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EXISTENCE, REGULARITY AND REPRESENTATION OF
SOLUTIONS OF TIME FRACTIONAL WAVE EQUATIONS

VALENTIN KEYANTUO, CARLOS LIZAMA, MAHAMADI WARMA

Communicated by Mokhtar Kirane

Abstract. We study the solvability of the fractional order inhomogeneous

Cauchy problem

Dαt u(t) = Au(t) + f(t), t > 0, 1 < α ≤ 2,

where A is a closed linear operator in some Banach space X and f : [0,∞)→ X
a given function. Operator families associated with this problem are defined

and their regularity properties are investigated. In the case where A is a

generator of a β-times integrated cosine family (Cβ(t)), we derive explicit
representations of mild and classical solutions of the above problem in terms

of the integrated cosine family. We include applications to elliptic operators

with Dirichlet, Neumann or Robin type boundary conditions on Lp-spaces and
on the space of continuous functions.

1. Introduction

The classical wave equation provides the most important model for the study of
oscillation phenomena in physical sciences and engineering. In the treatment of the
evolutionary equation

∂2u(t, x)
∂t2

= ∆u(t, x) + f(t, x), t > 0, x ∈ Ω, (1.1)

in function spaces over Ω, where Ω ⊂ RN is an open set, one needs initial conditions,

u(0, x) = u0(x),
∂u(0, x)
∂t

= u1(x), x ∈ Ω;

and boundary conditions. Traditionally, Dirichlet and Neumann boundary condi-
tions are the most studied. The Robin type boundary conditions, ∇u ·ν+γu = g in
∂Ω (where ν denotes the outer unit normal vector at the boundary of the open set
Ω), have proven important due to the fact that they arise naturally in heat conduc-
tion problems as well as in physical Geodesy. Moreover, from the Robin boundary
conditions, one can recover the Dirichlet and Neumann boundary conditions (see
e.g. [6, 7]). For more details and applications we refer to [6, 7, 14, 25, 43, 48, 49]
and the references therein.
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For many concrete problems it has been observed that equations of fractional
order in time provide a more suitable framework for their study. Typical of this
are phenomena with memory effects, anomalous diffusion, problems in rheology,
material science and several other areas. We refer to the monographs [39, 44, 45]
and the papers [11, 12, 16, 21, 22, 23, 38, 41, 52] for more information.

We will investigate the linear inhomogeneous differential equation of fractional
order:

Dαt u(t) = Au(t) + f(t), t > 0, 1 < α ≤ 2, (1.2)
in which Dαt is the Caputo fractional derivative. Here X is a complex Banach
space and A is a closed linear operator in X. The use of the Caputo fractional
derivative has the advantage (over, say, the Riemann-Liouville fractional derivative)
that the initial conditions are formulated in terms of the values of the solution u
and its derivative at 0. These have physically significant interpretations in concrete
problems.

Our aim is to construct a basic theory for the solutions of this equation along
with applications to some partial differential equations modeling phenomena from
science and engineering. To study the existence, uniqueness and regularity of the
solutions of Problem (1.2), in general, one needs an operator family associated with
the problem [33, 34]. For example, the theory of cosine families has been developed
to deal with the case α = 2. In case A does not generate a cosine family (if α = 2),
the concept of exponentially bounded β-times integrated cosine families has been
used in the treatment of Problem (1.2). In [8], an operator family called Sα has
been introduced to deal with the fractional case, that is, 1 < α ≤ 2 and β = 0.
Unfortunately, this theory does not include the case of exponentially bounded β-
times integrated cosine families. Consequently, the results obtained in [8] cannot be
applied to deal with the following problem in Lp(Ω), p 6= 2, which is the fractional
version of (1.1):

Dαt u(t, x)−Au(t, x) = f(t, x), t > 0, x ∈ Ω, 1 < α ≤ 2,

∂u(t, z)
∂νA

+ γ(z)u(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = u0(x),
∂u(0, x)
∂t

= u1(x), x ∈ Ω.

(1.3)

Here, Ω ⊂ RN (N ≥ 2) is an open set with boundary ∂Ω, A is a uniformly elliptic
operator with bounded measurable coefficients formally given by

Au =
N∑
j=1

Dj

( N∑
i=1

ai,jDiu+ bju
)
−
( N∑
i=1

ciDiu+ du
)

(1.4)

and
∂u

∂νA
=

N∑
j=1

( N∑
i=1

aijDiu+ bju
)
· νj ,

where ν denotes the unit outer normal vector of Ω at ∂Ω and γ is a nonnegative
measurable function in L∞(∂Ω) or γ =∞.

In this paper, we introduce an appropriate operator family in a general Banach
space associated with Problem (1.2) that will cover all the above mentioned cases.
This family will be called an (α, 1)β-resolvent family (Sβα(t)) (see Definition 4.2 be-
low) where 1 < α ≤ 2 and β ≥ 0 is a real parameter associated with the operator A.
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The case β = 0 and α = 2 corresponds to the wave equation with A generating a
cosine family. The family S0

α (1 < α ≤ 2) corresponds to the family Sα introduced
in the reference [8] and mentioned above. The family Sβα, β > 0 and α = 2, cor-
responds to the theory of exponentially bounded β-times integrated cosine family.
We use this framework to treat the homogeneous (f = 0 in (1.2)) as well as the
inhomogeneous problems (under suitable conditions on the function f in (1.2)).
We shall in fact consider the case where the operator A is an Lp-realization of a
more general uniformly elliptic operator in divergence form (as the one in (1.4))
with various boundary conditions (Dirichlet, Neumann or Robin). We obtain a
representation of mild and classical solutions in terms of the operator family Sβα.
Our results apply to the situation where the closed linear operator A satisfies the
following condition: There exist ω ≥ 0 and γ ≥ −1 such that

‖(λ2 −A)−1‖ ≤M |λ|γ , Re(λ) > ω. (1.5)

In fact, several operators of interest such as the Laplace operator in Lp(RN ) for
N ≥ 2 and p 6= 2, which do not generate cosine families are generators of integrated
cosine families. See e.g. [3, Chapter 8] or [17, 24]. For the case of Lp(Ω), see
e.g. [30, 42]. We refer to the book of Brezis [9, Section 10.3 and p.346] for some
comments about the Lp-theory of the wave equation.

The paper is organized as follows. In Section 2, we present some preliminaries
on fractional derivatives, the Wright type functions and the Mittag-Leffler func-
tions. In Section 3 we use the Laplace transform to motivate the introduction of
the operator family which will be used in the sequel. Section 4 is devoted to the
definition and several properties of the resolvent family Sβα. In the short Section 5
we characterize the resolvent family Sβα through the regularized fractional Cauchy
problem. The homogeneous (fractional) abstract Cauchy problem is solved in Sec-
tion 6 . The conditions on the initial data that ensure solvability of the problem
agree with the classical cases α = 2. We take up the inhomogeneous (fractional)
abstract Cauchy problem in Section 7. We are able to deal satisfactorily with this
problem under natural conditions on the initial data and the inhomogeneity. The
results obtained in the case α = 2 corresponding to integrated cosine families seem
to be new. In fact, we are able to deal with the full range 1 < α ≤ 2. In the final
Section 8 we present various examples of problems that can be handled with the
results obtained.

2. Preliminaries

The algebra of bounded linear operators on a Banach space X will be denoted
by L(X), the resolvent set of a linear operator A by ρ(A). We denote by gα the
function gα(t) := tα−1

Γ(α) , t > 0, α > 0, where Γ is the usual gamma function. It will
be convenient to write g0 := δ0, the Dirac measure concentrated at 0. Note the
semigroup property:

gα+β = gα ∗ gβ , α, β ≥ 0.

The Riemann-Liouville fractional integral of order α > 0, of a locally integrable
function u : [0,∞)→ X is given by:

Iαt u(t) := (gα ∗ u)(t) :=
∫ t

0

gα(t− s)u(s)ds.
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The Caputo fractional derivative of order α > 0 of a function u is defined by

Dαt u(t) := Im−αt u(m)(t) =
∫ t

0

gm−α(t− s)u(m)(s)ds

where m := dαe is the smallest integer greatest than or equal to α, u(m) is the mth-
order distributional derivative of u(·), under appropriate assumptions. Then, when
α = n is a natural number, we get Dnt := dn

dtn . In relation to the Riemann-Liouville
fractional derivative of order α, namely Dα

t , we have:

Dαt f(t) = Dα
t

(
f(t)−

m−1∑
k=0

f (k)(0)gk+1(t)
)
, t > 0, (2.1)

where m := dαe has been defined above, and for a locally integrable function
u : [0,∞)→ X,

Dα
t u(t) :=

dm

dtm

∫ t

0

gm−α(t− s)u(s) ds, t > 0.

The Laplace transform of a locally integrable function f : [0,∞)→ X is defined
by

L(f)(λ) := f̂(λ) :=
∫ ∞

0

e−λtf(t)dt = lim
R→∞

∫ R

0

e−λtf(t) dt,

provided the integral converges for some λ ∈ C. If for example f is exponentially
bounded, that is, there exist M ≥ 0 and ω ≥ 0 such that ‖f(t)‖ ≤Meωt, t ≥ 0, then
the integral converges absolutely for Re(λ) > ω and defines an analytic function
there. The most general existence theorem for the Laplace transform in the vector-
valued setting is given by [3, Theorem 1.4.3].

Regarding the fractional derivative, we have for α > 0 and m := dαe, the
following important properties:

D̂αt f(λ) = λαf̂(λ)−
m−1∑
k=0

λα−k−1f (k)(0), (2.2)

D̂α
t f(λ) = λαf̂(λ)−

m−1∑
k=0

(gm−α ∗ f)(k)(0)λm−1−k.

The power function λα is uniquely defined as λα = |λ|αei arg(λ), with −π < arg(λ) <
π.

