+ a0(s)x(s)
]∣∣∆s∣∣∣

≤ |bn−1|+
∣∣∣ ∫ t

0

[
|f(s)|+ |an−1(s)| |x∆(n−1)

(s)|+ . . .

+ |a1(s)| |x∆(s)|+ |a0(s)| |x(s)|
]

∆s
∣∣∣

≤ |bn−1|+
∣∣∣ ∫ t

0

MeLs + (A− (n− 1))
[
|x∆(n−1)

(s)|+ . . .

+ |x∆(s)|+ |x(s)|
]

∆s
∣∣∣

≤ |bn−1|+
∫ t

0

MeLs∆s+ (A− (n− 1))
∣∣∣ ∫ t

0

[
|x∆(n−1)

(s)|+ . . .

+ |x∆(s)|+ |x(s)|
]

∆s
∣∣∣.

(4.8)

Inequality (4.5) still holds and so putting

ρ(t) := |x(t)|+ |x∆(t)|+ · · ·+ |x∆(n−1)
(t)|

and using (4.5) and (4.8) we get

ρ(t) ≤ B +
∫ t

0

MeLs ∆s+
∫ t

0

Aρ(s) ∆s for all t ∈ [0, a]κ
n−1

T . (4.9)

Now using inequality (2.3) and (4.9) gives

ρ(t) ≤ B +
∫ t

0

MeLs ds+
∫ t

0

Aρ(s) ∆s

= B +
M

L
(eLt − 1) +

∫ t

0

Aρ(s) ∆s

≤
(
B +

M

L

)
eLt +

∫ t

0

Aρ(s) ∆s

. (4.10)

Now we can apply Theorem 3.3 to (4.10) to obtain

ρ(t) ≤
(
B +

M

L

)
eLteAt =

(
B +

M

L

)
e(L+A)t

for all t ∈ [0, a]κ
n−1

T and the result follows. �

Example 4.3. Consider the dynamic equation

x∆3
(t) + tx∆2

(t) + t2x∆(t) + t3x(t) = t,

with initial conditions

x(0) = 0, x∆(0) = 0, x∆2
(0) = 0.
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Within the context of Theorem 4.2 we have: n = 3; each Ai = 1; A = 3; and B = 0.
Furthermore, we can choose M = 1 and L = 1.

By Theorem 4.2, we see that solutions x(t) on the interval [0, 1]T satisfy

|x(t)| ≤ e4t.

5. Mathematical applications

In this section we apply the a priori bounds from earlier to obtain results re-
garding the nonmultiplicity of solutions to the inhomogeneous initial value problem
(1.6), (1.7). We also explore error bounds on solutions to (1.6), (1.7) when the
initial conditions are imprecisely known.

As previously assumed, throughout this section T will be a time scale which is
unbounded above with 0 ∈ T.

Theorem 5.1. If each ai : [0,∞)T → R is rd-continuous, then the inhomogeneous
initial value problem (1.6), (1.7) has, at most, one solution on [0,∞)T.

Proof. Let y = y(t) and z = z(t) be two solutions to (1.6), (1.7) on [0,∞)T. Define
r = r(t) on [0,∞)T via

r := y − z.

We show that r ≡ 0 on [0,∞)T and thus y ≡ z.
Due to the linearity of (1.6) we see that r satisfies the homogeneous problem

r∆(n)
+ an−1(t)r∆(n−1)

+ · · ·+ a1(t)r∆ + a0(t)r = 0 (5.1)

subject to the homogeneous initial conditions

r(0) = 0, r∆(0) = 0, . . . , r∆(n−1)
(0) = 0. (5.2)

Let t 6= 0 be any point in [0,∞)T. As T has no right maximum there are points
t1, . . . , tn−1 ∈ T such that t < t1 < t2 < · · · < tn−1. Let J := [0, tn−1]. Then
JT ⊂ [0,∞)T and JT contains both 0 and t. Since we have assumed each ai is
rd-continuous, each ai must be bounded on JT (with the bound possibly depending
on J). We can now apply Theorem 4.1 to (5.1), (5.2) on J . By construction Jκ

n−1

T
contains [0, t]T.

Since the initial conditions (5.2) give B = 0, from Theorem 4.1, we see that r
satisfies |r| ≤ 0 on JT, which means r ≡ 0 on JT. Hence y ≡ z on JT. Now, since
t was chosen to be any point in [0,∞)T with t 6= 0, we have in fact shown that
y(t) = z(t) for all t ∈ [0,∞)T, that is, y ≡ z on [0,∞)T.

We conclude that the inhomogeneous initial value problem (1.6), (1.7) has, at
most, one solution on [0,∞)T. �

Example 5.2. Returning to Example 4.3 we see that the initial value problem

x∆3
(t) + tx∆2

(t) + t2x∆(t) + t3x(t) = t,

with initial conditions

x(0) = 0, x∆(0) = 0, x∆2
(0) = 0

has, at most, one solution on [0,∞)T.
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Suppose we wish to solve (1.6), (1.7) for a solution x = x(t) but the initial
conditions (1.7) are imprecisely known. Let y = y(t) be a solution to (1.6) subject
to the initial conditions

y(0) = c0, y
∆(0) = c1, . . . , y

∆(n−1)
(0) = cn−1 (5.3)

where the ci are known constants (with each ci ideally close to each bi in (1.7)).
The following result gives us an estimate on the error between x and y on [0, a]κ

n−1

T .

Theorem 5.3. Let each ai : [0, a]κ
i

T → R be rd-continuous. If x = x(t) solves (1.6),
(1.7) on [0, a]T and y = y(t) solves (1.6), (5.3) on [0, a]T, then for each t ∈ [0, a]κ

n−1

T
we have

|x(i)(t)− y(i)(t)| ≤ DeAt, for i = 0, 1, . . . , n− 1.

where

Ai := max{|ai(t)| : t ∈ [0, a]κ
n−1

T };
A := max{A0, A1, . . . , An−1}+ (n− 1);

D := |b0 − c0|+ |b1 − c1|+ · · ·+ |bn−1 − cn−1|.

Proof. In a similar way as in the proof of Theorem 5.1 we define r = x− y and see
that r satisfies (5.1) subject to the initial conditions

r(0) = b0 − c0, r∆(0) = b1 − c1, . . . , r∆(n−1)
(0) = bn−1 − cn−1.

We can then apply Theorem 4.1 to obtain the conclusion. �
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