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EXISTENCE OF GENERALIZED ALMOST PERIODIC AND
ASYMPTOTIC ALMOST PERIODIC SOLUTIONS TO
ABSTRACT VOLTERRA INTEGRO-DIFFERENTIAL

EQUATIONS

MARKO KOSTIĆ

Abstract. The main aim of this paper is to study the asymptotic almost
periodicity, Stepanov almost periodicity, and asymptotic Stepanov almost pe-

riodicity of various classes of regularized solution operator families appearing in

the theory of abstract Volterra integro-differential equations. Subgenerators of
these solution operator families, which can be degenerate or non-degenerate in

time, are multivalued linear operators. We contemplate the results established

by many other authors, providing also a great number of original contributions,
illustrative examples and applications of our abstract results.

1. Introduction and preliminaries

The notion of an asymptotically almost periodic strongly continuous semigroup
was introduced by Ruess and Summers [48] in 1986, while the notion of an (asymp-
totically) Stepanov almost periodic strongly continuous semigroup was introduced
by Henŕıquez [28] in 1990. As mentioned in the abstract, the main aim of this paper
is to continue our recent research studies [34]-[36] by enquiring into the most impor-
tant asymptotically almost periodic properties, Stepanov almost periodic properties
and asymptotically Stepanov almost periodic properties of abstract (degenerate)
Volterra integro-differential equations in Banach spaces. Concerning almost peri-
odic properties and asymptotically almost periodic properties of abstract Volterra
integro-differential equations that are degenerate in time, the existing literature is
very limited: as already mentioned in [34], we have been able to locate only two re-
search papers in this direction, [59] by Vu and [37] by Lan. In both of these papers,
the authors have analyzed the abstract degenerate differential equations of first or-
der (for almost periodic properties and asymptotically almost periodic properties
of various types of abstract non-degenerate Volterra integro-differential equations,
one refers to [1, 2], [4]-[8], [13, 16, 19, 21, 25, 36, 39], [43, Section 11.4, Section 11.6]-
[44], [48, 49, 51, 53, 60, 63, 66, 67], and especially, to the monographs [29] by Hino,
Naito, Minh, Shin and [15] by Cheban). Concerning (asymptotically) Stepanov
almost periodic properties of abstract Volterra integro-differential equations, our
results seem to be completely new and not considered elsewhere in degenerate case

2010 Mathematics Subject Classification. 35B15, 47D03, 47D60, 47D62, 34G25.
Key words and phrases. Volterra integro-differential equations; (a, k)-regularized C-resolvent;

Stepanov almost periodic; asymptotic almost periodic; asymptotic Stepanov almost periodic.
c©2017 Texas State University.

Submitted April 18, 2017. Published October 3, 2017.

1
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(cf. [12, 28, 46, 47] for some results established so far in non-degenerate case). We
pay special attention to the analysis of generalized almost periodicity and asymp-
totical almost periodicity of solutions to the abstract (degenerate) Cauchy problems
of first and second order.

The organization and main ideas of this paper can be briefly described as follows.
In Subsection 1.1 and Subsection 1.2, we recall the basic facts about multivalued
linear operators in Banach spaces and various types of solution operator families
subgenerated by them. We open Section 2 by examining various questions about
generalized almost periodicity and asymptotical almost periodicity, proving espe-
cially that the asymptotical almost periodicity is preserved under the action of
subordination principle discovered by Bazhlekova [10, Theorem 3.1] (see Theorem
2.6(iii)) and that for each number α ∈ (0, 2)\{1} the only Stepanov almost periodic
non-degenerate (gα, C)-resolvent family (C ∈ L(X) injective, with dense range) is
that one generated by the zero operator (see Theorem 2.10). In Example 2.4, we
will see that the notion of asymptotical almost periodicity is much more appropriate
for dealing with the abstract fractional differential equations than that of almost
periodicity, proving also that the main results of investigation [28], established for
semigroups and cosine operator functions, are no longer true for fractional resol-
vent families of Caputo order α ∈ (0, 2) \ {1} (cf. Proposition 2.1, Proposition
2.3, Proposition 2.5 and Theorem 2.8 for some other results given in this part).
After proving Theorem 2.10, we break down the material in three separate sub-
sections. In Subsection 2.1, we investigate the Stepanov (asymptotically) almost
periodic properties of convolution products appearing in the variation of param-
eters formulae; in this subsection, we present the most important examples and
applications of our abstract theoretical results. Subsection 2.2 is written in a half-
expository manner: its aim is to extend the results of Henŕıquez [28] and Rao [46]
as well as some results of Casarino [13], Cioranescu, Ubilla [14] and Vesentini [58]
to (degenerate) C-(semi)groups and C-cosine operator functions in Banach spaces.
In Subsection 2.3, we reconsider some structural results from the research study
[63] by Xie, Li, Huang and from our recent joint research study with Pilipović
and Velinov [36]; in this subsection, we analyze the subspace asymptotical almost
periodicity of non-degenerate C-distribution semigroups and C-distribution cosine
functions (C ∈ L(X) injective). Primarily from the time and space limitations, we
have decided to examine the Stepanov (asymptotically) almost periodic properties
of semilinear Cauchy problems and inclusions in a new separate paper. We propose
several open problems to our researchers.

We use the standard notation throughout the paper. By X we denote a complex
Banach space. If Y is also such a space, then by L(X,Y ) we denote the space of
all continuous linear mappings from X into Y ; L(X) ≡ L(X,X). If A is a linear
operator acting on X, then the domain, kernel space and range of A will be denoted
by D(A), N(A) and R(A), respectively. Since no confusion seems likely, we will
identify A with its graph; [D(A)] denotes the Banach space D(A) equipped with
the graph norm (here we assume that A is closed). The injectiveness of operator
C ∈ L(X), if necessary, will be explicitly emphasized. The dual space of X is
denoted by X∗ and the adjoint operator of A by A∗.

Given s ∈ R in advance, set bsc := sup{l ∈ Z : s ≥ l} and dse := inf{l ∈ Z :
s ≤ l}. Define Σα := {z ∈ C \ {0} : | arg(z)| < α} (α ∈ (0, π]). The Gamma
function is denoted by Γ(·) and the principal branch is always used to take the



EJDE-2017/239 ABSTRACT VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 3

powers. Set gζ(t) := tζ−1/Γ(ζ), 0ζ := 0 (ζ > 0, t > 0), 00 := 1, C+ := {z ∈ C :
<z > 0} and g0(t) := the Dirac δ-distribution. By Cb([0,∞) : X) we denote the
space consisted of all bounded continuous functions from [0,∞) into X; the symbol
C0([0,∞) : X) denotes the closed subspace of Cb([0,∞) : X) consisting of functions
vanishing at infinity. By BUC([0,∞) : X) we denote the space consisted of all
bounded uniformly continuous functions from [0,∞) to X. This space becomes one
of Banach’s when equipped with the sup-norm.

We refer the reader to [36] for the notion and notation of vector-valued distri-
bution spaces used henceforth (more details can be found in [54]-[55]). Let us only
recall that, for every t ∈ R, we define the Dirac distribution centered at point t, δt
for short, by δt(ϕ) := ϕ(t), ϕ ∈ D.

Fractional calculus and fractional differential equations are popular fields of re-
search nowdays (cf. [10], [23], [30]-[33], [52] and references cited therein for further
information in this direction). The Mittag-Leffler function Eα,β(z), defined by

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C,

plays a crucial role in the analysis of fractional differential equations (α > 0, β ∈ R).
Set Eα(z) := Eα,1(z), z ∈ C.

In the sequel, we assume that the function k(t) is a scalar-valued continuous
kernel on [0,∞). The following condition on function k(t) will be used occasionally:

(A1) k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists β ∈ R such that
k̃(λ) := L(k)(λ) := limb→∞

∫ b
0
e−λtk(t) dt :=

∫∞
0
e−λtk(t) dt exists for all

λ ∈ C with <λ > β. Put abs(k) :=inf{<λ : k̃(λ) exists}, δ̃(λ) := 1 and
denote by L−1 the inverse Laplace transform.

Let abs(k) = 0. Following Batty, van Neerven and Räbiger [9], we say that a
point λ = iν ∈ iR is a regular point for k(t) if there is an open neighborhood U

of λ in C and a holomorphic function g : U → X such that g(z) = k̃(z) whenever
z ∈ U ∩ C+. The singular set E of k(t) is the set consisting of all points of iR
which are not regular points. For further information concerning the vector-valued
Laplace transform, the reader may consult [4], [61, Chapter 1] and [32, Section 1.2].

Suppose that γ ∈ (0, 1) and ω ∈ R. Then the Wright function Φγ(·) is defined
by Φγ(t) := L−1(Eγ(−λ))(t), t ≥ 0 (cf. [10] and references cited therein for more
details on the subject).

The concept of almost periodicity was introduced by Bohr in 1925 and later
generalized by many other authors (cf. [17, 22, 26, 27, 38, 64] for more details on
the subject). Let I = R or I = [0,∞), and let f : I → X be continuous. Given
ε > 0, we call τ > 0 an ε-period for f(·) if ‖f(t + τ) − f(t)‖ ≤ ε, t ∈ I. The
set constituted of all ε-periods for f(·) is denoted by ϑ(f, ε). It is said that f(·)
is almost periodic, a.p. for short, if and only if for each ε > 0 the set ϑ(f, ε) is
relatively dense in I, which means that there exists l > 0 such that any subinterval
of I of length l meets ϑ(f, ε). The space consisted of all almost periodic functions
from the interval I into X will be denoted by AP (I : X).

The notion of an asymptotically almost periodic function was introduced by
Fréchet in 1941 (for more details concerning the vector-valued asymptotically al-
most periodic functions and asymptotically almost periodic differential equations,
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see e.g. [9, 15, 20, 22, 26, 27, 49, 50, 53, 63, 65]). A function f ∈ Cb([0,∞) : X)
is said to be asymptotically almost periodic if for every ε > 0 we can find numbers
l > 0 and M > 0 such that every subinterval of [0,∞) of length l contains, at least,
one number τ such that ‖f(t + τ) − f(t)‖ ≤ ε for all t ≥ M . The space consisted
of all asymptotically almost periodic functions from [0,∞) into X will be denoted
by AAP ([0,∞) : X). It is well known that for any function f ∈ C([0,∞) : X), the
following statements are equivalent:

(i) f ∈ AAP ([0,∞) : X).
(ii) There exist uniquely determined functions g ∈ AP ([0,∞) : X) and φ ∈

C0([0,∞) : X) such that f = g + φ.
(iii) The set H(f) := {f(·+ s) : s ≥ 0} is relatively compact in Cb([0,∞) : X).

Let 1 ≤ p < ∞. Then we say that a function f ∈ Lploc(I : X) is Stepanov
p-bounded, Sp-bounded shortly, if

‖f‖Sp := sup
t∈I

(∫ t+1

t

‖f(s)‖p ds
)1/p

<∞.

The space LpS(I : X) consisted of all Sp-bounded functions becomes a Banach
space when equipped with the above norm. A function f ∈ LpS(I : X) is said to be
Stepanov p-almost periodic, Sp-almost periodic shortly, if and only if the function
f̂ : I → Lp([0, 1] : X), defined by

f̂(t)(s) := f(t+ s), t ∈ I, s ∈ [0, 1]

is almost periodic (cf. [3] for more details). It is said that f ∈ LpS([0,∞) : X)
is asymptotically Stepanov p-almost periodic, asymptotically Sp-almost periodic
shortly, if and only if f̂ : [0,∞)→ Lp([0, 1] : X) is asymptotically almost periodic.

It is a well-known fact that if f(·) is an almost periodic (respectively, a.a.p.)
function then f(·) is also Sp-almost periodic (resp., asymptotically Sp-a.a.p.) for
1 ≤ p < ∞. The converse statement is false, however. The notion of a scalary
Sp-almost periodic function, slightly different from the notion of usually considered
weakly Sp-almost periodic function, is given as follows: A function f ∈ LpS(I : X)
is said to be scalarly Stepanov p-almost periodic if and only if for each x∗ ∈ X∗ we
have that the function x∗(f) : [0,∞)→ C defined by x∗(f)(t) := x∗(f(t)), t ≥ 0 is
Stepanov p-almost periodic.