Next, we recall some useful properties of convolutions that will be frequently
used throughout the paper. For every f ∈ C([0,∞);X), k ∈ N, α ≥ 0 we have that
for every t ≥ 0,

dk

dtk
[(gk+α ∗ f)(t)] = (gα ∗ f)(t). (2.3)

Let f ∈ C([0,∞);X) ∩ C1([0,∞);X). Then for every α > 0 and t ≥ 0,

d

dt
[(gα ∗ f)(t)] = gα(t)f(0) + (gα ∗ f ′)(t). (2.4)
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Let k ∈ N. If u ∈ Ck−1([0,∞);X) and v ∈ Ck([0,∞);X), then for every t ≥ 0,

dk

dtk
[(u ∗ v)(t)] =

k−1∑
j=0

u(k−1−j)(t)v(j)(0) + (u ∗ v(k))(t)

=
k−1∑
j=0

dk−1

dtk−1

[
(gj ∗ u)(t)v(j)(0)

]
+ (u ∗ v(k))(t).

(2.5)

The Mittag-Leffler function (see e.g. [22, 23, 44, 46]) is defined as follows:

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
=

1
2πi

∫
Ha

eµ
µα−β

µα − z
dµ, α > 0, β ∈ C, z ∈ C, (2.6)

where Ha is a Hankel path, i.e. a contour which starts and ends at−∞ and encircles
the disc |µ| ≤ |z|1/α counterclockwise. The Laplace transform of the Mittag-Leffler
function is given by ([44]):∫ ∞

0

e−λttαk+β−1E
(k)
α,β(±ωtα)dt =

k!λα−β

(λα ∓ ω)k+1
, Re(λ) > |ω|1/α.

Using this formula, we obtain for 0 < α ≤ 2:

Dαt Eα,1(ztα) = zEα,1(ztα), t > 0, z ∈ C, (2.7)

that is, for every z ∈ C, the function u(t) := Eα,1(ztα) is a solution of the scalar
valued problem

Dαt u(t) = zu(t), t > 0, 1 < α ≤ 2.

In addition, one has the identity
d

dt
Eα,1(ztα) = ztα−1Eα,α(ztα).

To see this, it is sufficient to write

L
(
tα−1Eα,α(ztα)

)
(λ) =

1
λα − z

=
1
z

[
λ
λα−1

λα − z
− 1
]
,

and invert the Laplace transform. Letting v(t) := Eα,1(ztα)x, t > 0, x ∈ X, we
have that

v(t) = g1(t)x+ z(gα ∗ v)(t). (2.8)

By [44, Formula (1.135)] (or [8, Formula (2.9)]), if ω ≥ 0 is a real number, then
there exist some constants C1, C2 ≥ 0 such that

Eα,1(ωtα) ≤ C1e
tω1/α

and Eα,α(ωtα) ≤ C2e
tω1/α

, t ≥ 0, α ∈ (0, 2) (2.9)

and the estimates in (2.9) are sharp. Recall the definition of the Wright type
function [23, Formula (28)] (see also [44, 46, 50]):

Φα(z) :=
∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
=

1
2πi

∫
γ

µα−1eµ−zµ
α

dµ, 0 < α < 1, (2.10)

where γ is a contour which starts and ends at −∞ and encircles the origin once
counterclockwise. This has sometimes also been called the Mainardi function. By
[8, p.14] or [23], Φα(t) is a probability density function, that is,

Φα(t) ≥ 0, t > 0;
∫ ∞

0

Φα(t)dt = 1,
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and its Laplace transform is the Mittag-Leffler function in the whole complex plane.
We also have that Φα(0) = 1

Γ(1−α) . Concerning the Laplace transform of the Wright
type functions, the following identities hold:

e−λ
αs = L

(
α

s

tα+1
Φα(st−α)

)
(λ), 0 < α < 1, (2.11)

λα−1e−λ
αs = L

( 1
tα

Φα(st−α)
)

(λ), 0 < α < 1. (2.12)

See [23, Formulas (40) and (42)] and [8, Formula (3.10)]. We notice that the Laplace
transform formula (2.11) was formerly first given by Pollard and Mikusinski (see
[23] and references therein).

The following formula on the moments of the Wright function will be useful:∫ ∞
0

xpΦα(x)dx =
Γ(p+ 1)

Γ(αp+ 1)
, p+ 1 > 0, 0 < α < 1. (2.13)

The preceding formula (2.13) is derived from the representation (2.10) and can be
found in [23]. For more details on the Wright type functions, we refer to the papers
[8, 23, 38, 50] and the references therein. We note that the Wright functions have
been used by Bochner to construct fractional powers of semigroup generators (see
e.g. [51, Chapter IX]).

3. Motivation

In this section we discuss heuristically the solvability of the fractional order
Cauchy problem (1.2). We proceed through the use of the Laplace transform and
derive some representation formulas that will serve as motivation for the theoretical
framework of the subsequent sections.

Let 1 < α ≤ 2 and suppose u satisfies (1.2) and that there exist some constants
M,ω ≥ 0 such that ‖(g1∗u)(t)‖ ≤Meωt, t > 0. We rewrite the fractional differential
equation in integral form as:

u(t) = A(gα ∗ u)(t) + (gα ∗ f)(t) + u(0) + tu′(0), t > 0. (3.1)

Suppose also that (g1∗f)(t) is exponentially bounded. Taking the Laplace transform
in both sides of (3.1) and assuming that {λα : Re(λ) > ω} ⊂ ρ(A) we have

û(λ) = λα−1(λα −A)−1u(0) + λα−2(λα −A)−1u′(0) + (λα −A)−1f̂(λ), (3.2)

for Re(λ) > ω. Now we assume that A is the generator of an exponentially bounded
β-times integrated cosine family (Cβ(t)) on X for some β ≥ 0, and denote by
(Sβ(t)) the associated (β+ 1)-times integrated cosine family (or β-times integrated
sine family), namely, Sβ(t)x =

∫ t
0
Cβ(s)xds, t ≥ 0. Then by definition there exist

some constants ω,M ≥ 0 such that ‖Cβ(t)x‖ ≤ Meωt‖x‖, x ∈ X, t > 0, {λ2 ∈ C :
Re(λ) > ω} ⊂ ρ(A) and

λ(λ2 −A)−1x = λβ
∫ ∞

0

e−λtCβ(t)x dt = λβ+1

∫ ∞
0

e−λtSβ(t)xdt,
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for Re(λ) > ω, x ∈ X. Substituting the above expression into (3.2) we arrive at

û(λ) =λα−1λ
αβ
2 −

α
2

∫ ∞
0

e−λ
α
2 tCβ(t)u(0) dt

+ λα−2λ
αβ
2 −

α
2

∫ ∞
0

e−λ
α
2 tCβ(t)u′(0)dt+ λ

αβ
2 −

α
2

∫ ∞
0

e−λ
α
2 tCβ(t)f̂(λ)dt

=λ
α
2−1λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Cβ(t)u(0) dsdt

+ λ
α
2−2λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(ts−
α
2 )Cβ(t)u′(0) dsdt

+ λ
αβ
2 −

α
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(st−
α
2 )Cβ(t)dsf̂(λ)dt

=λ
α
2−1λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Cβ(t)u(0)dtds

+ λ
α
2−2λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(ts−
α
2 )Cβ(t)u′(0)dtds

+ λ
αβ
2 −

α
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(st−
α
2 )Cβ(t)f̂(λ)dtds,

(3.3)
where we have used the Laplace transform formula (2.11) and Fubini’s theorem.
Letting

Rβα(t)x :=
∫ ∞

0

αs

2t
α
2 +1

Φα
2

(ts−
α
2 )Cβ(s)xds, t > 0,

it follows from (3.3) that

û(λ) = λ
αβ
2

̂(g1−α2 ∗R
β
α)(λ)u(0) + λ

αβ
2

̂(g2−α2 ∗R
β
α)u′(0) + λ

αβ
2

̂(gα
2
∗Rβα ∗ f)(λ).

If we use instead the associated ”sine” function (Sβ(t)), we obtain the following
representation

û(λ) =λ
αβ
2 λα−1

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Sβ(t)u(0)dtds

+ λ
αβ
2 λα−2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Sβ(t)u′(0)dtds

+ λ
αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Sβ(t)f̂(λ) dt ds.

(3.4)

From this and using the uniqueness theorem for the Laplace transform, we have
the following:

(gα
2
∗Rβα)(t)x =

∫ ∞
0

αs

2t
α
2 +1

Φα
2

(st−
α
2 )Sβ(s)x ds, t > 0,

(g1−α2 ∗R
β
α)(t)x = Dα−1

t (gα
2
∗Rβα)(t)x, t > 0,

(g2−α2 ∗R
β
α)(t)x = (g2−α ∗ gα2 ∗R

β
α)(t)x, t > 0.

In the next section we will take inspiration from the above heuristics to define
and study the regularity properties of resolvent families associated with Problem
(1.2). We will also deal with the case when there is an underlying exponentially
bounded integrated cosine family.
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4. Resolvent families and their properties

The following two definitions are motivated by the discussion in Section 3.

Definition 4.1. Let A be a closed linear operator with domain D(A) defined on
a Banach space X and let 1 < α ≤ 2, β ≥ 0. We say that A is the generator of an
(α, α)β-resolvent family if there exists a strongly continuous function Pβα : [0,∞)→
L(X) such that ‖(g1 ∗ Pβα)(t)x‖ ≤ Meωt‖x||, x ∈ X, t ≥ 0, for some constants
M,ω ≥ 0, {λα : Re(λ) > ω} ⊂ ρ(A), and

(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtPβα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Pβα is called the (α, α)β-resolvent family generated by A.

Definition 4.2. Let A be a closed linear operator with domain D(A) defined on a
Banach space X and let 1 < α ≤ 2, β ≥ 0. We call A the generator of an (α, 1)β-
resolvent family if there exists a strongly continuous function Sβα : [0,∞) → L(X)
such that ‖(g1 ∗ Sβα)(t)x‖ ≤ Meωt‖x||, x ∈ X, t ≥ 0, for some M,ω ≥ 0, {λα :
Re(λ) > ω} ⊂ ρ(A), and

λα−1(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtSβα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Sβα is called the (α, 1)β-resolvent family generated by A.

We will say that Pβα (resp. Sβα) is exponentially bounded if there exist some con-
stants M,ω ≥ 0 such that ‖Pβα(t)‖ ≤ Meωt, ∀t ≥ 0, (resp. ‖Sβα(t)‖ ≤ Meωt, ∀t ≥
0).

It follows from the uniqueness theorem for the Laplace transform that an oper-
ator A can generate at most one (α, 1)β (resp. (α, α)β)-resolvent family for given
parameters 1 < α ≤ 2 and β ≥ 0.

We shall write (α, 1) and (α, α) for (α, 1)0 and (α, α)0 respectively. Before we give
some properties of the above resolvent families, we need the following preliminary
result.

Lemma 4.3. Let f : [0,∞) → X be such that there exist some constants M ≥ 0
and ω ≥ 0 such that ‖(g1 ∗ f)(t)‖ ≤Meωt, t > 0. Then for every α ≥ 1, there exist
some constants M1 ≥ 0 and ω1 ≥ 0 such that ‖(gα ∗ f)(t)‖ ≤M1e

ω1t, t > 0.

Proof. Assume that f satisfies the hypothesis of the lemma and let α ≥ 1. We just
have to consider the case α > 1. Then for every t ≥ 0,

‖(gα ∗ f)(t)‖ = ‖(gα−1 ∗ g1 ∗ f)(t)‖ ≤
∫ t

0

gα−1(s)Meω(t−s) ds

= Meωt
∫ t

0

sα−2

Γ(α− 1)
e−ωs ds

≤Meωt
tα−1

Γ(α)
≤M1e

ω1t,

for some constants M1, ω1 ≥ 0, and the proof is complete. �

Remark 4.4. Let A be a closed linear operator with domain D(A) defined on a
Banach space X and let 1 < α ≤ 2, β ≥ 0.
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(a) Using Lemma 4.3 (this is used to show the exponential boundedness) we have
the following result. If A generates an (α, 1)β-resolvent family Sβα, then it generates
an (α, α)β-resolvent family Pβα given by

Pβα(t)x = (gα−1 ∗ Sβα)(t)x, t ≥ 0, x ∈ X. (4.1)

(b) By the uniqueness theorem for the Laplace transform, a (2, 2)-resolvent fam-
ily corresponds to the concept of sine family, while a (2, 1)-resolvent family corre-
sponds to a cosine family. Furthermore, a (2, 1)β-resolvent family corresponds to
the concept of exponentially bounded β-times integrated cosine family. Likewise,
a (2, 2)β-resolvent family represents an exponentially bounded β-times integrated
sine family. We refer to the monographs [3, 20] and the corresponding references for
a study of the concepts of cosine and sine families and to [4] for an overview on the
theory of integrated cosine and sine families. A systematic study in the fractional
case is carried out in [8] for the case β = 0.

Some properties of (Pβα(t)) and (Sβα(t)) are included in the following lemmas.
Their proof uses techniques from the general theory of (a, k)-regularized resolvent
families [35] (see also [2, 8]). It will be of crucial use in the investigation of solutions
of fractional order Cauchy problems in Sections 5, 6 and 7. The proof of the anal-
ogous results in the case of cosine families may be found in [3]. The corresponding
result for the case 0 < α ≤ 1 is included in [8, 28] for β = 0 and in [29] for β ≥ 0.
For the sake of completeness we include the full proof.

Lemma 4.5. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 1 < α ≤ 2, β ≥ 0 and assume that A generates an (α, 1)β-
resolvent family Sβα. Then the following properties hold:

(a) Sβα(t)D(A) ⊂ D(A) and ASβα(t)x = Sβα(t)Ax for all x ∈ D(A), t ≥ 0.
(b) For all x ∈ D(A),

Sβα(t)x = gαβ
2 +1(t)x+

∫ t

0

gα(t− s)ASβα(s)xds, t ≥ 0.

(c) For all x ∈ X, (gα ∗ Sβα)(t)x ∈ D(A) and

Sβα(t)x = gαβ
2 +1(t)x+A

∫ t

0

gα(t− s)Sβα(s)xds, t ≥ 0.

(d) Sβα(0) = gαβ
2 +1(0). Thus, Sβα(0) = I if β = 0 and Sβα(0) = 0 if β > 0.

Proof. Let ω be as in Definition 4.2. Let λ, µ > ω and x ∈ D(A). Then x =
(I−µ−αA)−1y for some y ∈ X. Since (I−µ−αA)−1 and (I−λ−αA)−1 are bounded
and commute, and since the operator A is closed, we obtain from the definition of
Sβα that,

Ŝβα(λ)x =
∫ ∞

0

e−λtSβα(t)x dt

= Ŝβα(λ)(I − µ−αA)−1y

= λ−
αβ
2 λα−1λ−α(I − λ−αA)−1(I − µ−αA)−1y

= (I − µ−αA)−1λ−
αβ
2 λα−1λ−α(I − λ−αA)−1y

= (I − µ−αA)−1λ−
αβ
2 λα−1(λα −A)−1y
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= (I − µ−αA)−1Ŝβα(λ)y

=
∫ ∞

0

e−λt(I − µ−αA)−1Sβα(t)y dt.

By the uniqueness theorem for the Laplace transform and by continuity, we obtain

Sβα(t)x = (I − µ−αA)−1Sβα(t)y = (I − µ−αA)−1Sβα(t)(I − µ−αA)x, ∀t ≥ 0. (4.2)

It follows from (4.2) that Sβα(t)x ∈ D(A). Hence, Sβα(t)D(A) ⊂ D(A) for every
t ≥ 0. It follows also from (4.2) that ASβα(t)x = Sβα(t)Ax for all x ∈ D(A) and t ≥ 0
and we have shown the assertion (a).

Next, let x ∈ D(A). Using the convolution theorem, we get that∫ ∞
0

e−λtgαβ
2 +1(t)x dt = λ−

αβ
2 −1x = λ−

αβ
2 λα−1(λα −A)−1(I − λ−αA)x

= Ŝβα(λ)(I − λ−αA)x = Ŝβα(λ)x− λ−αŜβα(λ)Ax

=
∫ ∞

0

e−λt
[
Sβα(t)x−

∫ t

0

gα(t− s)Sβα(s)Axds
]
dt.

By the uniqueness theorem for the Laplace transform we obtain the assertion (b).
Next, let λ ∈ ρ(A) be fixed, x ∈ X and set y := (λ − A)−1x ∈ D(A). Let z :=

(gα ∗Sβα)(t)x, t ≥ 0. We have to show that z ∈ D(A) and Az = Sβα(t)x−gαβ
2 +1(t)x.

Using part (b) we obtain that

z =(λ−A)(gα ∗ Sβα)(t)y = λ(gα ∗ Sβα)(t)y −A(gα ∗ Sβα)(t)y

=λ(gα ∗ Sβα)(t)y − (Sβα(t)y − gαβ
2 +1(t)y) ∈ D(A).

Therefore,

Az =λA(gα ∗ Sβα)(t)y −ASβα(t)y + gαβ
2 +1(t)Ay

=λ(gα ∗ASβα)(t)y − Sβα(t)Ay + gαβ
2 +1(t)(λy − x)

=λ(gα ∗ASβα)(t)y − Sβα(t)(λy − x) + gαβ
2 +1(t)(λy − x)

=λ
[
(gα ∗ASβα)(t)y − Sβα(t)y + gαβ

2 +1(t)y
]

+ Sβα(t)x− gαβ
2 +1(t)x

=Sβα(t)x− gαβ
2 +1(t)x,

and we have shown part (c).
Finally, it follows from the strong continuity of Sβα(t) on [0,∞) and from the

assertion (c) that Sβα(0)x = gαβ
2 +1(0)x for every x ∈ X. This implies the properties

in part (d) and the proof is finished. �

The corresponding result for the family Pβα is given in the following lemma. Its
proof runs similar to the proof of Lemma 4.5 and we shall omit it.

Lemma 4.6. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 1 < α ≤ 2, β ≥ 0 and assume that A generates an (α, α)β-
resolvent family Pβα. Then the following properties hold.

(a) Pβα(t)D(A) ⊂ D(A) and APβα(t)x = Pβα(t)Ax for all x ∈ D(A), t ≥ 0.
(b) For all x ∈ D(A), Pβα(t)x = gα( β2 +1)(t)x+

∫ t
0
gα(t− s)APβα(s)xds, t ≥ 0.

(c) For all x ∈ X, (gα∗Pβα)(t)x ∈ D(A) and Pβα(t)x = gα( β2 +1)(t)x+A
∫ t

0
gα(t−

s)Pβα(s)xds, t ≥ 0.
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(d) Pα(0) = gα( β2 +1)(0) = 0.

Remark 4.7. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 1 < α ≤ 2 and β ≥ 0.

(i) If A generates an (α, 1)0 = (α, 1)-resolvent family Sα, then it follows from
Lemma 4.5 (c) that D(A) is necessarily dense in X.

(ii) We notice that if A generates an (α, 1)β-resolvent family Sβα and D(A) is
dense in X then this does not necessarily imply that β = 0. Some examples
will be given in Section 8.

(iii) The examples presented below in Corollary 4.15 show that in general (β >
0) the domain of A is not necessarily dense in X.

A family S(t) on X is called non-degenerate if whenever we have S(t)x = 0 for
all t ∈ [0, τ ] (for some fixed τ > 0), then it follows that x = 0. It follows from
Lemma 4.5 and Lemma 4.6 that the families Sβα and Pβα are non-degenerate. We
have the following description of the generator A of the resolvent family Sβα. We
refer to [3, Lemma 3.2.2] for related results in the case of integrated semigroups and
[3, Proposition 3.14.5] in the case of cosine families. The corresponding result for
the case 0 < α ≤ 1 and β ≥ 0 is contained in [29, Proposition 6.8] which was proved
by using the Laplace transform. Here, we provide an alternative proof which does
not use the Laplace transform.