In the case that the value of p is irrelevant, then we simply say that the function
under our consideration is (asymptotically, scalarly) Stepanov almost periodic.

We need the assertion of [28, Lemma 1]:

Lemma 1.1. Suppose that f : [0,∞)→ X is an asymptotically Sp-almost periodic
function. Then there are two locally p-integrable functions g : R → X and q :
[0,∞)→ X satisfying the following conditions:

(i) g is Sp-almost periodic,
(ii) q̂ belongs to the class C0([0, 1] : Lp([0, 1] : X)),
(iii) f(t) = g(t) + q(t) for all t ≥ 0.

Moreover, there exists an increasing sequence (tn)n∈N of positive reals such that
limn→∞ tn =∞ and g(t) = limn→∞f(t+ tn) a.e. t ≥ 0.

Denote by Tp the class of all locally p-integrable functions q : [0,∞) → X
satisfying that q̂ belongs to C0([0, 1] : Lp([0, 1] : X)).
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Let (R(t))t≥0 ⊆ L(X) be a strongly continuous operator family, and let ⊕ denote
any of (asymptotically) almost periodic properties mentioned above. Then we say
that (R(t))t≥0 is ⊕ (asymptotically) almost periodic if and only if the mapping
t 7→ R(t)x, t ≥ 0 is ⊕ (asymptotically) almost periodic for all x ∈ X.

The reader may consult the monographs by Carroll, Showalter [11], Favini, Yagi
[24], Melnikova, Filinkov [40], Sviridyuk, Fedorov [56] and Kostić [33] for the theory
of abstract degenerate differential equations. In the following subsection, we will
present a brief recollection of results and definitions from the theory of multivalued
linear operators in Banach spaces.

1.1. Multivalued linear operators in Banach spaces. Suppose that X and Y
are Banach spaces. Let us recall that a multivalued map (multimap) A : X → P (Y )
is said to be a multivalued linear operator (MLO) if and only if the following holds:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of X;
(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

If X = Y , then we say that A is an MLO in X.
The fundamental equality used below says that, if x, y ∈ D(A) and λ, η ∈ C

with |λ|+ |η| 6= 0, then λAx+ηAy = A(λx+ηy). Assuming A is an MLO, then A0
is a linear submanifold of Y and Ax = f +A0 for any x ∈ D(A) and f ∈ Ax. Set
R(A) := {Ax : x ∈ D(A)}. Then the set A−10 = {x ∈ D(A) : 0 ∈ Ax} is called
the kernel of A and it is denoted by either N(A) or Kern(A). The inverse A−1 of
an MLO is defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. It can
be simply checked that A−1 is an MLO in X, as well as that N(A−1) = A0 and
(A−1)−1 = A; A is said to be injective if and only if A−1 is single-valued.

For any mapping A : X → P (Y ) we define Ǎ := {(x, y) : x ∈ D(A), y ∈ Ax}.
Then A is an MLO if and only if Ǎ is a linear relation in X × Y , i.e., if and only if
Ǎ is a linear subspace of X × Y .

Assume that A, B : X → P (Y ) are two MLOs. Then we define its sum A + B
by D(A+B) := D(A)∩D(B) and (A+B)x := Ax+Bx, x ∈ D(A+B). It is clear
that A+ B is likewise an MLO.

Let A : X → P (Y ) and B : Y → P (Z) be two MLOs, where Z is also a Banach
space. The product of operators A and B is defined by D(BA) := {x ∈ D(A) :
D(B)∩Ax 6= ∅} and BAx := B(D(B)∩Ax). Then BA : X → P (Z) is an MLO and
(BA)−1 = A−1B−1. The scalar multiplication of an MLO A : X → P (Y ) with the
number z ∈ C, zA for short, is defined by D(zA) := D(A) and (zA)(x) := zAx,
x ∈ D(A). It is clear that zA : X → P (Y ) is an MLO and (ωz)A = ω(zA) =
z(ωA), z, ω ∈ C.

Assume that X ′ is a linear subspace of X, and A : X → P (Y ) is an MLO.
The restriction of operator A to the subspace X ′, A|X′ for short, is defined by
D(A|X′) := D(A) ∩X ′ and A|X′x := Ax, x ∈ D(A|X′). It is evident that A|X′ :
X ′ → P (Y ) is an MLO.

If A : X → P (Y ) and B : X → P (Y ) are two MLOs, then we write A ⊆ B if
and only if D(A) ⊆ D(B) and Ax ⊆ Bx for all x ∈ D(A).

Let A be an MLO in X. Then we say that a point λ ∈ C is an eigenvalue of
A if and only if there exists a vector x ∈ X \ {0} such that λx ∈ Ax; we call x
an eigenvector of operator A corresponding to the eigenvalue λ. Observe that, in
purely multivalued case, a vector x ∈ X \ {0} can be an eigenvector of operator A
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corresponding to different values of scalars λ. The point spectrum of A, σp(A) for
short, is defined as the union of all eigenvalues of A.

We say that an MLO operator A : X → P (Y ) is closed if and only if for any two
sequences (xn) in D(A) and (yn) in Y such that yn ∈ Axn for all n ∈ N we have
that the preassumptions limn→∞ xn = x and limn→∞ yn = y imply x ∈ D(A) and
y ∈ Ax.

We will use the following crucial lemma from [33].

Lemma 1.2. Let Ω be a locally compact, separable metric space, and let µ be a
locally finite Borel measure defined on Ω. Suppose that A : X → P (Y ) is a closed
MLO. Let f : Ω→ X and g : Ω→ Y be µ-integrable, and let g(x) ∈ Af(x), x ∈ Ω.
Then

∫
Ω
f dµ ∈ D(A) and

∫
Ω
g dµ ∈ A

∫
Ω
f dµ.

Assume now that A is an MLO in X, as well as that C ∈ L(X) and CA ⊆ AC
(observe that we allow C to be possibly non-injective). Then the C-resolvent set
of A, ρC(A) for short, is defined as the union of those complex numbers λ ∈ C for
which

(i) R(C) ⊆ R(λ−A);
(ii) (λ−A)−1C is a single-valued bounded operator on X.

The spectrum σC(A) of A is defined as the complement of ρC(A) in C; σ(A) :=
σI(A), where I denotes the identity operator on X. The operator λ 7→ (λ−A)−1C
is called the C-resolvent of A (λ ∈ ρC(A)); the resolvent set of A is defined by
ρ(A) := ρI(A), R(λ : A) ≡ (λ − A)−1 (λ ∈ ρ(A)). The basic properties of C-
resolvent sets of single-valued linear operators continue to hold in our framework
([31]-[33]).

Of concern is the following abstract degenerate Volterra inclusion:

Bu(t) ⊆ A
∫ t

0

a(t− s)u(s) ds+ F(t), t ∈ [0, τ),

where a ∈ L1
loc([0, τ)), a 6= 0, A : X → P (X) and B : X → P (X) are given

multivalued linear operators, and F : X → P (X) is a given mutivalued mapping,
as well as the following fractional Sobolev inclusions:

Dα
t Bu(t) ∈ Au(t) + F(t), t ≥ 0,

(Bu)(j)(0) = Bxj , 0 ≤ j ≤ dαe − 1,
(1.1)

where we assume that B = B is single-valued, and

BDα
t u(t) ⊆ Au(t) + F(t), t ≥ 0,

u(j)(0) = xj , 0 ≤ j ≤ dαe − 1,
(1.2)

where α > 0 and Dα
t denotes the Caputo fractional derivative ([10, 32]). For the

notions of various types of solutions of the above Cauchy problems, we refer the
reader to [33].

1.2. Degenerate (a, k)-regularized C-resolvent family. The following defini-
tions have been recently introduced in [33]:

Definition 1.3. Assume that 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)),

a 6= 0, A : X → P (X) is an MLO, C1 ∈ L(Y,X), and C2 ∈ L(X).
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(i) Then we say that A is a subgenerator of a (local, if τ < ∞) mild (a, k)-
regularized (C1, C2)-existence and uniqueness family (R1(t), R2(t))t∈[0,τ) ⊆
L(Y,X) × L(X) if and only if the mappings t 7→ R1(t)y, t ≥ 0 and t 7→
R2(t)x, t ∈ [0, τ) are continuous for every fixed x ∈ X and y ∈ Y , as well
as the following conditions hold:(∫ t

0

a(t− s)R1(s)y ds,R1(t)y − k(t)C1y
)
∈ A, (1.3)

for t ∈ [0, τ), y ∈ Y , and∫ t

0

a(t− s)R2(s)y ds = R2(t)x− k(t)C2x, (1.4)

whenever t ∈ [0, τ) and (x, y) ∈ A.
(ii) Suppose that (R1(t))t∈[0,τ) ⊆ L(Y,X) is strongly continuous. Then we

say that A is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized
C1-existence family (R1(t))t∈[0,τ) if and only if (1.3) holds.

(iii) Suppose that (R2(t))t∈[0,τ) ⊆ L(X) is strongly continuous; then we say
that A is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized
C2-uniqueness family (R2(t))t∈[0,τ) if and only if (1.4) holds.

Definition 1.4. Assume that 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)),

a 6= 0, A : X → P (X) is an MLO, C ∈ L(X) and CA ⊆ AC. Then it is
said that a strongly continuous operator family (R(t))t∈[0,τ) ⊆ L(X) is an (a, k)-
regularized C-resolvent family with a subgenerator A if and only if (R(t))t∈[0,τ) is
a mild (a, k)-regularized C-uniqueness family having A as subgenerator, as well as
R(t)C = CR(t) and R(t)A ⊆ AR(t) (t ∈ [0, τ)).

Any (a, k)-regularized C-resolvent family analyzed below will be likewise a mild
(a, k)-regularized C-existence family and the condition 0 ∈ supp(a) will be assumed.

It is said that an (a, k)-regularized C-resolvent family (R(t))t≥0 is exponentially
bounded (bounded) if and only if there exists ω ∈ R (ω = 0) such that the family
{e−ωtR(t) : t ≥ 0} ⊆ L(X) is bounded. If k(t) = gα+1(t), where α ≥ 0, then
it is also said that (R(t))t∈[0,τ) is an α-times integrated (a,C)-resolvent family;
0-times integrated (a,C)-resolvent family is further abbreviated to (a,C)-resolvent
family. We pay special attention to the case a(t) ≡ 1, resp. a(t) ≡ t, when we say
that (R(t))t≥0 is an α-times integrated C-semigroup (C-(regularized) semigroup,
if α = 0), resp. an α-times integrated C-cosine function (C-(regularized) cosine
function, if α = 0).

The symbol χ(R) stands for the set consisting of all subgenerators of (R(t))t∈[0,τ).
Clearly, for each subgenerator A ∈ χ(R) we have A ∈ χ(R). The set χ(R) can have
infinitely many elements; furthermore, if A ∈ χ(R), then A ⊆ Aint, where the
integral generator of (R(t))t∈[0,τ) is defined by

Aint :=
{

(x, y) ∈ X ×X : R(t)x− k(t)Cx =
∫ t

0

a(t− s)R(s)y ds for all t ∈ [0, τ)
}
.

The integral generator Aint of (R(t))t∈[0,τ) is a closed subgenerator of (R(t))t∈[0,τ),
provided that τ =∞. If A and B are two subgenerators of (R(t))t∈[0,τ) and α, β ∈
C with α + β = 1, then C(D(A)) ⊆ D(B), Aint ⊆ C−1AC and αA + βB is also a
subgenerator of (R(t))t∈[0,τ); furthermore, if C is injective, then Aint = C−1AC.
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We refer the reader to [33] for the notion of an (exponentially) bounded analytic
(a, k)-regularized C-resolvent family subgenerated by a multivalued linear operator.