Proposition 4.8. Let A be a closed linear operator on a Banach space X with
domain D(A). Let 1 < α ≤ 2, β ≥ 0 and assume that A generates an (α, 1)β-
resolvent family Sβα. Then

A = {(x, y) ∈ X ×X, Sβα(t)x = gαβ
2 +1(t)x+ (gα ∗ Sβα)(t)y, ∀t > 0}. (4.3)

Proof. First we notice that since the (α, 1)β- resolvent family Sβα is non-degenerate,
the right hand side of (4.3) defines a single-valued operator. Next, let x, y ∈ X.
We have to show that x ∈ D(A) and Ax = y if and only if

Sβα(t)x = gαβ
2 +1(t)x+ (gα ∗ Sβα)(t)y, ∀t > 0. (4.4)

Indeed, let x ∈ D(A) and assume that Ax = y. Since A generates an (α, 1)β-
resolvent family Sβα and Ax = y, then (4.4) follows from Lemma 4.5. Conversely,
let x, y ∈ X and assume that (4.4) holds. Let λ ∈ ρ(A). It follows from (4.4) and
Lemma 4.5 that for all t ∈ [0, τ ],

(λ−A)−1(gα ∗ Sβα)(t)y = (λ−A)−1A(gα ∗ Sβα)(t)x

= −(gα ∗ Sβα)(t)x+ λ(λ−A)−1(gα ∗ Sβα)(t)x.

This implies

(gα ∗ Sβα)(t)
[
(λ−A)−1y + x− λ(λ−A)−1x

]
= 0.

Since Sβα is non-degenerate, we have that (λ − A)−1y + x − λ(λ − A)−1x = 0 and
this implies that x ∈ D(A) and Ax = y. The proof is finished. �

Lemma 4.9. Let A be a closed linear operator on a Banach space X and let
1 < α ≤ 2, β ≥ 0. Assume that A generates an (α, 1)β-resolvent family Sβα. Then
for every x ∈ D(A) the mapping t 7→ Sβα(t)x is differentiable on (0,∞) and

(Sβα)′(t)x = gαβ
2

(t)x+ Pβα(t)Ax, t > 0. (4.5)
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Proof. Let x ∈ D(A). Then it is clear that the right-hand side of (4.5) belongs to
C((0,∞),L(X)). Taking the Laplace transform and using the fact that Sβα(0) = 0,
we get that for Re(λ) > ω (where ω is the real number from the definition of Sβα
and Pβα),

(̂Sβα)′(λ)x = λŜβα(λ)x = λλ−
αβ
2 λα−1(λα −A)−1x = λ−

αβ
2 λα(λα −A)−1x.

On the other hand, for Re(λ) > ω,

ĝαβ
2

(λ)x+ P̂βα(λ)Ax = λ−
αβ
2 x+ λ−

αβ
2 (λα −A)−1Ax

= λ−
αβ
2 x− λ−

αβ
2 (λα −A)−1(λα −A− λα)x

= λ−
αβ
2 x− λ−

αβ
2 x+ λ−

αβ
2 λα(λα −A)−1x

= λ−
αβ
2 λα(λα −A)−1x.

By the uniqueness theorem for the Laplace transform and continuity of the right-
hand side of (4.5), we conclude that the identity (4.5) holds. �

Next, we give the principle of extrapolation of the families Sβα and Pβα in terms
of the parameter β.

Proposition 4.10. Let A be a closed linear operator on a Banach space X and let
1 < α ≤ 2, β ≥ 0. Then the following assertions hold.

(a) If A generates an (α, α)β-resolvent family Pβα, then it generates an (α, α)β
′
-

resolvent family Pβ′α for every β′ ≥ β and for every x ∈ X,

Pβ
′

α (t)x = (g
α β
′−β
2
∗ Pβα)(t)x, ∀t ≥ 0. (4.6)

(b) If A generates an (α, 1)β-resolvent family Sβα, then it generates an (α, 1)β
′
-

resolvent family Sβ′α for every β′ ≥ β and for every x ∈ X,

Sβ
′

α (t)x = (g
α β
′−β
2
∗ Sβα)(t)x, ∀t ≥ 0. (4.7)

Proof. Let A be a closed linear operator on a Banach space X and let 1 < α ≤
2, β ≥ 0.

(a) Assume that A generates an (α, α)β-resolvent family Pβα. Then, by definition,
there exists ω ≥ 0 such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtPβα(t)xdt, Re(λ) > ω, x ∈ X. (4.8)

Let β′ ≥ β and let Pβ′α be given in (4.6). Using Lemma 4.6 we have that for every
x ∈ X and t ≥ 0,

Pβ
′

α (t)x =(g
α β
′−β
2
∗ Pβα)(t)x = (g

α β
′−β
2
∗ gα( β2 +1))(t)x+A

(
g
α β
′−β
2
∗ gα ∗ Pβα

)
(t)x

=g
α( β

′
2 +1)

(t)x+A
(
g
α( β

′−β
2 +1)

∗ Pβα
)

(t)x.

Hence, Pβ′α is strongly continuous from [0,∞) into L(X). By (4.6), we have that
for every x ∈ X and t ≥ 0,

(g1 ∗ Pβ
′

α )(t)x = (g
α β
′−β
2 +1

∗ Pβα)(t)x,

and since by hypothesis ‖(g1 ∗ Pβα)(t)x‖ ≤ Meωt‖x‖, x ∈ X, t ≥ 0, for some
constants M,ω ≥ 0, it follows from Lemma 4.3 that there exist some constants
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M ′, ω′ ≥ 0 such that ‖(g1 ∗ P β
′

α )(t)x‖ ≤ M ′eω
′t‖x‖, x ∈ X, t ≥ 0. Next, using

(4.8), we have that for Re(λ) > ω, x ∈ X and β′ ≥ β,

(λα −A)−1x =λ
αβ
2

∫ ∞
0

e−λtPβα(t)xdt = λ
αβ′
2 λα

β−β′
2

∫ ∞
0

e−λtPβα(t)xdt

=λ
αβ′
2

∫ ∞
0

e−λsg
α β−β

′
2

(s) ds
∫ ∞

0

e−λtPβα(t)xdt

=λ
αβ′
2

∫ ∞
0

e−λt(g
α β−β

′
2
∗ Pβα)(t)xdt = λ

αβ′
2

∫ ∞
0

e−λtPβ
′

α (t)xdt.

Hence, A generates an (α, α)β
′
-resolvent family Pβ′α given by (4.6) and we have

shown the assertion (a).
(b) The proof of this part follows the lines of the proof of part (a) where now we

use Lemma 4.5. �

The following example shows that a generation of an (α, 1)β or (α, α)β-resolvent
family does not imply a generation of an (α′, 1)β or (α′, α′)β-resolvent family for
α′ > α > 1. That is, an extrapolation property in terms of the parameter α does
not always hold.

Example 4.11. Let 1 ≤ p < ∞ and let ∆p be the realization of the Laplacian
in Lp(RN ). It is well-known that ∆p generates an analytic C0-semigroup of con-
tractions of angle π/2. Hence, for every ε > 0, there exists a constant C > 0 such
that

‖(λ−∆p)−1‖ ≤ C

|λ|
, λ ∈ Σπ−ε. (4.9)

where for 0 < γ < π, Σγ := {z ∈ C : 0 < |arg(z)| < γ}. Let θ ∈ [0, π) and let the
operator Ap on Lp(RN ) be given by Ap := eiθ∆p. It follows from (4.9) that

‖(λ−Ap)−1‖ = ‖(λ− eiθ∆p)−1‖ = ‖(λe−iθ −∆p)−1‖

≤ C

|λ|
, λe−iθ ∈ Σπ−ε.

(4.10)

Now, let 1 < α < 2. It follows from (4.10) that, if π
2 < θ <

(
1− α

4

)
π, then

ρ(Ap) ⊃ Σαπ
2

and

‖(λ−Ap)−1‖ ≤ C

|λ|
, λ ∈ Σαπ

2
. (4.11)

By [8, Proposition 3.8], the estimate (4.11) implies that Ap generates an (α, 1) =
(α, 1)0-resolvent family on Lp(RN ). Hence, by Proposition 4.10 (c), Ap generates an
(α, 1)β-resolvent family on Lp(RN ) for any β ≥ 0. But one can verify by inspection
of the resolvent set of Ap that it does not generate an (2, 1)β-resolvent family, that
is a β-times integrated cosine family on Lp(RN ) for any β ≥ 0. However, Ap does
generates a bounded analytic semigroup.

Remark 4.12. In view of the asymptotic expansion of the Wright function (see e.g.
[23, 50]), for a locally integrable function f : [0,∞) → X which is exponentially
bounded at infinity, and for any 0 < σ < 1, the integral

∫∞
0

Φσ(τ)f(τ) dτ converges.
This property will be frequently used in the remainder of the article without any
mention.
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Concerning subordination of resolvent families we have the following preliminary
result.

Lemma 4.13. Let A be a closed linear operator on a Banach space X. Let 1 <
α ≤ 2, β ≥ 0. Then the following assertions hold.

(a) Assume that A generates an (α, α)β-resolvent family Pβα. Let 1 < α′ < α,
σ := α′

α and set

P (t)x := σtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)xds, t > 0, x ∈ X. (4.12)

Then (g1 ∗ P )(t)x is exponentially bounded. Moreover, (g1 ∗ P )(t)x = P(t)x where

P(t)x :=
∫ ∞

0

σs

tσ+1
Φσ(st−σ)(g 1

σ
∗ Pβα)(s)xds, t > 0, x ∈ X. (4.13)

(b) Assume that A generates an (α, 1)β-resolvent family Sβα. Let 1 < α′ < α,
σ := α′

α and set

S(t)x :=
∫ ∞

0

1
tσ

Φα(st−σ)(g 1
σ
∗ Sβα)(s)xds, t > 0, x ∈ X. (4.14)

Then S is exponentially bounded. Moreover, S(t)x = (g1 ∗ S)(t)x where

S(t)x =
∫ ∞

0

Φσ(s)Sβα(stσ)x ds, ∀t ≥ 0, x ∈ X. (4.15)

Proof. Let A, α and β be as in the statement of the lemma.
(a) Assume that A generates an (α, α)β-resolvent famlily Pβα and let 1 < α′ < α,

σ := α′

α and x ∈ X. Let P (t) be given by (4.12). By hypothesis, there exist
M,ω ≥ 0 such that ‖(g1 ∗ Pβα)(t)x‖ ≤ Meωt‖x‖ for every x ∈ X, t ≥ 0. We
show that there exist some constants M1, ω1 ≥ 0 such that for every x ∈ X,
‖(g1 ∗ P )(t)x‖ ≤ M1e

ω1t‖x‖, t ≥ 0. Using (4.12), Fubini’s theorem, (2.13), (2.6)
and (2.9), we get that for every t ≥ 0 and x ∈ X,

‖
∫ t

0

P (τ)x dτ‖ ≤
∫ ∞

0

sΦσ(s)‖
∫ t

0

στσ−1Pβα(sτσ)x dτ‖ ds

=
∫ ∞

0

Φσ(s)‖
∫ stσ

0

Pβα(τ)x dτ‖ ds

≤M‖x‖
∫ ∞

0

Φσ(s)eωst
σ

ds

=M‖x‖
∞∑
n=0

(ωtσ)n

n!