2. Generalized almost periodic properties and asymptotically
almost periodic properties of abstract Volterra

integro-differential equations

We start this section by stating the following simple consequence of [9, Theorem
4.1], which provides proper extensions of [63, Theorem 3.7, Theorem 3.9] (cf. also
[6, Theorem 4.1]).

Theorem 2.1. Suppose that abs(k) = abs(|a|) = 0, ã(λ)k̃(λ) 6= 0 for <λ > 0, C1 ∈
L(Y,X), and A is a closed subgenerator of a mild (a, k)-regularized C1-existence
family (R1(t))t≥0. Let y ∈ Y be such that the mapping t 7→ R1(t)y, t ≥ 0 is bounded
and uniformly continuous. If the operator I − ã(λ)A is injective for <λ > 0, then

H(λ) :=
k̃(λ)
ã(λ)

( 1
ã(λ)

−A
)−1

C1y =
∫ ∞

0

e−λtR1(t)y dt, <λ > 0. (2.1)

Suppose that the singular set iS of mapping λ 7→ H(λ), <λ > 0, where S ⊆ R, is
at most countable. If for every µ ∈ S, we have that limλ→0+ λ

∫∞
0
e−(λ+iµ)tR1(t+

s)y dt exists, uniformly in s ≥ 0, then the mapping t 7→ R1(t)y, t ≥ 0 is asymptoti-
cally almost periodic.

Proof. Applying Lemma 1.2 and the Laplace transform, we get that

k̃(λ)C1y ∈
(
I − ã(λ)A

) ∫ ∞
0

e−λtR1(t)y dt, <λ > 0

i.e.,

k̃(λ)
ã(λ)

( 1
ã(λ)

−A
)−1

C1y = k̃(λ)
(
I − ã(λ)A

)−1
C1y 3

∫ ∞
0

e−λtR1(t)y dt,

for <λ > 0. Since the operator I − ã(λ)A is injective for <λ > 0, we have that the
set ((1/ã(λ))−A)−1C1x is singleton, so that the last equality immediately implies
(2.1). Now the proof follows from a simple application of [9, Theorem 4.1]. �

Remark 2.2. Suppose α > 0, β ≥ 0, a(t) = gα(t), k(t) = gβ+1(t), X = Y , C1 = I
and the set of all λ ∈ iR \ {0} such that λα ∈ σ(A) is at most countable. Then the
singular set iS of mapping λ 7→ H(λ), <λ > 0 is at most countable, as well.

Further information on connections between countable spectrum of operators
and asymptotical almost periodicity can be obtained by consulting the monograph
[4]. We continue by stating the following important proposition, which is very
similar to [34, Proposition 4.1]:

Proposition 2.3. Suppose that abs(|a|) <∞, abs(k) <∞ and A is a subgenerator
of a mild, strongly Laplace transformable, (a, k)-regularized C2-uniqueness family
(R2(t))t≥0. Denote by D the set consisting of all eigenvectors x of operator A which
corresponds to eigenvalues λ ∈ C of operator A for which the mapping

fλ,x(t) := L−1
( k̃(z)

1− λã(z)

)
(t)C2x, t ≥ 0

is asymptotically almost periodic. Then the mapping t 7→ R2(t)x, t ≥ 0 is asymp-
totically almost periodic for all x ∈ span(D); furthermore, the mapping t 7→ R2(t)x,
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t ≥ 0 is asymptotically almost periodic for all x ∈ span(D) provided additionally
that (R2(t))t≥0 is bounded.

Proof. Suppose that x ∈ D is an eigenvector of operator A which corresponds to
an eigenvalue λ ∈ σp(A). Using the identity

λ

∫ t

0

a(t− s)R2(s)x ds = R2(t)x− k(t)C2x, t ≥ 0,

and performing the Laplace transform, we obtain that R2(t)x = fλ,x(t), t ≥ 0.
This immediately implies the result since AAP ([0,∞) : X) is a closed subspace of
BUC([0,∞) : X). �

As explained in [34, Remark 4.3], it is very complicated to apply [34, Proposition
4.1] in the case that a(t) = gα(t), where α ∈ (0,∞) \ N; cf. also Theorem 2.10
below. The situation is completely different if we consider the asymptotical almost
periodicity, when Proposition 2.3 can be essentially applied:

Example 2.4. Suppose that α ∈ (0, 2) and θ = π − πα/2. Let us consider the
fractional Cauchy problem:

Dα
t u(t, x) = eiθuxx(t, x), 0 < x < 1, t ≥ 0,

proposed already by Bazhlekova in her doctoral dissertation [10, Example 2.20] and
equipped with initial boundary conditions like for the general problem of form (1.2)
with B = I.

Let X := L2[0, 1] and A := eiθ∆, where ∆ denotes the Dirichlet Laplacian.
It is well known that A is the integral generator of a bounded (gα, I)-resolvent
family (R(t))t≥0. Since A has eigenvalues λn = eiαπ/2n2π2 and eigenfunctions
xn = sinnπx, n ∈ N, the Laplace transform identity [10, (1.26)] shows that

fλn,xn(t) := Eα
(
eiαπ/2n2π2tα

)
(t)xn, t ≥ 0, n ∈ N.

In the case that α = 1, the above simply implies by [34, Theorem 3.1] that (R(t))t≥0

is almost periodic. The situation is quite different in the case that α ∈ (0, 2) \ {1}:
Then the asymptotic expansion formulae for the Mittag-Leffler functions [(1.27)-
(1.28)] imply that the mapping t 7→ fλn,xn(t), t ≥ 0 is asymptotically almost
periodic for all n ∈ N, because the mapping t 7→ α−1eitn

2/απ2/α
, t ≥ 0 is almost

periodic and the mapping t 7→ Eα
(
eiαπ/2n2π2tα

)
(t) − α−1eitn

2/απ2/α
, t ≥ 0 is

continuous, tending to zero as t goes to infinity. Hence, (R(t))t≥0 is asymptotically
almost periodic (since AP ([0,∞) : X) ∩ C0([0,∞) : X) = {0}, the mapping t 7→
R(t)x, t ≥ 0 cannot be almost periodic for x ∈ span({xn : n ∈ N}); this is a very
intriguing fact for fractional resolvent families of order α close to 2− because H. R.
Henŕıquez has proved [28, Theorem 3] that a strongly continuous cosine operator
function (C(t))t≥0 is almost periodic if and only if (C(t))t≥0 is asymptotically
almost periodic if and only if (C(t))t≥0 is Stepanov asymptotically almost periodic).
Finally, we would like to observe that we can similarly examine asymptotically
almost periodic solutions of certain classes of abstract muti-term fractional Cauchy
problems with Caputo derivatives, see e.g. [32, Example 2.10.32].

Consider again the situation of Proposition 2.3. If x ∈ D, λx ∈ Ax and C2x 6= 0,
then the function

ϑ(t) := t 7→ L−1
( k̃(z)

1− λã(z)

)
(t), t ≥ 0
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needs to be asymptotically almost periodic. By our examinations from [34, Remark
4.3], the most important case in which the above holds is that there exist integer
n ∈ N, real numbers r1(λ), . . . , rn(λ), positive real number ω(λ), complex numbers
α1(λ), . . . , αn(λ), and a function f ∈ C0([0,∞)), such that

k̃(z)
1− λã(z)

=
α1(λ)

z − ir1(λ)
+ · · ·+ αn(λ)

z − irn(λ)
+ f̃(z), <z > ω(λ). (2.2)

It is clear that (2.2) holds for substantially large classes of kernels a(t) and regu-
larizing functions k(t).

Propositions 2.3 and 2.5 below, whose proof is omitted, can be also formulated for
the class of exponentially bounded (a, k)-regularized C-resolvent families generated
by a pair of closed linear operators, see [33] for the notion and [34, Proposition
4.14] for the corresponding result in the case of almost periodicity.

Proposition 2.5. Suppose that abs(|a|) <∞, abs(k) <∞ and A is a subgenerator
of a mild, strongly Laplace transformable, (a, k)-regularized C2-uniqueness family
(R2(t))t≥0. Denote by D the set consisting of all eigenvectors x of operator A which
corresponds to eigenvalues λ ∈ C of operator A for which the mapping

fλ,x(t) := L−1
( k̃(z)

1− λã(z)

)
(t)C2x, t ≥ 0

is (asymptotically) Stepanov almost periodic. Then the mapping t 7→ R2(t)x, t ≥ 0
is (asymptotically) Stepanov almost periodic for all x ∈ span(D); furthermore, the
mapping t 7→ R2(t)x, t ≥ 0 is (asymptotically) Stepanov almost periodic for all
x ∈ span(D) provided additionally that (R2(t))t≥0 is bounded.

Now we would like to inscribe some basic facts about asymptotical almost pe-
riodicity of subordinated fractional solution operator families (see e.g. [10, The-
orem 3.1] for a pioneering result in this direction). Assume that 0 < α < β,
γ = α/β and (Sβ(t))t≥0 ⊆ L(X) is a strongly continuous operator family satisfying
‖Sβ(t)‖ ≤ Meωt, t ≥ 0 for some constants M ≥ 1 and ω ∈ R. A great number of
subordination principles appearing in the theory of abstract (degenerate) Volterra
integro-differential equations is closely connected with the following formula:

Sα(t)x :=
∫ ∞

0

Φγ(s)Sβ
(
stγ
)
x ds, x ∈ X, t > 0 and Sα(0) := Sβ(0). (2.3)

Concerning the inheritance of asymptotical almost periodicity under the action of
this subordination principle, we have the following result.

Theorem 2.6. (i) Suppose that ω < 0. Then ‖Sα(t)‖ = O(t−γ), t ≥ 1.
(ii) Suppose that the mapping t 7→ Sβ(t)x, t ≥ 0 belongs to C0([0,∞) : X).

Then the mapping t 7→ Sα(t)x, t ≥ 0 belongs to C0([0,∞) : X), as well.
(iii) Suppose that the mapping t 7→ Sβ(t)x, t ≥ 0 belongs to AAP ([0,∞) : X).

Then the mapping t 7→ Sα(t)x, t ≥ 0 belongs to AAP ([0,∞) : X), as well.

Proof. By [10, (1.31)], we have that∫ ∞
0

e−zsΦγ(s) ds = Eγ(−z), z ∈ C. (2.4)

Keeping in mind this identity, (2.3) and the asymptotic expansion formulae for
Mittag-Leffler functions [10, (1.27)-(1.28)], it readily follows that the assumption
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ω < 0 yields that, for every x ∈ X,∥∥Sα(t)x
∥∥ ≤M‖x‖∣∣Eγ(ωtγ)∣∣ = M‖x‖

[
− t−γ

ωΓ(γ − 1)
+O

(
t−2γ

)]
, t→ +∞.

This proves (i). To prove (ii), choose a number ε > 0 arbitrarily. Then there exists
M > 0 such that ‖g(v)‖ < ε, v ≥ M . Suppose that ‖g(v)‖ < M ′, v ≥ 0 for some
finite constant M ′ > 0. Then

‖Sα(t)x‖ ≤
∫ Mt−γ

0

Φγ(s)‖g
(
stγ
)
‖ ds+

∫ ∞
Mt−γ

Φγ(s)‖g
(
stγ
)
‖ ds

≤
∫ Mt−γ

0

Φγ(s)M ′ ds+
∫ ∞
Mt−γ

Φγ(s)ε ds

≤
∫ Mt−γ

0

Φγ(s)M ′ ds+
∫ ∞

0

Φγ(s)ε ds

=
∫ Mt−γ

0

Φγ(s)M ′ ds+ ε < 2ε, t→ +∞.

It remains to be proved (iii). By (ii), it suffices to show that, for every function
f ∈ AP ([0,∞) : X), the function

F (t) :=
∫ ∞

0

Φγ(s)f
(
stγ
)
ds, t > 0; F (0) := f(0)

belongs to the space AAP ([0,∞) : X). But, for every n ∈ N, we can find a
trigonometric polynomial fn(·) such that the sequence (fn)n∈N converges to f in
BUC([0,∞) : X), as n→∞. Define

Fn(t) :=
∫ ∞

0

Φγ(s)fn
(
stγ
)
ds, t > 0, Fn(0) := fn(0).

By the proof of [10, Theorem 3.1], the function F (·) and functions Fn(·) are contin-
uous (n ∈ N). Furthermore, ‖Fn−F‖∞ ≤ supt≥0

∫∞
0

Φγ(s)‖fn(stγ)− f(stγ)‖ ds ≤∫∞
0

Φγ(s)‖fn − f‖∞ ds = ‖fn − f‖∞ → 0, n → ∞. Keeping in mind that
AAP ([0,∞) : X) is closed in the space BUC([0,∞) : X), it remains to be proved
that Fn ∈ AAP ([0,∞) : X) for all n ∈ N (n ∈ N). This follows from an application
of (2.4), showing that Fn(·) is a linear combination of functions like Eγ(iθ·γ) ⊗ x
(θ ∈ R, x ∈ X). The final conclusion is a consequence of the fact that Eγ(iθ·γ) = 1
for θ = 0 and Eγ(iθ·γ) ∈ C0([0,∞) : X) for θ 6= 0, which follows from the asymp-
totic expansion formulae for the Mittag-Leffler functions [10, (1.27)-(1.28)]. �

Remark 2.7. It is very non-trivial and difficult to say anything relevant about
the invariance of asymptotical Stepanov almost periodicity under the action of this
subordination principle.

Let f : [0,∞) → X be Stepanov almost periodic. Then the Bohr-Fourier coef-
ficients Pr(f) := limt→∞

1
t

∫ t+α
α

e−irsf(s) ds exists for all r ∈ R, independently of
α ∈ R, and the assumption Pr(f) = 0 for all r ∈ R implies that f(t) = 0 for a.e.
t ∈ R. Especially, with r = α = 0, we obtain that the first antiderivative of f(·) is
exponentially bounded so that the function f(·) satisfies (A1). Keeping these facts
in mind, we can repeat literally the proof of [34, Theorem 4.5] in order to see that
the following result holds true (cf. also [34, Remark 4.6]):
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Theorem 2.8. Let A be the integral generator of a Stepanov almost periodic (a, k)-
regularized C-resolvent family (R(t))t≥0, let R(C) = D(A) = X, and let k(0) 6= 0.
Denote

R :=
{
r ∈ R : ã(ir) exists

}
.

Suppose that k(t) and |a|(t) satisfy (A1), lim<z→∞ ã(z) = 0 as well as that

P kr = lim
t→∞

1
t

∫ t

0

e−irsk(s) ds = 0, r ∈ R.

Then we have

• PRr x ∈ A[ã(ir)PRr x], r ∈ R, x ∈ X and the mapping

R(t)PRr x = L−1
( k̃(z)ã(ir)
ã(ir)− ã(z)

)
(t)CPRr x, t ≥ 0, x ∈ X,

is Stepanov almost periodic for all r ∈ R and x ∈ X.

Suppose, in addition, that

R(t)PRr x = k(t)CPRr x, t ≥ 0, r ∈ R \ R, x ∈ X.

Then the set D consisting of all eigenvectors of operator A which corresponds to
eigenvalues λ ∈ {0} ∪ {ã(ir)−1 : r ∈ R, ã(ir) 6= 0} of operator A is total in X.

For the proof of Theorem 2.10 stated below, we need the following auxiliary
lemma.

Lemma 2.9. Suppose that α ∈ (0, 2) \ {1} and r ∈ R \ {0}. Then the function
t 7→ Eα((ir)αtα), t ≥ 0 is not Stepanov almost periodic.

Proof. Suppose to the contrary that the function t 7→ Eα((ir)αtα), t ≥ 0 is Stepanov
almost periodic. By the asymptotic expansion formula for the Mittag-Leffler func-
tions, we have that Eα((ir)αtα) = α−1(ir)1−βeirt + εα((ir)αtα), t ≥ 1, where∣∣εα((ir)αtα)∣∣ = O

(
t−α
)
, t ≥ 1. (2.5)

Furthermore, the function t 7→ εα((ir)αtα), t ≥ 0 needs to be Stepanov almost
periodic since the function t 7→ α−1(ir)1−βeirt, t ≥ 0 is almost periodic. By (2.5),
we get that there exist two finite constants c1, c2 > 0 such that

c1t
−α ≤

∣∣εα((ir)αtα)∣∣ ≤ c2t−α, t ≥ 1.

Using these estimates, we obtain

c1

∫ t+1

t

s−αp ds ≤
∫ t+1

t

∣∣εα((ir)αsα)∣∣p ds ≤ c2 ∫ t+1

t

s−αp ds, t ≥ 1.

This simply implies ̂εα((ir)α·α) ∈ C0([0,∞) : Lp([0, 1] : X)), which is a contradic-
tion since ̂εα((ir)α·α) ∈ AP ([0,∞) : Lp([0, 1] : X)). �

Theorem 2.10. Let C ∈ L(X) be injective, let A be a closed single-valued linear
operator, and let R(C) = X. Suppose that α ∈ (0, 2) \ {1} and A generates a
Stepanov almost periodic (gα, C)-resolvent family (R(t))t≥0. Then A = 0 ∈ L(X)
and R(t) = C, t ≥ 0.
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Proof. Suppose that r ∈ R \ {0} and x ∈ X satisfies that PRr x 6= 0. By Theorem
2.8 and injectiveness of C, we get that the function

Eα
(
(ir)αtα

)
= L−1

( zα−1

zα − (ir)α
)

(t)CPRr x, t ≥ 0

is Stepanov almost periodic. This is false due to Lemma 2.9, and therefore, PRr x =
0, r ∈ R\{0}, x ∈ X. Using dominated convergence and simple argumentation, this
implies limt→∞

1
t

∫ t
0
e−irsR(s + ·)x ds = 0 (in Lp([0, 1] : X)), r ∈ R \ {0}, x ∈ X.

By spectral synthesis [4, Proposition 4.5.8], we get that R(t + ·)x = Const. in
Lp([0, 1] : X), t ≥ 0 which simply implies by the continuity of mapping t 7→ R(t)x,
t ≥ 0 and R(0) = C that R(t) = C, t ≥ 0. Therefore, the integral generator A of
(R(t))t≥0 is the zero operator. �

In [35], we have recently analyzed the Weyl-almost periodicity and asymptotical
Weyl-almost periodicity of abstract Volterra integro-differential equations. It is
worth noting that Theorem 2.10 holds true even if we replace the Stepanov almost
periodicity in its formulation with Weyl-almost periodicity, as well as that several
results from Subsection 2.2 below can be formulated for the Weyl class.

2.1. Stepanov (asymptotically) almost periodic properties of convolution
products. In this subsection, we will investigate the Stepanov (asymptotically)
almost periodic properties of various types of convolution products (for almost
periodicity and asymptotical almost periodicity, see [1, Lemmas 2.12, 2.13] and [21,
Lemma 4.1]). Our first result reads as follows.

Proposition 2.11. Suppose that 1 ≤ p <∞, 1/p+ 1/q = 1 and (R(t))t>0 ⊆ L(X)
is a strongly continuous operator family satisfying M :=

∑∞
k=0 ‖R(·)‖Lq [k,k+1] <∞.

If g : R→ X is Sp-almost periodic, then the function G(·), given by

G(t) :=
∫ t

−∞
R(t− s)g(s) ds, t ≥ 0, (2.6)

is well-defined and almost periodic.

Proof. It can be easily seen that, for every t ≥ 0, we have that G(t) =
∫∞

0
R(s)g(t−

s) ds and that the last integral is absolutely convergent by the Hölder inequality
and Sp-boundedness of function g(·):∫ ∞

0

‖R(s)‖‖g(t− s)‖ ds =
∞∑
k=0

∫ k+1

k

‖R(s)‖‖g(t− s)‖ ds

≤
∞∑
k=0

‖R(·)‖Lq [k,k+1]‖g‖Sp = M‖g‖Sp , t ≥ 0.

Let a number ε > 0 be given in advance. Then we can find a finite number
l > 0 such that any subinterval I of R of length l contains a number τ ∈ I such
that

∫ t+1

t
‖g(s + τ) − g(s)‖p ds ≤ εp, t ∈ R. Applying Hölder inequality and this

estimate, we get that

‖G(t+ τ)−G(t)‖ ≤
∫ ∞

0

‖R(r)‖ · ‖g(t+ τ − r)− g(t− r)‖ dr

=
∞∑
k=0

∫ k+1

k

‖R(r)‖ · ‖g(t+ τ − r)− g(t− r)‖ dr
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≤
∞∑
k=0

‖R(·)‖Lq [k,k+1]

(∫ k+1

k

‖g(t+ τ − r)− g(t− r)‖p dr
)1/p

=
∞∑
k=0

‖R(·)‖Lq [k,k+1]

(∫ t−k

t−k−1

‖g(s+ τ)− g(s)‖p ds
)1/p

≤
∞∑
k=0

‖R(·)‖Lq [k,k+1]ε = Mε, t ≥ 0,

which clearly implies that the set of all ε-periods of G(·) is relatively dense in R. It
remains to be proved the continuity of G(·). Since ĝ(·) is uniformly continuous, we
have the existence of a number δ ∈ (0, 1) such that∫ 1

0

‖g(t+ s)− g(t′ + s)‖p ds ≤ εp, provided t, t′ ∈ R and |t− t′| < δ. (2.7)

For any δ′ ∈ (0, δ), we have by the foregoing arguments that

‖G(t+ δ′)−G(t)‖

≤
∞∑
k=0

‖R(·)‖Lq [k,k+1]

(∫ k+1

k

‖g(t+ δ′ − s)− g(t− s)‖p ds
)1/p

+
∫ δ′

0

‖R(s)‖‖g(t− s)‖ ds

≤
∞∑
k=0

‖R(·)‖Lq [k,k+1]

(∫ 1

0

‖g(t+ δ′ + s− k − 1)− g(t+ s− k − 1)‖p ds
)1/p

+ ‖R(·)‖Lq [0,1]

(∫ t+δ′

t

∥∥g(s)‖p ds
)1/p

, t ∈ R,

so that conclusion follows from (2.7) and the well-known fact that

lim
δ′→0

∫ t+δ′

t

∥∥g(s)‖p ds = 0, t ∈ R.

�

Remark 2.12. Let t 7→ ‖R(t)‖, t ∈ (0, 1] be an element of the space Lq[0, 1].
Then the condition

∑∞
k=0 ‖R(·)‖Lq [k,k+1] < ∞ holds provided that (R(t))t>0 is

exponentially decaying at infinity or that there exists a finite number ζ < 0 such
that ‖R(t)‖ = O(tζ), t→ +∞ and

(i) p = 1 and ζ < −1, or
(ii) p > 1 and ζ < (1/p)− 1.

In this way, we have extended the assertion of [1, Lemma 2.12], where the authors
have considered the case in which ζ < −1 and g : R→ X is almost periodic.

Concerning asymptotical Stepanov almost periodicity, we can deduce the follow-
ing proposition.

Proposition 2.13. Suppose that 1 ≤ p <∞, 1/p+ 1/q = 1 and (R(t))t>0 ⊆ L(X)
is a strongly continuous operator family satisfying that, for every s ≥ 0, we have that
ms :=

∑∞
k=0 ‖R(·)‖Lq [s+k,s+k+1] < ∞. Suppose, further, that f : [0,∞) → X is

asymptotically Sp-almost periodic as well as that the locally p-integrable functions
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g : R → X, q : [0,∞) → X satisfy the conditions from Lemma 1.1 (here and
hereafter, the use of symbol q will be clear from the context). Let there exist a finite
number M > 0 such that the following holds:

(i) limt→+∞
∫ t+1

t

[∫ s
M
‖R(r)‖‖q(s− r)‖ dr

]p
ds = 0.

(ii) limt→+∞
∫ t+1

t
mp
s ds = 0.

Then the function H(·), given by

H(t) :=
∫ t

0

R(t− s)f(s) ds, t ≥ 0,

is well-defined, bounded and asymptotically Sp-almost periodic.