∫ ∞
0

Φσ(s)sn ds

≤M‖x‖
∞∑
n=0

(ωtσ)n

n!
Γ(n+ 1)

Γ(σn+ 1)

=M‖x‖
∞∑
n=0

(ωtσ)n

Γ(σn+ 1)
= M‖x‖Eσ,1(ωtσ)

≤M1e
tω

1
σ ‖x‖,
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for some constant M1 ≥ 0. Taking the Laplace transform of (4.13) by using (2.11)
and Fubini’s theorem, we have that for Re > ω and x ∈ X,∫ ∞

0

e−λtP(t)x dt =
∫ ∞

0

e−λt
∫ ∞

0

σs

tσ+1
Φσ(st−σ)(g 1

σ
∗ Pβα)(s)xds dt

=
∫ ∞

0

e−λ
σs(g 1

σ
∗ Pβα)(s)xds = λ−1λ−

α′β
2 (λα

′
−A)−1x.

Similarly, we have that for Re > ω and x ∈ X,∫ ∞
0

e−λt(g1 ∗ P )(t)x dt =λ−1

∫ ∞
0

e−λtP (t)x dt

=λ−1

∫ ∞
0

e−λtσtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)x ds dt

=λ−1

∫ ∞
0

Pβα(τ)x
∫ ∞

0

e−λt
στ

tσ+1
Φσ(τt−σ) dt dτ

=λ−1

∫ ∞
0

e−τλ
σ

Pβα(τ)x dτ

=λ−1λ−
α′β
2 (λα

′
−A)−1x.

By the uniqueness theorem for the Laplace transform and by continuity, we have
that (g1 ∗ P )(t)x = P(t)x for all t ≥ 0 and x ∈ X and this completes the proof of
part (a).

(b) Assume that A generates an (α, 1)β-resolvent family Sβα and let 1 < α′ <

α, σ := α′

α and x ∈ X. Then there exist some constants M,ω ≥ 0 such that
‖(g1 ∗ Sβα)(t)x‖ ≤ Meωt‖x‖, t ≥ 0. Since 1

σ > 1, it follows from Lemma 4.3 that
there exist some constants M1, ω1 ≥ 0 such that for every t ≥ 0 and x ∈ X,

‖(g 1
σ
∗ Sβα)(t)x‖ ≤M1e

ω1t‖x‖. (4.16)

Using (4.14), (2.13), (4.16), (2.6) and (2.9), we have that for every x ∈ X, t > 0,

‖S(t)x‖ ≤M1‖x‖
∫ ∞

0

1
tσ

Φσ(st−σ)eω1s ds = M1‖x‖
∫ ∞

0

Φσ(τ)eω1τt
σ

dτ

≤M1‖x‖
∞∑
n=0

(ω1t
σ)n

n!

∫ ∞
0

Φσ(τ)τn dτ

=M1‖x‖
∞∑
n=0

(ω1t
σ)n

n!
Γ(n+ 1)

Γ(σn+ 1)

≤M1‖x‖
∞∑
n=0

(ω1t
σ)n

Γ(σn+ 1)
= M1Eσ,1(ω1t

σ)‖x‖

≤Metω
1
σ
1 ‖x‖,

for some constant M ≥ 0. This completes the proof. �

Next, we present the principle of subordination of the families Sβα and Pβα in
terms of the parameter α.

Theorem 4.14. Let A be a closed linear operator on a Banach space X and let
1 < α ≤ 2, β ≥ 0. Then the following assertions hold.
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(a) If A generates an (α, α)β-resolvent family Pβα, then it generates an (α′, α′)β-
resolvent family Pβα′ for every 1 < α′ < α and

Pβα′(t)x = σtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)x ds, ∀t > 0, x ∈ X, (4.17)

where σ := α′

α .
(b) If A generates an (α, 1)β-resolvent family Sβα, then it generates an (α′, 1)β-

resolvent family Sβα′ for every 1 < α′ < α and

Sβα′(t)x =
∫ ∞

0

Φσ(s)Sβα(stσ)x ds, ∀t ≥ 0, x ∈ X, where σ :=
α′

α
. (4.18)

Proof. Let A be a closed linear operator on a Banach space X and let 1 < α ≤
2, β ≥ 0.

(a) Assume that A generates an (α, α)β-resolvent family Pβα. Let 1 < α′ < α

and let Pβα′ be given by (4.17). Then it is clear that Pβα′ is strongly continuous
from (0,∞) into L(X). We show that Pβα′(t) is strongly continuous at 0. Since

Pβα(t) ' gα( β2 +1)(t) = tα( β2 +1)−1

Γ(α( β2 )+1
as t→ 0, we get from (4.17) that

Pβα′(t) ' t
α′
α −1t

α′
α α( β2 +1)−α′α = tα

′( β2 +1)−1 as t→ 0.

We have shown that Pβα′(t) is strongly continuous at 0. By Lemma 4.13(a), there
exist some constants M1, ω1 ≥ 0 such that ‖(g1 ∗Pβα′)(t)x‖ ≤M1e

ω1t, x ∈ X, t ≥ 0.
Now, it follows from (4.8) and (2.11) that {λα′ : Re(λ) > ω} ⊂ ρ(A) and for
Re(λ) > ω, x ∈ X,

(λα
′
−A)−1x =λ

α′β
2

∫ ∞
0

e−λ
σtPβα(t)xdt

=λ
α′β
2

∫ ∞
0

e−λt
∫ ∞

0

σ
s

tσ+1
Φσ(st−σ)Pβα(s)xds dt

=λ
α′β
2

∫ ∞
0

e−λtσtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)xds dt

=λ
α′β
2

∫ ∞
0

e−λtPβα′(t)x dt.

Hence, A generates an (α′, α′)β-resolvent family Pβ
′

α′ given by (4.17) and we have
shown part (a).

(b) Now assume that A generates an (α, 1)β-resolvent family Sβα. Then by defi-
nition, there exists ω ≥ 0 such that {λα : Re(λ) > ω} ⊂ ρ(A) and

λα−1(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtSβα(t)x dt, Re(λ) > ω, ∀x ∈ X. (4.19)

Let 1 < α′ < α and let Sβα′ be given by (4.18). Then it is clear that Sβα′ is strongly
continuous from [0,∞) into L(X). By Lemma 4.13(b), there exist some constants
M1, ω1 ≥ 0 such that for every x ∈ X, ‖(g1 ∗ Sβα′)(t)x‖ ≤ M1e

ω1t‖x‖, t ≥ 0. It
follows from (4.19) and (2.12) that {λα′ : Re(λ) > ω} ⊂ ρ(A) and for Re(λ) > ω,
x ∈ X,

λα
′−1(λα

′
−A)−1x =λ

α′β
2 λσ−1

∫ ∞
0

e−λ
σtSβα(t)xdt
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=λ
α′β
2

∫ ∞
0

e−λt
∫ ∞

0

1
tσ

Φσ(st−σ)Sβα(s)xds dt

=λ
α′β
2

∫ ∞
0

e−λt
∫ ∞

0

Φσ(s)Sβα(stσ)x ds dt

=λ
α′β
2

∫ ∞
0

e−λtSβα′(t)x dt.

Hence, A generates an (α′, 1)β-resolvent family Sβ
′

α′ given by (4.18). The proof of
the theorem is finished. �

We have the following result as a corollary of the preceding theorem.

Corollary 4.15. Let 1 < α ≤ 2, β ≥ 0 and let A be a closed linear operator on
a Banach space X. If A generates an exponentially bounded β−times integrated
cosine family (Cβ(t)), then A generates an exponentially bounded (α, 1)β-resolvent
family (Sβα(t)) given by

Sβα(t)x =
∫ ∞

0

t−
α
2 Φα

2
(st−

α
2 )Cβ(s)xds =

∫ ∞
0

Φα
2

(τ)Cβ(τt
α
2 )xdτ, (4.20)

for t > 0, x ∈ X. In particular, it follows from the first representation formula in
(4.20) that (Sβα(t)) is analytic for t > 0, and, from the second one, that Sβα(0) =
Cβ(0).

Let (Pβα(t)) be the associated (α, α)β-resolvent family generated by A which exists
by Remark 4.4 (b). Then for every x ∈ X,

Pβα(t)x =
α

2

∫ ∞
0

s

t
α
2 +1

Φα
2

(st−
α
2 )Cβ(s)xds

=
α

2

∫ ∞
0

τ

t1−
α
2

Φα
2

(τ)Cβ(τt
α
2 )xdτ,

(4.21)

for t > 0.

Proof. Let α, β and A be as in the statement of the theorem. The fact that A
generates an (α, 1)β-resolvent family Sβα and an (α, α)β-resolvent family Pβα is a
direct consequence of Theorem 4.14 since by hypothesis A generates a β-times
integrated cosine family, that is a (2, 1)β-resolvent family, and a β-times integrated
sine family, that is a (2, 2)β-resolvent family. The formulas (4.20) and (4.21) are
the corresponding formulas (4.18) and (4.17), respectively, in Theorem 4.14. It
remains to show that Sβα and Pβα are exponentially bounded. By hypothesis, (Cβ(t))
is exponentially bounded, that is, there exist some constants M,ω ≥ 0 such that
‖Cβ(t)x‖ ≤Meωt‖x|| for all t ≥ 0, x ∈ X. Using (4.20), (2.13), (2.6) and (2.9), we
have that for every x ∈ X, t ≥ 0,

‖Sβα(t)x‖ ≤
∫ ∞

0

Φα
2

(τ)‖Cβ(τt
α
2 )x‖dτ ≤M‖x‖

∫ ∞
0

Φα
2

(τ)eωτt
α
2 dτ

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!