Proof. It is obvious that the function H(·) is well-defined and bounded because f(·)
is Sp-bounded and m0 < ∞; cf. the proof of Proposition 2.11. Let the function
G(·) be given by (2.6). Define

F (t) :=
∫ t

0

R(t− s)q(s) ds−
∫ ∞
t

R(s)g(t− s) ds, t ≥ 0.

Then it is clear that H(t) = G(t) + F (t) for all t ≥ 0 and by Proposition 2.11 it
suffices to show that the mapping F̂ : [0,∞) → Lp([0, 1] : X) belongs to the class
C0([0, 1] : Lp([0, 1] : X)). This mapping is clearly continuous and we need to prove
that

lim
t→+∞

∫ t+1

t

‖F (s)‖p ds = 0. (2.8)

Let M > 0 be such that (i) holds. Then it is clear that there exist finite constants
cp > 0 and c′p > 0 such that, by Hölder inequality,

‖F (s)‖p ≤ cp
[(∫ s−M

0

‖R(s− r)‖‖q(r)‖ dr
)p

+
(∫ s

s−M
‖R(s− r)‖‖q(r)‖ dr

)p
+
(∫ ∞

s

‖R(r)‖‖g(s− r)‖ dr
)p]

≤ c′p
[(∫ s−M

0

‖R(s− r)‖‖q(r)‖ dr
)p

+ ‖R(·)‖pLq [0,M ]‖q‖
p
Lp[s−M,s]

+
( ∞∑
k=0

‖R(·)‖Lq [s+k,s+k+1]

)p
‖g‖pSp

]
(2.9)

Let ε > 0 be given. Then there exists t0(ε) ≥ 1 such that
∫ t+1

t
‖q(s)‖p ds ≤ ε,

t ≥ t0(ε). This implies that for each t ≥ t0(ε) + M we have ‖q‖pLp[s−M,s] ≤ dMeε.
Using this estimate and integrating (2.9) along the interval [t, t+1], we obtain with
the help of (i)-(ii) that (2.8) holds, as claimed. �

Remark 2.14. The proof of Proposition 2.13 is similar to those of [1, Lemma
2.13] and [21, Lemma 4.1]. Below are listed some special situations in which the
asymptotical Sp-almost periodicity of function H(·) is proved by applying directly
Proposition 2.13 or by combining Proposition 2.11 and the proofs of the above-
mentioned lemmae:

(i) Suppose that (R(t))t≥0 is strongly continuous, exponentially decaying, g :
R→ X is Sp-almost periodic and q ∈ C0([0,∞) : X); then we can use Proposition
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2.11, the proof of [21, Lemma 4.1], decomposition∫ t

0

R(t− s)q(s) ds =
∫ t/2

0

R(t− s)q(s) ds+
∫ t

t/2

R(t− s)q(s) ds, t ≥ 0

and the estimates for the term
∫∞
t
R(s)g(t − s) ds given in the proof of Proposi-

tion 2.13, in order to see that the function H(·) is asymptotically almost periodic.
The case in which the function H(·) is asymptotically Sp-almost periodic but not
asymptotically almost periodic can also occur: if we accept all above assumptions
with the exception of q ∈ C0([0,∞) : X), and suppose in place of this condition
that limt→+∞

∫ t+1

t
(
∫ s
s/2
‖q(r)‖ dr)p ds = 0, then the same argumentation as above

show that the function H(·) is only asymptotically Sp-almost periodic. In such a
way, we have proved a proper extension of [21, Lemma 4.1], which can be further
applied for stating a proper extension of [21, Theorem 4.2] and new results about
inhomogeneous abstract Cauchy problems of third order,

αu′′′(t) + u′′(t)− βAu(t)− γAu′(t) = f(t), α, β, γ > 0, t ≥ 0,

appearing in the theory of dynamics of elastic vibrations of flexible structures [21].
(ii) We can prove a proper extension of [1, Lemma 2.13] as explained below.

Suppose that (R(t))t≥0 is strongly continuous, ζ < −1, ‖R(t)‖ = O(1 + tζ), t ≥ 0,
g : R→ X is Sp-almost periodic and q ∈ C0([0,∞) : X); then we can use the same
arguments as above, with appealing to [1, Lemma 2.13] in place of [21, Lemma 4.1],
to show that the function H(·) is asymptotically almost periodic. The only thing
worth noting here is that mt → 0 as t → ∞; for this, observe that there exists a
finite number M ′ ≥ 1 such that (α = −ζ):

∞∑
k=0

‖R(·)‖Lq [t+k,t+k+1]

≤M ′
∞∑
k=0

(∫ t+k+1

t+k

dr

rαq

)1/q

= M ′(αζ − 1)−1
∞∑
k=0

∣∣∣(t+ k + 1
)1−αq − (t+ k

)1−αq∣∣∣1/q
≤M ′(αζ − 1)1/q−1

∞∑
k=0

1
(t+ k)α

≤M ′(αζ − 1)1/q−1
∞∑
k=0

1
tναk(1−ν)α

≤ Const.t−να, t > 0,

provided that (1 − ν)α > 1. If we assume, as in the first part of this remark,
that limt→+∞

∫ t+1

t
(
∫ s
s/2
‖q(r)‖ dr)p ds = 0, then the function H(·) will be only

asymptotically Sp-almost periodic.
(iii) Proposition 2.13 can be applied provided that (R(t))t>0 is exponentially

decaying at infinity, (R(t))t>0 has a certain growth order at zero, and q : [0,∞)→ X
has a certain growth order. For the sake of illustration, we will examine only the
case in which the multivalued linear operator A satisfies the condition [24, (P), p.
47]:
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• There exist finite constants c,M > 0 and β ∈ (0, 1] such that

Ψ := Ψc :=
{
λ ∈ C : <λ ≥ −c

(
|=λ|+ 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψ.

Then it is well known that there exists a degenerate strongly continuous semigroup
(T (t))t>0 ⊆ L(X) generated by A such that ‖T (t)‖ = O(tβ−1), t > 0. Furthermore,
the proof of [24, Theorem 3.1] combined with the integral computation given in the
proof of [4, Theorem 2.6.1] shows that ‖T (t)‖ = O(e−cttβ−1), t > 0. This estimate
enables one to see that the condition (ii) from the formulation of Proposition 2.13
holds. Therefore, if limt→+∞

∫ t+1

t

[∫ s
M
e−crrβ−1‖q(s− r)‖ dr

]p
ds = 0, then we can

apply Proposition 2.13 to conclude that the function H(·) is asymptotically Sp-
almost periodic (cf. [24, Theorem 3.7] and [24, Example 3.3, Example 3.6] for some
applications in the study of inhomogeneous Poisson heat equation in the spaces
H−1(Ω) and Lr(Ω), where Ω is a bounded domain with smooth boundary and
1 < r < ∞). It is clear that Proposition 2.11 can be also applied here, which can
be simply incorporated in the study of existence and uniqueness of almost periodic
solutions of the following differential inclusion of first order

u′(t) ∈ Au(t) + g(t), t ∈ R,

where g : R→ X is Sp-almost periodic. Details can be left to the interested reader.

Now we will continue the analysis of Ponce and Warma [42] concerning diffusion
Volterra integro-differential equations with memory, proving the existence of some
specific classes of exponentially decaying (a, k)-regularized resolvent families (possi-
bilities for work exist even in the case that C 6= I and X is not a Banach space). In
the final part of example, we will consider asymptotically almost periodic solutions
and Stepanov asymptotically almost periodic solutions.

Example 2.15. Suppose that α ∈ R, α 6= 0, β ≥ 0, 0 < ζ ≤ 1 and ω ∈ R. Let any
of the following two conditions hold:

(i) α > 0, A is an MLO satisfying

ω + Σζπ/2 ⊆ ρ(A) and ‖R(λ : A)‖ = O
(
|λ− ω|−1

)
, λ ∈ ω + Σζπ/2. (2.10)

(ii) α < 0, α+ βζ ≥ |α| and A is an MLO satisfying (2.10).
Then it is well-known that the operator A ≡ A|D(A)

is single-valued, linear and

densely defined in the Banach space D(A), as well as that (2.10) holds with
the operator A replaced with the operator A; see e.g. [41, Lemma 4.1]. Set
a(t) := 1 +

∫ t
0
k(s) ds, where k(t) := αe−βtgζ(t). Owing to the proof of [42, Theo-

rem 2.1], we get that A generates an exponentially bounded (a, I)-resolvent family
(Sω(t))t≥0 in D(A), provided that ω = 0. In the general case ω 6= 0, the pertur-
bation result [33, Theorem 3.7.4] and decomposition A = (A− ωI|D(A)

) + ωI|D(A)

show that A generates an exponentially bounded (a, I)-resolvent family (S(t))t≥0 in
D(A), as well. This extends the assertion of [42, Corollary 2.2], and can be applied
in the analysis of Poisson heat equation with memory, in the space H−1(Ω); see e.g.
[24, Example 3.3] and the analysis below. The proof of [42, Theorem 2.3] works in
degenerate case, as well, and we may conclude the following: Let α 6= 0, β ≥ 0,
0 < ζ < ζ̃ ≤ 1, ω < 0 and β+ω ≤ 0. If (i) holds with the number ζ replaced with the
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number ζ̃ therein, then ‖S(t)‖ = O(e−βt), t ≥ 0; if (ii) holds with the number ζ re-
placed with the number ζ̃ therein, then ‖S(t)‖ = O((1+αωtζ+1)e−(β−(αω)1/(ζ+1))t),
t ≥ 0.

Consider now the case in which X := H−1(Ω), where ∅ 6= Ω ⊆ Rn is a bounded
domain with smooth boundary. Let m(x) ≥ 0 a.e. be a given function in L∞(Ω),
and let ∆ denotes the Dirichet Laplacian defined as usually. Let θ ∈ (−π, π),
0 < ε < π − |θ|, and let A := eiθ∆m(x)−1. Then the analysis contained in [24,
Example 3.3] shows that (2.10) holds with some number ω = −c < 0 and the
number ζ replaced by the number ζ̃ := 2(π − ε − |θ|)/π therein. Let α 6= 0,
0 < β ≤ c, 0 < ζ < ζ̃ ≤ 1, and let β− (−αc)1/(ζ+1) > 0 in the case of consideration
(ii). Hence, A generates an exponentially decaying (a, I)-resolvent family (S(t))t≥0

in D(A). Suppose that f ∈ C1([0,∞) : D(A)) and f ′ ∈ AAP ([0,∞) : D(A)).
Then the variation of parameters formula [33, Theorem 3.2.9(i)] (cf. also [43,
Proposition 1.2(ii)]) and the proof of [21, Lemma 4.1] show that the mapping
t 7→ S(t)f(0) +

∫ t
0
S(t − s)f ′(s) ds, t ≥ 0 is an asymptotically almost periodic

solution of the abstract Volterra inclusion u(t) ∈ A
∫ t

0
a(t− s)u(s) ds+ f(t), t ≥ 0.

The corresponding analysis in the space X = L2(Ω) falls out from the scope of this
paper (it is clear that [21, Lemma 4.1] can be applied in the analysis of existence
and uniqueness of asymptotically almost periodic solutions of a substantially large
class of inhomogeneous abstract Cauchy problems whose solution operator families
are exponentially decaying; for degenerate case, see also [62, Theorems 2.2, 2.4],
[33, Theorem 2.2.20] with α = 1, and [24, Theorems 3.7, 3.8]).

Suppose, finally, that f ∈ C1([0,∞) : D(A)) and f ′ : [0,∞) → D(A) is asymp-
totically Stepanov almost periodic. Then the mapping t 7→ S(t)f(0) +

∫ t
0
S(t −

s)f ′(s) ds, t ≥ 0 is an asymptotically Stepanov almost periodic solution of the ab-
stract Volterra inclusion u(t) ∈ A

∫ t
0
a(t− s)u(s) ds+ f(t), t ≥ 0, provided that the

function f ′(·) can be written as f ′(·) = g(·)+ q(·) (cf. Lemma 1.1 with the function
f(·) replaced therein with the function f ′(·)), and q(·) satisfies the condition (i) of
Proposition 2.13.

In [34], we have investigated the almost periodic entire solutions to the abstract
Barenblatt-Zheltov-Kochina equation and the abstract linearized Boussinesq-Love
equation (see [33, Example 2.3.48, Example 2.3.49] for more details). In the follow-
ing illustrative example, we shall continue the analysis contained in [34, Example
4.16] by enquiring into the asymptotically almost periodic solutions of the abstract
Boussinesq-Love equation.

Example 2.16. Let ∅ 6= Ω ⊆ Rn be a bounded domain with smooth boundary
∂Ω, and let X := L2(Ω). Denote by {λk} [= σ(∆)] the eigenvalues of the Dirichlet
Laplacian ∆ (recall that 0 < −λ1 ≤ −λ2 · · · ≤ −λk ≤ · · · → +∞ as k → ∞;
see [33] for further information), numbered in nonascending order with regard to
multiplicities. By {φk} ⊆ C∞(Ω) we denote the corresponding set of mutually
orthogonal [in the sense of L2(Ω)] eigenfunctions.

Of importance is the following Cauchy-Dirichlet problem for Boussinesq-Love
equation:

(λ−∆)utt(t, x)− α(∆− λ′)ut(t, x)

= β(∆− λ′′)u(t, x) + f(t, x), t ∈ R, x ∈ Ω,
(2.11)
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u(0, x) = u0(x), ut(0, x) = u1(x), (t, x) ∈ R× Ω;

u(t, x) = 0, (t, x) ∈ R× ∂Ω,
(2.12)

where λ, λ′, λ′′ ∈ R, α, β ∈ R and α, β 6= 0.
Suppose that λ ∈ ρ(∆). By [57, Theorem 5.1(i)], for every u0, u1 ∈ H2(Ω) ∩

H1
0 (Ω) and f ∈ C∞(R : X), there exists a unique solution u(·) of problem [(2.11)-

(2.12)] and u(·) has the form

u(t) =
∞∑
k=1

[ µ1
k

µ1
k − µ2

k

eµ
1
kt − µ2

k

µ1
k − µ2

k

eµ
2
kt
]
〈φk, u0〉φk

+
∞∑
k=1

eµ
1
kt − eµ2

kt

(λ− λk)(µ1
k − µ2

k)
〈φk, u1〉φk

+
∞∑
k=1

∫ t

0

eµ
1
k(t−s) − eµ2

k(t−s)

(λ− λk)(µ1
k − µ2

k)
〈φk, f(s)〉φk ds, t ∈ R,

where

µ1,2
k :=

−α(λ′ − λk)±
√
α2(λ′ − λk)2 − 4β(λ− λk)(λ′′ − λk)

2(λ− λk)
, k ∈ N.

Suppose that <
[
µ1,2
k

]
≤ 0, k ∈ N. This condition clearly implies that the function

t 7→ u(t), t ∈ R is an asymptotically almost periodic solution of the homogeneous
counterpart of problem (2.11)-(2.12) for all u0, u1 ∈ span({φk : k ∈ N}), which is
dense in X (the case that λ ∈ σ(∆) can be also analyzed, but then the set of all
initial values u0, u1 for which there exist such a solution cannot be dense in X).
Concerning the inhomogeneous term in the representation of u(·), with u0 = u1 = 0,
the most simplest case when it will be asymptotically almost periodic for t ≥ 0 is
that there exists a finite subset L ⊆ N such that R(f) ⊆ span({φk : k ∈ L}),
<
[
µ1,2
k

]
< 0, k ∈ L and the mappings t 7→ 〈φk, f(t)〉, t ≥ 0 are asymptotically

almost periodic for all k ∈ L (by Proposition 2.13, the asymptotical Sp-almost
periodicity of this term can also occur provided certain growth order of these map-
pings).

2.2. Generalized (asymptotically) almost periodic properties of degener-
ate C-semigroups and degenerate C-cosine functions. Concerning Stepanov
almost periodicity of degenerate C-semigroups, we will first state the following
simple result (as announced earlier, the operator C is allowed to be possibly non-
injective):

Proposition 2.17. Suppose (S(t))t≥0 is a bounded C-regularized semigroup with
the integral generator A. If x ∈ X satisfies that the mapping t 7→ S(t)x, t ≥ 0 is
Stepanov almost periodic, then the mapping t 7→ S(t)Cx, t ≥ 0 is almost periodic.

Proof. Let us recall that (S(t))t≥0 ⊆ L(X) is a strongly continuous operator family
commuting with C, and that S(t)S(s) = S(t + s)C, t, s ∈ R. Since the mapping
t 7→ S(t)x, t ≥ 0 is Stepanov almost periodic and (S(t))t≥0 is uniformly bounded, we
have that the mapping t 7→ S(t)Cx, t ≥ 0 is Stepanov almost periodic and bounded,
so that it remains to be proved that the mapping t 7→ S(t)Cx, t ≥ 0 is uniformly
continuous (any Stepanov almost periodic function f ∈ BUC([0,∞) : X) has to be
almost periodic). But, this follows from the uniform boundedness of (S(t))t≥0 and
the estimate ‖S(t)Cx− S(s)Cx‖ ≤ ‖S(s)‖ · ‖S(t− s)x− Cx‖, t, s ≥ 0, t ≥ s. �
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If R(C) is dense in X and the mapping t 7→ S(t)x, t ≥ 0 is Stepanov almost
periodic for all x ∈ X, then Proposition 2.17 and the fact that AP ([0,∞) : X) is a
closed subspace of BUC([0,∞) : X) together imply that the mapping t 7→ S(t)x,
t ≥ 0 is almost periodic for all x ∈ X, as long as (S(t))t≥0 is bounded. But, the
strong Stepanov almost periodicity of mapping t 7→ S(t), t ≥ 0 does not imply a
priori the boundedness of (S(t))t≥0; in the present situation, the best we can do
concerning this question is to prove the following slight extension of well-known
Henŕıquez’s result [28, Theorem 1]:

Theorem 2.18. Suppose that 1 ≤ p < ∞ and (S(t))t≥0 is a C-regularized semi-
group with the integral generator A. Then the following holds:

(i) Let x ∈ X satisfy that the mapping t 7→ S(t)x, t ≥ 0 is Sp-bounded. Then
the mapping t 7→ S(t)Cx, t ≥ 0 is bounded.

Suppose that the mapping t 7→ S(t)x, t ≥ 0 is Sp-bounded for all x ∈ X. Then we
have the following:

(ii) The mapping t 7→ S(t)C2x, t ≥ 0 is bounded and uniformly continuous for
all x ∈ X, and there exists a finite constant M ≥ 0 such that ‖S(t)C‖ ≤M ,
t ≥ 0. Therefore, if x ∈ X satisfies that the mapping t 7→ S(t)C2x, t ≥ 0
is Stepanov almost periodic, then it is almost periodic.

(iii) If R(C) is dense in X, then the mapping t 7→ S(t)Cx, t ≥ 0 is bounded and
uniformly continuous for all x ∈ X. Therefore, if x ∈ X satisfies that the
mapping t 7→ S(t)Cx, t ≥ 0 is Stepanov almost periodic, then it is almost
periodic.

Proof. Assume that (i) does not hold. Then there exists a strictly increasing se-
quence (tn)n∈N in [1,∞) such that limn→∞ tn = ∞ and limn→∞ ‖S(tn)Cx‖ = ∞.
Let N := sups∈[0,1] ‖S(s)‖ <∞. Then S(tn)Cx = S(s)S(tn−s)x, 0 ≤ s ≤ 1, n ∈ N
and therefore ‖S(tn − s)x‖ ≥ ‖S(tn)Cx‖/N , n ∈ N. Integrating this estimate over
the interval [0, 1], we obtain∫ tn

tn−1

‖S(s)x‖p ds ≥ ‖S(tn)Cx‖p

Np
, n ∈ N,

contradicting the Sp-boundedness of mapping t 7→ S(t)x, t ≥ 0. This completes the
proof of (i). For the remnant of proof, let us assume that the mapping t 7→ S(t)x,
t ≥ 0 is Sp-bounded for all x ∈ X. By the uniform boundedness principle and (i),
we have that there exists a finite constant M ≥ 0 such that ||S(t)C‖ ≤ M , t ≥ 0.
Now the uniform continuity of mapping t 7→ S(t)C2x, t ≥ 0 for any x ∈ X follows
from the estimate ‖S(t)C2x − S(s)C2x‖ ≤ ‖S(s)C‖ · ‖S(t − s)x − Cx‖, t, s ≥ 0,
t ≥ s, which simply completes the proof of (ii). If R(C) is dense in X, then for each
x ∈ X we can find a sequence (xn)n∈N in X such that limn→∞ Cxn = x. Hence, for
every number ε > 0 given in advance, we can find an integer n0 ∈ N and a positive
real number δ > 0 such that

‖S(t)Cx− S(s)Cx‖ ≤ 2M‖Cxn0 − x‖+ ‖S(t)C2xn0 − S(s)C2xn0‖
≤ 2ε/3 + ε/3 = ε,

provided that t, s ≥ 0 and |t − s| < δ, so that the mapping t 7→ S(t)Cx, t ≥ 0 is
bounded and uniformly continuous for all x ∈ X. This simply yields (iii). �

Before proceeding further, let us recall that it is still an open problem in the the-
ory of non-degenerate C-regularized semigroups (C ∈ L(X) injective) whether there
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exists a bounded C-regularized semigroup (S(t))t≥0 that is not strongly uniformly
continuous; cf. [18, Remark 5.19] for more details. Concerning the asymptotical
Stepanov almost periodicity of degenerate C-regularized semigroups, we can clarify
the following result.

Theorem 2.19. Suppose that 1 ≤ p < ∞, (S(t))t≥0 is a C-regularized semigroup
with the integral generator A, and the mapping t 7→ S(t)x, t ≥ 0 is Sp-bounded for
all x ∈ X. Then we have the following:

(ii) The asymptotical Sp-almost periodicity of mapping t 7→ S(t)x, t ≥ 0 for
some x ∈ X implies that the mapping t 7→ S(t)C4x, t ≥ 0 is asymptotically
almost periodic.

(iii) If R(C) is dense in X and (S(t))t≥0 is strongly asymptotically Sp-almost
periodic, then the mapping t 7→ S(t)Cx, t ≥ 0 is asymptotically almost
periodic for all x ∈ X.