∫ ∞
0

Φα
2

(τ)τn dτ = M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!
Γ(n+ 1)

Γ(α2 n+ 1)

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

Γ(α2 n+ 1)
= M‖x‖Eα

2 ,1
(ωt

α
2 ) ≤M1e

tω
2
α ‖x‖,

for some constant M1 ≥ 0 and we have shown that Sβα is exponentially bounded.
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We note that Pβα is bounded in a neighborhood of t = 0+ by strong continuity
on [0,∞). We show that Pβα is exponentially bounded away from 0. Indeed, using
(4.21), (2.13), (2.6) and (2.9), for a fixed ε > 0, we have that for every t ≥ ε and
x ∈ X,

‖Pβα(t)x‖ ≤M
∫ ∞

0

τ

t1−
α
2

Φα
2

(τ)eωτt
α
2 ‖x‖dτ ≤M‖x‖

∫ ∞
0

τΦα
2

(τ)eωτt
α
2 dτ

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!

∫ ∞
0

Φα
2

(τ)τn+1dτ

=M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!
Γ(n+ 2)

Γ(α2 (n+ 1) + 1)

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

Γ(α2 (n+ 1))
= M‖x‖Eα

2 ,
α
2

(ωt
α
2 ) ≤M1e

tω
2
α ‖x‖,

for some constant M1 ≥ 0, and this completes the proof. �

We notice that alternatively, one can also show that Pβα is exponentially bounded
on [0,∞) by using the fact that Sβα is exponentially bounded and that Pβα(t)x =
(gα−1 ∗ Sβα)(t)x, x ∈ X, t ≥ 0 (by Remark 4.4(a)).

If B generates an exponentially bounded β-times integrated group (Uβ(t)), then
A = B2 generates an exponentially bounded β-times integrated cosine family
(Cβ(t)) given by Cβ(t) = Uβ(t)+Uβ(−t)

2 . Moreover, operators that satisfy the es-
timate (1.5) are generators of exponentially bounded integrated cosine families (see
[32, Theorem 2.2.4] or [40]). The corresponding situation for integrated semigroups
is treated in [3, Theorem 3.2.8].

Next, we show that we have a double subordination principle for the families Sβα
and Pβα in terms of the parameters α and β.

Corollary 4.16. Let A be a closed linear operator on a Banach space X and let
1 < α ≤ 2, β ≥ 0. Then the following assertions hold.

(a) If A generates an (α, α)β-resolvent family Pβα, then it generates a β
2 -times

integrated semigroup (T β
2
(t)) such that (g1 ∗T β

2
)(t) is exponentially bounded

and for every x ∈ X, and t > 0,

T β
2
(t)x = σtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)x ds, where σ :=
1
α
.

(b) If A generates an (α, 1)β-resolvent family Sβα, then it generates a β
2 -times

integrated semigroup (T β
2
(t)) such that (g1 ∗T β

2
)(t) is exponentially bounded

and for every x ∈ X, and t ≥ 0,

T β
2
(t)x =

∫ ∞
0

Φσ(s)Sβα(stσ)x ds, ∀t ≥ 0, where σ :=
1
α
.

The proof of Corollary 4.16 is a simple combination of the proofs of Proposition
4.10, Theorem 4.14 and Corollary 4.15.

Remark 4.17. (i) It follows from Theorem 4.14 and Corollary 4.16 that we have the
following more general situation. Let 1 < α ≤ 2 and β ≥ 0 be given. If A generates
an (α, 1)β-resolvent family Sβα, then A also generates the (α′, 1)

β
2 -resolvent family

S
β
2
α′ introduced in [8, 28, 29] for any 0 < α′ ≤ 1. More precisely, in [29, Definition
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4.2], for 0 < α′ ≤ 1 and β ≥ 0, an (α′, 1)β-resolvent family associated to a closed
linear operator A defined on a Banach space X, has been defined to be a strongly
continuous function Sβα′ : [0,∞) → L(X) such that, ‖(g1 ∗ Sβα′)(t)x‖ ≤ Meωt‖x||,
x ∈ X, t ≥ 0, for some constants M,ω ≥ 0, {λα′ : Re(λ) > ω} ⊂ ρ(A), and

λα
′−1(λα

′
−A)−1x = λα

′β

∫ ∞
0

e−λtSβα′(t)xdt, Re(λ) > ω, x ∈ X.

In the same direction, we observe that a generator of an (α, 1)-resolvent family for
1 < α ≤ 2 is already the generator of an analytic strongly continuous semigroup.

(ii) We mention the following remarkable result obtained in [8, Section 3]. Let A
be a closed linear operator on a Banach space X. If A generates a bounded analytic
strongly continuous semigroup (T (t)) of angle π/2, then A generates an (α, 1)0 =
(α, 1)-resolvent family Sα on X for every 1 < α < 2, and hence, generates an (α, 1)β-
resolvent family Sβα on X for every 1 < α < 2 and β ≥ 0. But unfortunately, there
is no explicit representation of Sβα(t) in terms of T (t).

(iii) In general, generators of resolvent families even in the case β = 0 are not
stable under bounded perturbations. In the case β = 0, an example in [8, Example
2.24] shows that they need not be stable by perturbations by multiple of the identity
operator. Therefore the resolvent families obtained through Corollary 4.15 are
of special interest since they are stable under perturbations by multiple of the
identities. Other admissible perturbations have been studied, see e.g. [3, 32] and
the references therein.

From Lemma 4.13, Theorem 4.14 and Corollary 4.16 we derive the following
result.

Lemma 4.18. Let A be a closed linear operator on a Banach space X. Let 1 <
α ≤ 2, β ≥ 0 and µ > 0. Then the following assertions hold.

(a) Assume that A generates an (α, α)β-resolvent family Pβα. Let 1 ≤ α′ < α and
let Pβα′ be the (α′, α′)β-resolvent family generated by A, or the β

2 -times integrated
semigroup (T β

2
(t)) generated by A. Then for every x ∈ X and t > 0,∫ ∞

0

σs

tσ+1
Φσ(st−σ)(gµ ∗ Pβα)(s)xds = (gµσ ∗ Pβα′)(t)x, σ =

α′

α
, (4.22)∫ ∞

0

σs

tσ+1
Φσ(st−σ)(gµ ∗ Pβα)(s)xds = (gµσ ∗ T β

2
(t)x, σ =

1
α
. (4.23)

(b) Assume that A generates an (α, 1)β-resolvent family Sβα. Let 1 ≤ α′ < α,
and let Sβα′ be the (α′, 1)β-resolvent family generated by A, or the β

2 -times integrated
semigroup (T β

2
(t)) generated by A. Then for every x ∈ X and t > 0,∫ ∞

0

1
tσ

Φα(st−σ)(gµ ∗ Sβα)(s)xds = (gµσ ∗ Sβα′)(t)x, σ :=
α′

α
, (4.24)∫ ∞

0

1
tσ

Φα(st−σ)(gµ ∗ Sβα)(s)xds = (gµσ ∗ T β
2
(t)x, σ :=

1
α
. (4.25)

Proof. Let A, α, β be as in the statement of the lemma and let x ∈ X and µ > 0.
(a) Assume that A generates an (α, α)β-resolvent family Pβα. Let ω be the real

number from the definition of Pβα. Let 1 ≤ α′ < α. Using the Laplace transform,
we have that for Re(λ) > ω,

̂(gµσ ∗ Pβα′)(λ)x = λ−µσλ−
α′β
2 (λα

′
−A)−1x = λ−µσ−

α′β
2 (λα

′
−A)−1x. (4.26)
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On the other hand, using (2.11) and Fubini’s theorem, we obtain that for Re(λ) > ω,∫ ∞
0

e−λt
∫ ∞

0

σs

tσ+1
Φσ(st−σ)(gµ ∗ Pβα)(s)xds dt

=
∫ ∞

0

e−λ
σs(gµ ∗ Pβα)(s)xds

= λ−σ(µ+αβ
2 )(λασ −A)−1x

= λ−σµ−
α′β
2 (λα

′
−A)−1x.

(4.27)

In view of (4.26) and (4.27), the equality (4.22) follows from the uniqueness theorem
for the Laplace transform and by continuity. The proof of (4.23) follows the lines
of the proof of (4.22).

(b) Similarly, for Re(λ) > ω (here ω be the real number from the definition of
Sβα),

̂(gσµ ∗ Sβα′)(λ)x = λ−σµλ−
α′β
2 λα

′−1(λα
′
−A)−1x

= λ−σµ−
α′β
2 λα

′−1(λα
′
−A)−1x.

(4.28)

Using (2.12) and Fubini’s theorem, we obtain for Re(λ) > ω,∫ ∞
0

e−λt
∫ ∞

0

1
tσ

Φα(st−σ)(gµ ∗ Sβα)(s)xds dt

= λσ−1

∫ ∞
0

e−λ
σt(gαµ ∗ Sβα)(s)xds

= λσ−1λ−µσ−σ
αβ
2 )λσ(α−1)(λσα −A)−1x

= λσ−1λ−µσ−
α′β
2 )λα

′−σ(λα
′
−A)−1x

= λ−σµ−
α′β
2 λα

′−1(λα
′
−A)−1x.

(4.29)

Using (4.28) and (4.29), the equality (4.24) also follows from the uniqueness theorem
for the Laplace transform and by continuity. The proof of (4.25) also follows the
lines of the proof of (4.24). �

The following result on the regularity properties of the family Sβα is crucial and
will be used several times in the subsequent sections to obtain our main results.