Proof. We will only outline the most relevant details of proof, which is very similar
to that of [28, Theorem 2]. By the foregoing, we have that there exists a finite
constant M ≥ 0 such that ‖S(t)C‖ ≤ M , t ≥ 0. Let x ∈ X satisfy that the
mapping t 7→ S(t)x, t ≥ 0 is asymptotically Sp-almost periodic. Then for any
sequence (tn)n∈N of positive reals there exists its subsequence (sn)n∈N such that
limn→∞ ̂S(sn + ·)x exists in the space Cb([0,∞) : Lp([0, 1] : X)). Lemma 1.1 and
the proof of afore-mentioned theorem together imply that there exist two functions
gx(·) and qx(·) such that the conclusions of this lemma hold with the function
f(·) replaced therein by S(·)x, and that there exists a subsequence (rn)n∈N of
(sn)n∈N such that gx(t) = limn→∞ S(rn + t)x a.e. t ≥ 0. Arguing as in [28], we
get that the limit limn→∞ S(rn + t)C2x exists in X for all t ≥ 0. This implies
that the sequence (S(rn + ·)C4x)n∈N is Cauchy in the space Cb([0,∞) : X) and
therefore convergent (observe that ‖S(rn+t)C4x−S(rm+t)C4x‖ ≤M‖S(rn)C2x−
S(rm)C2x‖, m, n ∈ N, t ≥ 0), finishing the proof of (i). The proof (ii) is simple
and therefore omitted. �

By Example 2.4, for each number α ∈ (0, 2)\{1} there exist examples of bounded,
non-degenerate, asymptotically Stepanov almost periodic (gα, I)-resolvent families
that are not (Stepanov) almost periodic. Now we will focus our attention to the case
α = 2 : To the best knowledge of the author, the assertion of [28, Theorem 3] has not
yet been reconsidered for C-regularized cosine operator functions. To do that, we
need first to extend the well-known result by Cioranescu and Ubilla [14, Theorem 1]
concerning the generation of uniformly bounded cosine operator functions in terms
of boundedness and analyticity of subordinated strongly continuous semigroups as
well as denseness of subspace consisted of exponential vectors (see Radyno [45] and
[14, Lemma, pp. 2-3]):

Let C ∈ L(X) be injective, and let A be a closed single-valued linear operator
commuting with C. Denote by Dµ

A the vector space consisting of all vectors x ∈
D∞(A) such that there exists c > 0 satisfying that ‖Akx‖ ≤ cµk, k ∈ N0 (µ > 0).
Equipped with the norm ‖x‖µ := supk≥0 µ

−k‖Akx‖, this space becomes one of
Banach’s. The space of exponential vectors of A, ExpA for short, is defined by
ExpA := ∪µ>0D

µ
A; then it is clear that ExpA consists as a subspace the linear span

of all eigenfunctions corresponding to some eigenvalue of A. Let Aµ := A|DµA and
Cµ := C|DµA (µ > 0). Then Aµ, Cµ ∈ L(Dµ

A) mutually commute, Cµ is injective
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and (λ − Aµ)−1Cµ = ((λ − A)−1C)|DµA for any λ ∈ ρC(A), with the estimate
‖(λ − Aµ)−1Cµ‖µ ≤ ‖(λ − A)−1C‖, λ ∈ ρC(A), µ > 0; see e.g. the proof of [45,
Theorem 11]. Furthermore, if the mapping λ 7→ (λ− A)−1C, λ ∈ Ω is analytic on
some open domain Ω ⊆ C, then we know that R(C) ⊆ R((λ−A)n), n ∈ N and

dn−1

dλn−1

(
λ−A

)−1
C = (−1)n−1(n− 1)!

(
λ−A

)−n
C ∈ L(X), n ∈ N.

In this case, we can inductively prove that (λ − Aµ
)−n

Cµ ∈ L(Dµ
A), n ∈ N, µ > 0

and ‖(λ − Aµ)−nCµ‖µ ≤ ‖(λ − A)−nC‖, n ∈ N, λ ∈ Ω, µ > 0; furthermore, the
estimate ∥∥ (λ−Aµ)−1Cµx− (z −Aµ)−1Cµx

λ− z
+
(
λ−Aµ

)−2
Cµx

∥∥
µ

≤
∥∥ (λ−A)−1Cx− (z −A)−1Cx

λ− z
+
(
λ−A

)−2
Cx
∥∥ ‖x‖µ,

for λ ∈ Ω, µ > 0, x ∈ Dµ
A enables to see that the mapping λ 7→ (λ − Aµ)−1Cµ ∈

L(Dµ
A), λ ∈ Ω is analytic, as well (µ > 0). Keeping in mind these facts and

the well known structural results from the theory of C-regularized semigroups
and C-regularized cosine functions ([31]-[32]), a careful inspection of the proof
of [14, Theorem 1] enables one to deduce the following result of independent in-
terest (for (ii), define u(t) in the proof of above-mentioned theorem by u(t) :=∑∞
µ=1(t2n/(2n)!)AnµCµxµ, t ≥ 0, x =

∑∞
µ=1 xµ ∈ D(A), xµ ∈ Dµ

A for 1 ≤ µ <∞):

Theorem 2.20. Let C ∈ L(X) be injective, and let A be a closed single-valued
linear operator commuting with C. Then the following holds:

(i) If A generates a bounded C-regularized cosine function, then A generates a
bounded analytic C-regularized semigroup of angle π/2 and R(C) ⊆ ExpA.

(ii) If A generates a bounded analytic C-regularized semigroup of angle π/2 and
ExpA = X, then A generates a bounded C-regularized cosine function.

(iii) Suppose that R(C) = X. Then A generates a bounded C-regularized co-
sine function if and only if A generates a bounded analytic C-regularized
semigroup of angle π/2 and ExpA = X.

Now we are ready to prove the following slight extension of [28, Theorem 3].

Theorem 2.21. Let C ∈ L(X) be injective, let A be a closed single-valued linear
operator, and let R(C) = X. Suppose that A generates a asymptotically Stepanov
almost periodic C-regularized cosine function (C(t))t≥0. Then (C(t))t≥0 is almost
periodic.

Proof. The proof of theorem is very similar to that of [28, Theorem 3] and, because
of that, we will only outline the main differences. It is well known that R(C) ⊆
D(A), so that A is densely defined. Moreover, the mapping B : X → LpS([0,∞) : X)
given by Bx := C(·)x (x ∈ X) is linear and closed, therefore continuous. Using the
abstract Weierstrass formula [32, Theorem 2.4.18] and the proof of [28, Theorem 3],
we can simply verify that A generates a bounded analytic C-regularized semigroup
of angle π/2. Denote by S(·) the induced C-regularized sine function generated by
A. By Theorem 2.20(iii) and [67, Theorem 4.1], it suffices to show that the set D
consisted of all eigenvectors of operator A which correspond to the real non-positive
eigenvalues of A is total in X. For this, define Pλx and Qλx as well as the functions
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gx(·) and qx(·) as in the proof of afore-mentioned theorem (λ ∈ R, x ∈ X). Then
the arguments contained in the proofs of [28, Theorem 3] and [67, Theorem 4.1]
enable one to see that C(t)Pλx = cos(λt)CPλx, C(t)Qλx = cos(λt)CQλx as well
as that {Pλx, Qλx} ⊆ N(λ2 + A) for all λ ∈ R, x ∈ X. Let x∗ ∈ X∗, and let x∗

annulate D. By d’Alambert’s formula, for every a ∈ [0, 1], t ≥ 0 and x ∈ X, we
have that

2|〈x∗, C(t)S(a)x〉| ≤
∫ 1

0

|〈x∗, qCx(t+ s)〉| ds+
∫ 1

0

|〈x∗, qCx(t− s)〉| ds.

Set y∗a := S(a)∗x∗, a ∈ [0, 1]. Then the above yields limt→∞〈C(t)∗y∗a, x〉 = 0,
x ∈ X, a ∈ [0, 1] and the boundedness of the set {C(t)∗y∗a : t ≥ 0} in X∗, for
every fixed a ∈ [0, 1]. If we define the sequences (un)n∈N and (vn)n∈N as in the
proof of Henŕıquez, then the d’Alambert functional equation C(tn)Cx+C(t)Cx =
2C(un)C(vn)x, x ∈ X, n ∈ N and the arguments contained on page 431 of the
proof show that 〈y∗a, C(t)x〉 = 0, t ≥ 0, a ∈ [0, 1]. Hence, 〈x∗, S(a)C(t)x〉 = 0,
t ≥ 0, a ∈ [0, 1], x ∈ X and therefore 〈x∗, S(a)Cx〉 = 0, a ∈ [0, 1], x ∈ X. Since
R(C2) is dense in X and C2x = lima→0+ a

−1S(a)Cx, x ∈ X, we get that the set
{S(a)Cx : 0 ≤ a ≤ 1, x ∈ X} is total in X, so that x∗ = 0. This completes the
proof. �

We can similarly prove an analogue of [28, Proposition 1] for C-regularized cosine
functions in weakly sequentially complete Banach spaces:

Proposition 2.22. Let C ∈ L(X) be injective, let A be a closed single-valued linear
operator, and let R(C) = X. Suppose that A generates a scalarly Stepanov almost
periodic C-regularized cosine function (C(t))t≥0. Then (C(t))t≥0 is almost periodic,
provided that X is weakly sequentially complete.

The following proposition is motivated by Casarino’s result [13, Proposition 3.1;
2)] (we feel duty bound to say that, in the formulation of this statement, one
has to impose the condition on uniform boundedness of considered cosine operator
function); in our approach, the operator C 6= I need not be injective and (C(t))t≥0

can be degenerate in time.

Proposition 2.23. Let A be the integral generator of a uniformly bounded C-cosine
function (C(t))t≥0. Suppose that x ∈ X satisfies that the mapping t 7→ C(t)x, t ≥ 0
is asymptotically almost periodic. Then the mapping t 7→ C(t)Cx, t ≥ 0 is almost
periodic.

Proof. The prescribed assumption implies that there exists a finite constant M > 0
such that ‖C(t)‖ ≤ M , t ≥ 0. Let ε > 0 be given in advance. Then we can
find numbers l = l(ε) > 0 and K = K(ε) > 0 such that every subinterval I of
[0,∞) of length l contains, at least, one number τ such that ‖C(t+ τ)x−C(t)x‖ ≤
ε/(2M + ‖C‖) for all t ≥ K. Let s ≥ K. Using the d’Alambert functional equality
C(t)Cx = 2C(s)C(t+ s)x− C(t+ 2s)Cx, t ≥ 0, we obtain

‖C(t+ τ)Cx− C(t)Cx‖
≤ 2M‖C(t+ s+ τ)x− C(t+ s)x‖+ ‖C‖‖C(t+ 2s+ τ)x− C(t+ 2s)x‖
≤ (2M + ‖C‖)ε/(2M + ‖C‖) = ε, t ≥ 0,

where τ ∈ I is chosen as above. This completes the proof. �
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Now we would like to raise the following question concerning Theorem 2.21 and
Proposition 2.23.

Open problem. Let A be the integral generator of a bounded C-cosine function
(C(t))t≥0. Suppose that x ∈ X satisfies that the mapping t 7→ C(t)x, t ≥ 0 is
asymptotically Stepanov almost periodic. Is it true that the mapping t 7→ C(t)Cx,
t ≥ 0 is almost periodic?

The following extension of Vesentini’s result [58, Proposition 4] for degenerate
C-groups is deduced similarly (cf. [33]-[34] for more details on the subject):

Proposition 2.24. Suppose that (S(t))t∈R ⊆ L(X) is a bounded, strongly contin-
uous operator family commuting with C, and S(t)S(s) = S(t + s)C, t, s ∈ R. If
x ∈ X satisfies that the mapping t 7→ S(t)x, t ≥ 0 is asymptotically almost periodic,
then the mapping t 7→ S(t)Cx, t ≥ 0 is almost periodic.

In a series of his research papers, Rao has investigated the conditions under which
the Stepanov almost periodic (bounded) solutions of certain abstract differential
equations are almost periodic (see e.g. [46] and [47]). We close this subsection
by explaining how we can prove a slight extension of the main result of paper
[46], Theorem, for infinitesimal generators of almost periodic C-regularized groups.
Before do that, let us agree on the following notion: Suppose that A and B are
two closed, not necessarily densely defined, single-valued linear operators in X and
a function f : R → X is continuous. By a solution of the second-order differential
equation

u′′(t) = Au′(t) +Bu(t) + f(t) a.e. on R
we mean any two times differentiable function u(t) with u′(t) ∈ D(A), u(t) ∈ D(B)
for all t ∈ R and satisfying the above equation a.e. on R.

Theorem 2.25. Suppose that X is a reflexive Banach space, f : R → X is an
S1-almost periodic continuous function, and A is the infinitesimal generator of an
almost periodic non-degenerate C-regularized group (T (t))t∈R, where C ∈ L(X) is
injective. Let u : R→ X, with its derivative u′(t) ∈ D(A) for all t ∈ R be a solution
of the differential equation

u′′(t) = Au′(t) +B(t)u(t) + f(t) a.e. on R

where B : R → L(X) is almost periodic. If u(·) is S1-almost periodic and u(·) is
S1-bounded on R, then C2u′(·) and C2u(·) are both almost periodic from R to X.

Proof. The proof of this result can be obtained by an insignificant modification of
the proof of Theorem in [46]. First of all, note that for each x ∈ D(A) we have that
the mapping t 7→ T (t)x, t ∈ R is continuously differentiable with (d/dt)T (t)x =
T (t)Ax, t ∈ R. Then the computation given in the proof of [46, Lemma 1] shows
that

Cu′(t) = T (t)u′(0) +
∫ t

0

T (t− s)[B(s)u(s) + f(s)] ds, t ∈ R,

which implies

T (−t)u′(t) = Cu′(0) +
∫ t

0

T (−s)[B(s)u(s) + f(s)] ds, t ∈ R.