Lemma 4.19. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 1 < α ≤ 2, β ≥ 0, k := dαβ2 e, n := dβe and assume that A
generates an (α, 1)β-resolvent family Sβα. Then the following properties hold.

(a) Let m ∈ N ∪ {0}. Then for every x ∈ D(Am+1) and t ≥ 0,

Sβα(t)x =
m∑
j=0

gα( β2 +j)+1(t)Ajx+
∫ t

0

gα(m+1)(t− s)Sβα(s)Am+1x ds. (4.30)

(b) For every x ∈ D(An+1), the map t 7→ (gk−αβ2 ∗ Sβα)(t)x belongs to the space
Ck([0,∞);D(A)) ∩ Ck+1([0,∞);X) and for every t ≥ 0,

dk

dtk

[
(gk−αβ2 ∗ Sβα)(t)x

]
=
n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx, (4.31)
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dk+1

dtk+1

[
(gk−αβ2 ∗ Sβα)(t)x

]
=

n∑
j=1

gαj(t)Ajx+ (gα(n− β2 )+α−1 ∗ Sβα)(t)An+1x. (4.32)

In particular,

dj

dtj

[
gk−αβ2

∗ Sβα
]

(0)x = 0, j = 0, 1, . . . , k − 1,
dk

dtk

[
gk−αβ2

∗ Sβα
]

(0)x = x,

(4.33)

dk+1

dtk+1

[
gk−αβ2

∗ Sβα
]

(0)x = 0,
dk+1

dtk+1

[
g1 ∗ gk−αβ2 ∗ Sβα

]
(0)x = x. (4.34)

(c) In general, for every x ∈ D(An+1−i), i = 0, 1, . . . , n, the mapping t 7→
(gk−αβ2 ∗ gαi ∗ Sβα)(t)x belongs to Ck([0,∞);D(A)) and for every t ≥ 0,

dk

dtk

[
(gk−αβ2 ∗ gαi ∗ Sβα)(t)x

]
=

n−i∑
j=0

gαj+1+αi(t)Ajx+ (gα(n− β2 ) ∗ gα ∗ Sβα)(t)An+1−ix.

(4.35)

(d) For every x ∈ D(An), the mapping t 7→ (gk−αβ2 ∗ Sβα)(t)x belongs to the class
Ck([0,∞);X) and the equalities (4.31) and (4.33) hold.

(e) In general, for every x ∈ D(An−i), i = 0, 1, . . . , n, the mapping t 7→ (gk−αβ2 ∗
gαi ∗ Sβα)(t)x belongs to Ck([0,∞);X) and for every t ≥ 0,

dk

dtk

[
(gk−αβ2 ∗ gαi ∗ Sβα)(t)x

]
=

n−i∑
j=0

gαj+1+αi(t)Ajx+A(gα(n− β2 ) ∗ gα ∗ Sβα)(t)An−ix.
(4.36)

Proof. Let A be a closed linear operator with domain D(A) defined on a Banach
space X. Let 1 < α ≤ 2, β ≥ 0 and set k := dαβ2 e, n := dβe. Note that k ≤ n.
Assume that A generates an (α, 1)β-resolvent family Sβα.

(a) We prove (4.30) by induction. If m = 0, then for every x ∈ D(A), the
equality (4.30) reads

Sβα(t)x = gαβ
2 +1(t)x+

∫ t

0

gα(t− s)Sβα(s)Axds, ∀t ≥ 0

which is given by Lemma 4.5(b). Assume that (4.30) holds for m − 1 for some
m ∈ N. Now, let x ∈ D(Am+1) ⊂ D(Am). Then using Lemma 4.5(b), we have that
for every t ≥ 0,

Sβα(t)x =
m−1∑
j=0

gα( β2 +j)+1(t)Ajx+ (gαm ∗ Sβα)(t)Amx

=
m−1∑
j=0

gα( β2 +j)+1(t)Ajx+Am(gαm ∗ Sβα)(t)x

=
m−1∑
j=0

gα( β2 +j)+1(t)Ajx+Amgαm ∗
(
gαβ

2 +1x+ gα ∗ SβαAx
)

(t)
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=
m−1∑
j=0

gα( β2 +j)+1(t)Ajx+ gα( β2 +m)+1(t)Amx+ (gα(m+1) ∗ Sαβ)(t)Am+1x

=
m∑
j=0

gα( β2 +j)+1(t)Ajx+ (gα(m+1) ∗ Sβα)(t)Am+1x.

We conclude that the equality (4.30) holds and this completes the proof of part (a).
(b) Let x ∈ D(An+1). Then using (4.30) with m = n we get that for every t ≥ 0,

(gk−αβ2 ∗ Sβα)(t)x =
n∑
j=0

gk+αj+1(t)Ajx+ (gα(n+1)+k−αβ2
∗ Sβα)(t)An+1x.

Therefore, using Lemma 4.5(b), we have that for all t ≥ 0,

dk

dtk
[
(gk−αβ2 ∗ Sβα)(t)x

]
=

n∑
j=0

gαj+1(t)Ajx+ (gα(n+1)−αβ2
∗ Sβα)(t)An+1x

=
n∑
j=0

gαj+1(t)Ajx+
(
gα(n− β2 ) ∗ gα ∗ Sβα

)
(t)An+1x

=
n∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ (Sβα − gαβ
2 +1))(t)Anx

=
n∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx− gαn+1(t)Anx

=
n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx,

and we have shown (4.31). Since Anx ∈ D(A), it follows from (4.31) and Lemma
4.5 that dk

dtk
[(gk−αβ2 ∗ Sβα)(t)x] ∈ C([0,∞);D(A)). Hence, (gk−αβ2 ∗ Sβα)(t)x ∈

Ck([0,∞);D(A)). Since g1(0+) = 1 and gαj+1(0+) = 0 for every j = 1, 2, . . . , n−1,
the equalities in (4.33) follow from (4.31).

By Remark 4.4 and Lemma 4.9, A generates an (α, α)β-resolvent family Pβα
and for every x ∈ D(A), Sβα(t)x ∈ C([0,∞);D(A)) ∩ C1((0,∞);X). Now, let
x ∈ D(An+1). We have to show that (gk−αβ2 ∗S

β
α)(t)x ∈ Ck+1([0,∞);X) and (4.34)

holds. It follows from (4.31), (4.5) and the fact that Sβα(t)Anx ∈ C([0,∞);D(A))∩
C1((0,∞);X), that for every t ≥ 0,

dk+1

dtk+1
(gk−αβ2 ∗ Sβα)(t)x

=
n−1∑
j=1

gαj(t)Ajx+
[
(gα(n− β2 ) ∗ (Sβα)′)(t)Anx

]
=
n−1∑
j=1

gαj(t)Ajx+
[
gα(n− β2 ) ∗

(
gαβ

2
Anx+ PβαAn+1x

)
(t)
]

=
n∑
j=1

gαj(t)Ajx+ (gα(n− β2 ) ∗ Pβα)(t)An+1x
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=
n∑
j=1

gαj(t)Ajx+ (gα(n− β2 )+α−1 ∗ Sβα)(t)An+1x ∈ C([0,∞);X),

and we have shown (4.32). Therefore, (gk−αβ2 ∗ Sβα)(t)x ∈ Ck+1([0,∞);X). It also
follows from (4.32) that

dk+1

dtk+1

[
gk−αβ2

∗ Sβα
]

(0)x = 0.

Now, using (4.33) we get that

dk+1

dtk+1

[
g1 ∗ gk−αβ2 ∗ Sβα

]
(0)x =

dk

dtk

[
gk−αβ2

∗ Sβα
]

(0)x = x .

This completes the proof of part (b).
(c) Let x ∈ D(An+1−i), i = 0, 1, . . . , n. Proceeding as in the proof of part (b)

we get that for every t ≥ 0,

(gαi ∗ gk−αβ2 ∗ Sβα)(t)x =
n−i∑
j=0

gk+αj+αi+1(t)Ajx+ (gk+α(n− β2 ) ∗ gα ∗ Sβα)(t)An+1−ix.

This implies that for every t ≥ 0,

dk

dtk

[
(gαi ∗ gk−αβ2 ∗ Sβα)(t)x

]
=

n−i∑
j=0

gαj+αi+1(t)Ajx+ (gα(n− β2 ) ∗ gα ∗ Sβα)(t)An+1−ix.

Using Lemma 4.5, the preceding equality shows that (gαi ∗ gk−αβ2 ∗ Sβα)(t)x ∈
Ck([0,∞);D(A)) and one has the equality (4.35).

(d) Let x ∈ D(An). Proceeding as in part (b), we also get the equality (4.31)
and this implies that (gk−αβ2 ∗ Sβα)(t)x ∈ Ck([0,∞);X) and (4.33) holds.

(e) Let x ∈ D(An−i), i = 0, 1, . . . , n. Proceeding as in part (c), we get that
(gk−αβ2 ∗ gαi ∗ Sβα)(t)x ∈ Ck([0,∞);X) and the equality (4.35) holds. The proof of
the lemma is complete. �

5. Resolvent families and the regularized abstract Cauchy problem

In this section we show that the above defined resolvent family Sβα is necessary
and sufficient to solve the regularized abstract Cauchy problem

Dαt v(t) = Av(t) + gαβ
2 +1(t)x, t > 0, 1 < α ≤ 2, β ≥ 0,

v(0) = v′(0) = 0,
(5.1)

where A is a closed linear operator with domain D(A) defined on a Banach space
X. By a classical solution of (5.1) we mean a function v ∈ C([0,∞);D(A)) ∩
C1([0,∞);X) such that (g2−α ∗ v) ∈ C2([0,∞);X) and (5.1) is satisfied.

The following is the main result of this section.

Theorem 5.1. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 1 < α ≤ 2 and β ≥ 0. Then the following assertions are
equivalent.

(i) The operator A generates an (α, 1)β-resolvent family Sβα on X.
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(ii) For all x ∈ X, there exists a unique classical solution v of Problem (5.1)
such that (g2−α ∗ v′)(t) is exponentially bounded.