Furthermore, we can simply prove by definition that (T (−t))t∈R is an almost pe-
riodic C-regularized group with the infinitesimal generator −A. The only thing
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that should be noted else is that the assertion of [46, Lemma 2] holds for C-
regularized groups. Speaking-matter-of-fact, suppose that h(·) is an almost peri-
odic function from R to X. Then there exists a sequence of X-valued trigonometric
polynomials hn(·) converging uniformly to h(·) as n → ∞. Using the fact that, if
g ∈ AP (R : X) and p ∈ AP (R : C), then gp ∈ AP (R : X), we get that the mapping
t 7→ T (−t)hn(t), t ∈ R is almost periodic. Since (T (−t))t∈R is almost periodic, it
is uniformly bounded and therefore T (−·)hn(·) converges uniformly to T (−·)(·) as
n→∞, so that T (−·)(·) is almost periodic, as well. �

Arguing similarly, we can prove some results on almost periodic solutions of the
first-order infinitesimal generator differential equation

u′(t) ∈ [A+B(t)]u(t) + f(t) a.e. on R,

in reflexive Banach spaces. If A is the infinitesimal generator of an almost periodic
non-degenerate C-regularized group (T (t))t∈R, where C ∈ L(X) is injective, u :
R→ D(A) is an S1-almost periodic solution of the above differential equation (for
the topology of X), f : R → X is an S1-almost periodic continuous function and
B : R → L(X) is almost periodic, then the mapping C2u(·) is almost periodic, as
well.

2.3. Subspace asymptotical almost periodicity of C-distribution semi-
groups and C-distribution cosine functions. In this subsection, we reconsider
some structural results of Xie, Li, Huang [63] and Pilipović, Velinov, Kostić [36].
Here, we will always assume that the operator C ∈ L(X) is injective and that
any operator family under our consideration is non-degenerate. For the notion and
notation of various types of C-distribution semigroups and C-distribution cosine
functions used henceforth, we refer the reader to [36].

Let G be a C-distribution semigroup, (C-DS) for short. Define

G(T ) :=
{

(x, y) ∈ X ×X : G(T ∗ ϕ)x = G(ϕ)y for all ϕ ∈ D0

}
.

Then it can be easily seen that G(T ) is a closed linear operator commuting with
C. We define the (infinitesimal) generator A of G by A := G(−δ′). By D(G) we
denote the set consisting of those elements x ∈ X for which x ∈ D(G(δt)), t ≥ 0
and the mapping t 7→ G(δt)x, t ≥ 0 is continuous. We have

D
(
G(δs)G(δt)

)
=D

(
G(δs ∗ δt)

)
∩D

(
G(δt)

)
=D

(
G(δt+s)

)
∩D

(
G(δt)

)
, (2.13)

for t, s ≥ 0, which clearly implies G(δt)(D(G)) ⊆ D(G), t ≥ 0.
The solution space for a closed linear operator A, denoted by Z(A), is defined as

the set of all x ∈ X for which there exists a continuous mapping u(·, x) ∈ C([0,∞) :
X) satisfying

∫ t
0
u(s, x) ds ∈ D(A) and A

∫ t
0
u(s, x) ds = u(t, x) − x, t ≥ 0. If A

generates a (C-DS) G, then it is well known that Z(A) = D(G) and that for each
x ∈ Z(A), we have u(t, x) = G(δt)x, t ≥ 0 and G(ψ)x =

∫∞
0
ψ(t)Cu(t, x) dt, ψ ∈ D0.

We say that a function u(·;x, y) is a mild solution of the abstract Cauchy problem

u ∈ C([0,∞) : [D(A)]) ∩ C2([0,∞) : X),

u′′(t) = Au(t), t ≥ 0,

u(0) = x, u′(0) = y

(2.14)

if the mapping t 7→ u(t;x, y), t ≥ 0 is continuous,
∫ t

0
(t − s)u(s;x, y)ds ∈ D(A)

and A
∫ t

0
(t − s)u(s;x, y)ds = u(t;x, y) − x − ty, t ≥ 0; henceforward we primarily
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consider the mild solutions of (2.14) with y = 0. Denote by Z2(A) the set consisting
of all x ∈ X for which there exists such a solution. We refer the reader to [36] for
the notion of integral generator of a C-distribution cosine function and operator
G(δt), t ≥ 0 (x ∈ Z2(A)). Let us recall that, for every x ∈ Z2(A), one has
G(δt)(Z2(A)) ⊆ Z2(A), t ≥ 0, 2G(δs)G(δt)x = G(δt+s)x+G(δ|t−s|)x, t, s ≥ 0 and
G(ϕ)x =

∫∞
0
ϕ(t)CG(δt)x dt, ϕ ∈ D0.

Now we are ready to introduce the following definition (cf. [36, Definition 2.1]
for the corresponding notion introduced in the case of almost periodicity; this can
be done for the general class of (a, k)-regularized C-resolvent families, as well).

Definition 2.26. Let G be a (C−DCF ) generated by A, resp. let G be a (C-DS)
generated by A. Suppose that X̃ is a linear subspace of Z2(A), resp. x ∈ Z(A).
Then it is said that G is X̃-asymptotically almost periodic if for each x ∈ X̃ the
mapping t 7→ G(δt)x, t ≥ 0 is asymptotically almost periodic.

Similarly as in [36, Remark 2.2], we have the following observations.

Remark 2.27. (i) The notions from Definition 2.26 can be introduced for
arbitrary operator family (F (t))t≥0 consisted of possibly non-linear and
possibly non-continuous single valued operators.

(ii) Let G be a (C −DCF ) generated by A, resp. let G be a (C-DS) generated
by A, and let X̃ be a linear subspace of Z2(A), resp. x ∈ Z(A). Assume
that G, resp. G, is X̃-asymptotically almost periodic. Let G1 be another
(C1-DCF ) generated by A, resp. let G1 be another (C1-DS) generated by
A. Then G1, resp. G1, is X̃-asymptotically almost periodic, as well.

The following characterization of subspace asymptotical almost periodicity of
C-distribution semigroups is motivated by [63, Lemma 2.1, Theorem 2.2, Corollary
2.3].

Theorem 2.28. Let G be a (C-DS) generated by A, and let X̃ be a linear subspace
of Z(A). Then the following assertions are equivalent:

(i) G is X̃-asymptotically almost periodic.
(ii) For every x ∈ Z(A)∩ X̃, there exist elements y, z ∈ Z(A) such that y+ z ∈

X̃, x = y + z and the following two conditions hold:
(a) The mapping t 7→ G(δt)y, t ≥ 0 belongs to the space AP ([0,∞) : X).
(b) The mapping t 7→ G(δt)z, t ≥ 0 belongs to the space C0([0,∞) : X).

(iii) For every x ∈ Z(A)∩ X̃, there exist elements y, z ∈ Z(A) such that y+ z ∈
X̃, x = y + z and the following two conditions hold:
(c) The mapping F : [0,∞)→ Cb([0,∞) : X), defined by F (t) := G(δ·+t)y,

t ≥ 0, belongs to the space AP ([0,∞) : Cb([0,∞) : X)).
(d) The mapping H : [0,∞) → Cb([0,∞) : X), defined by H(t) :=

G(δ·+t)z, t ≥ 0, belongs to the space C0([0,∞) : Cb([0,∞) : X)).

Proof. Suppose first that x ∈ Z(A) ∩ X̃. Arguing as in the proof of [63, Lemma
2.1], we get the existence of a strictly increasing sequence (tn)n∈N of positive reals
and a mapping ϕ ∈ C0([0,∞) : X) such that limn→∞ tn = ∞, the mapping h :
[0,∞)→ X defined by h(t) := limn→∞G(δt+tn)x, t ≥ 0 is almost periodic, and

G
(
δt
)
x = h(t) + ϕ(t), t ≥ 0. (2.15)

Set y := limn→∞G(δtn)x, z := x − y and yn := G(δtn)x, n ∈ N. Let t ≥ 0
be temporarily fixed. Then limn→∞ yn = y and (2.13) yields limn→∞G(δt)yn =
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limn→∞G(δt+tn)x = h(t). By the closedness of G(δt), we get y ∈ D(G(δt)) and
G(δt)y = h(t). Therefore, we have y, z ∈ Z(A), y + z = x ∈ Ẽ and, because of
(2.15),

G
(
δt
)
x = G

(
δt
)
y +G

(
δt
)
z, t ≥ 0. (2.16)

This implies (a)-(b) in (ii). To prove that (ii) implies (iii), choose a number ε > 0
arbitrarily. Then the almost periodicity of mapping h(·), defined as in the proof
of implication (i) ⇒ (ii), yields that there exists l > 0 such that any interval
I ⊆ [0,∞) of length l contains an ε-period τ for h(·), so that supt≥0 ‖h(t +
τ) − h(t)‖ = supt≥0 ‖G(δt+τ )y − G(δt)y‖ ≤ ε. But, this is equivalent to say
that supt≥0 ‖F (t + τ) − F (t)‖Cb([0,∞):X) = supt,s≥0 ‖G(δt+s+τ )y − G(δt+s)y‖ =
supt≥0 ‖G(δt+τ )y − G(δt)y‖ < ε, which immediately implies (c). On the other
hand, it is clear that the mapping H(·) is well defined because for each t ≥ 0
we have that lims→+∞G(δs+t)z = lims→+∞ ϕ(s + t) = 0, where we define ϕ(·)
as before. Moreover, limt→+∞ ‖G(δ·+t)z‖Cb([0,∞):X) = 0 is equivalent to say that
limt→+∞[sups≥0 ‖G(δs+t)z‖] = 0, which can be easily verified to be true since for
any ε > 0 we have the existence of a sufficiently large number M > 0 such that
‖ϕ(v)‖ = ‖G(δv)z‖ < ε, v > M . The converse statement (iii) ⇒ (ii) is much easier
because (c) and (d) in turn imply that the mapping t 7→ G(δt)y ∈ X, t ≥ 0 is almost
periodic and the mapping t 7→ G(δt)z, t ≥ 0 belongs to the space C0([0,∞) : X).
The implication (ii) ⇒ (i) is trivial, finishing the proof. �

Remark 2.29. In [63], the authors have considered the asymptotical almost peri-
odicity of C-regularized semigroups by assuming that their integral generators have
no eigenvalues in (0,∞). It is worth noting that this is not the case in our analysis,
where we allow that the point spectrum of integral generator of a Ẽ-asymptotically
almost periodic C-distribution semigroup could have a non-empty intersection with
any ray (ω,∞), where ω > 0. This is very important in the case that Ẽ 6= E, be-
cause then we can construct a great number of non-exponential C-distribution semi-
groups (C-distribution cosine functions) that are Ẽ-almost periodic [36], with the
subspace Ẽ being dense in E, by using the Desch-Schappacher-Webb criterion for
chaos of strongly continuous semigroups (see [32, Chapter III] for a comprehensive
survey of results on hypercyclic and chaotic abstract Volterra integro-differential
equations). The point spectrum of integral generator of such a C-distribution semi-
group (C-distribution cosine function) may contain ray (ω,∞), for some ω > 0; see
e.g. [32, Theorem 2.2.10, Example 3.2.37(iii)] and [31, Theorem 3.1.36].

It is clear that Proposition 2.23-Proposition 2.24 cannot be reconsidered for C-
distribution semigroups and C-distribution cosine functions because the operators
G(δt) are generally unbounded in this framework (t ≥ 0).
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[8] Batty, C. J. K.; Hutter, W.; Räbiger, F.; Almost periodicity of mild solutions of inhomoge-

neous periodic Cauchy problems. J. Diff. Equ., 156 (1999), 309–327.
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[31] Kostić, M.; Generalized Semigroups and Cosine Functions. Mathematical Institute Belgrade

(2011).



EJDE-2017/239 ABSTRACT VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 29
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Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125
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