Proof. Let A, α and β be as the statement of the theorem.
(i) ⇒ (ii): Assume that A generates an (α, 1)β-resolvent family Sβα on X and let

x ∈ X. Define

v(t) := (gα ∗ Sβα)(t)x =
∫ t

0

gα(t− s)Sβα(s)x ds, t ≥ 0.

Then v(0) = 0 and by Lemma 4.5 we have that v ∈ C([0,∞);D(A)). Since v′(t) =
(gα−1 ∗ Sβα)(t)x, we have that v ∈ C1([0,∞);X) and v′(0) = 0. Since for every
t ≥ 0,

(g2−α ∗ v)(t) = (g2−α ∗ gα ∗ Sβα)(t)x = (g2 ∗ Sβα)(t)x,

it follows that (g2−α ∗ v) ∈ C2([0,∞);X). Since v(0) = v′(0) = 0, it follows from
(2.1) and (2.3) that for every t ≥ 0,

Dαt v(t) =(g2−α ∗ v′′)(t) =
d2

dt2
[(g2−α ∗ v)(t)]

=
d2

dt2
[
(g2 ∗ Sβα)(t)x

]
= Sβα(t)x

=A(gα ∗ Sβα)(t)x+ gαβ
2 +1(t)x = Av(t) + gαβ

2 +1(t)x.

Hence, v is a classical solution of (5.1). Since (g1 ∗ Sβα)(t) is exponentially bounded
and for every x ∈ X, t ≥ 0,

(g2−α ∗ v′)(t) = (g2−α ∗ gα−1 ∗ Sβα)(t)x = (g1 ∗ Sβα)(t)x,

it follows that (g2−α ∗ v′)(t) is exponentially bounded. Assume that (5.1) has two
classical solutions v1 and v2 and set V := v1 − v2. Then V ∈ C([0,∞);D(A)) ∩
C1([0,∞);X), V (0) = V ′(0) = 0, (g2−α ∗ V ) ∈ C2([0,∞);X), (g2−α ∗ V )(t) is
exponentially bounded and Dαt V (t) = AV (t) for every t > 0. Taking the Laplace
transform, we get that for Re(λ) > ω (where ω is the real number from the above
mentioned exponential boundedness), (λα −A)V̂ (λ) = 0. Since (λα −A) is invert-
ible, we have that V̂ (λ) = 0. By the uniqueness theorem for the Laplace transform
and by continuity, we get that V (t) = 0 for every t ≥ 0. We have shown uniqueness
of solutions and this completes the proof of part (ii).

(ii) ⇒ (i): For x ∈ X, we let Sα,β(t)x := Dαt v(t, x) where v(t, x) is the unique
classical solution of (5.1). Using (2.1) and the fact that v(0) = 0 = v′(0) we get
that for every t ≥ 0,

(gα ∗ Sα,β)(t)x = (gα ∗ Dαt v)(t) = v(t, x)− v(0, x)− v′(0, x)t = v(t, x).

Hence, (gα ∗ Sα,β)(t)x ∈ D(A) for every x ∈ X, t ≥ 0, and one has the equality

A(gα ∗ Sα,β)(t)x+ gαβ
2 +1(t)x = Av(t, x) + gαβ

2 +1(t)x = Sα,β(t)x. (5.2)

By the closed graph theorem we also have that Sα,β(t) ∈ L(X) for t ≥ 0 and we
note that Sα,β(t) is strongly continuous on [0,∞). Since by hypothesis (g2−α∗v′)(t)
is exponentially bounded and given that for every x ∈ X, t ≥ 0,

(g1 ∗ Sα,β)(t)x = (g1 ∗ g2−α ∗ v′′)(t) = (g2−α ∗ v′)(t),
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we have that (g1 ∗Sα,β)(t)x is exponentially bounded. By the uniform exponential
boundedness principle [3, Lemma 3.2.14], we have that there exist some constants
M,ω ≥ 0 such that

‖(g2−α ∗ v′)(t)‖ = ‖(g1 ∗ Sα,β)(t)x‖ ≤Meωt, t ≥ 0, x ∈ X. (5.3)

Taking the Laplace transform on both sides of the equality (5.2) we get that for
Re(λ) > ω (where ω is the real number from the above mentioned exponential
boundedness),

Aλ−αŜα,β(λ)x− Ŝα,β(λ)x = −λ−
αβ
2 −1x.

Multiplying the preceding equality by λα we get that

(λα −A)Ŝα,β(λ)x = λ−
αβ
2 λα−1x.

The above equality shows that (λα−A) is surjective. To prove injectivity, suppose
that (λα − A)x = 0 for some x ∈ D(A) and Re(λ) > ω, that is, Ax = λαx for
Re(λ) > ω. It is enough to consider that Ax = λαx for λ real and λ > ω. Then
setting v(t) = (gαβ

2 +α ∗ Ẽ)(t)x where Ẽ(t)x = Eα,1(λαtα)x, we prove that v is
a solution of Equation (5.1). Obviously v ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) and
(g2−α ∗ v) ∈ C2([0,∞);X). Using (2.8), we have that for every t > 0,

Dαt v(t) =g2−α ∗
d2

dt2

[
(gαβ

2 +α ∗ Ẽ)(t)x
]

=(gαβ
2
∗ Ẽ)(t)x = gαβ

2
∗ (g1 + λαgα ∗ Ẽ))(t)x

=gαβ
2 +1(t)x+ (gαβ

2 +α ∗ Ẽ)(t)λαx = gαβ
2 +1(t)x+ (gαβ

2 +α ∗ Ẽ)(t)Ax

=gαβ
2 +1(t)x+A(gαβ

2 +α ∗ Ẽ)(t)x = gαβ
2 +1(t)x+Av(t).

We have shown that v is a solution of Equation (5.1). Since all the solutions v
of Equation (5.1) satisfy the estimate (5.3), we must have this estimate for the
solution v(t) = (gαβ

2 +α ∗ Ẽ)(t)x just found. But using (2.6) we have that

Ẽ(t) =
∞∑
n=0

λαntαn

Γ(αn+ 1)

which gives

(g2−α ∗ v′)(t) = (gαβ
2 +1 ∗ Ẽ)(t)x = t

αβ
2 +1

∞∑
n=0

λαntαn

Γ(αn+ αβ
2 + 2)

= t
αβ
2 +1Eα,αβ2 +2(λαtα)x,

and hence by (2.9), ‖(g2−α∗v′)(t)‖ ≤Meλt‖x‖ and this estimate is sharp. Therefore
we can only have the estimate (5.3) if x = 0. We have shown that (λα − A) is
injective, hence is invertible and

Ŝα,β(λ)x = λ−
αβ
2 λα−1(λα −A)−1x,

that is, for Re(λ) > ω, and x ∈ X,

λα−1(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtSα,β(t)x dt.
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Hence, A generates an (α, 1)β-resolvent family Sβα and by the uniqueness theorem
for the Laplace transform and by continuity we have that Sβα(t)x = Sα,β(t)x for
every x ∈ X, t ≥ 0. We have shown the assertion (i) and the proof is finished. �

Remark 5.2. (a) We note that in Theorem 5.1, the assertion that (g2−α ∗ v′)(t) is
exponentially bounded agrees with the limiting cases α = 1 in which the conclusion
reads (g1∗v′)(t) = v(t) is exponentially bounded (see e.g. [3, Theorem 3.2.13]), and
α = 2, in which we have that v′(t) is exponentially bounded. An example showing
that the exponential boundedness assumption cannot be omitted is included in [3,
Remark 3.2.15(b)] for the limiting case α = 1.

(b) We mention that if the family Sβα is exponentially bounded, then the solution
v in Theorem 5.1 is exponentially bounded as well.

6. Resolvent families and the homogeneous abstract Cauchy problem

In this section we use the above defined resolvent families to investigate the ex-
istence, regularity and the representation of solutions of the homogeneous abstract
Cauchy problem

Dαt u(t) = Au(t), t > 0, 1 < α ≤ 2,

u(0) = x, u′(0) = y,
(6.1)

where A is a closed linear operator with domain D(A) defined on a Banach space
X and x, y are given vectors in X.

Definition 6.1. A function u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) is said to be a
classical solution of Problem (6.1) if g2−α ∗ (u− u(0)− u′(0)g2) ∈ C2([0,∞);X)
and (6.1) is satisfied.

We adopt the following definition of mild solutions.

Definition 6.2. A function u ∈ C([0,∞);X) is said to be a mild solution of (6.1)
if Iαt u(t) := (gα ∗ u)(t) ∈ D(A) for every t ≥ 0, and

u(t) = x+ ty +A

∫ t

0

gα(t− s)u(s) ds, ∀t ≥ 0.

We have the following uniqueness result.

Proposition 6.3. Let A be a closed and linear operator with domain D(A) defined
on a Banach space X and let 1 < α ≤ 2. Then the following assertions hold.

(a) If u is a classical solution of (6.1), then it is a mild solution of (6.1).
(b) If (λα − A) is invertible for Re(λ) large enough, and if a mild solution u

exists and (g1 ∗ u)(t) is exponentially bounded, then it is unique.

Proof. Let 1 < α ≤ 2 and let A be a closed linear operator with domain D(A)
defined on a Banach space X.

(a) Let u be a classical solution of (6.1). Since u ∈ C([0,∞);D(A)), we have that
(gα∗u)(t) ∈ C([0,∞);D(A)). Since Dαt u(t) = Au(t), that is, (g2−α∗u′′)(t) = Au(t),
we have that (gα ∗ g2−α ∗ u′′)(t) = A(gα ∗ u)(t), i.e., (g2 ∗ u′′)(t) = A(gα ∗ u)(t).
Hence, u(t)− u(0)− tu′(0) = A(gα ∗ u)(t) for every t ≥ 0 and we have shown that
u is a mild solution of (6.1).

(b) Assume that (6.1) has two mild solutions u and v and set U := u− v. Then
U ∈ C([0,∞);X), (gα ∗ U)(t) ∈ D(A) for every t ≥ 0 and U(t) = A(gα ∗ U)(t).
Taking the Laplace transform, we get that (I − λ−αA)Û(λ) = 0 for Re(λ) > ω
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(where ω ≥ 0 is the real number from the exponential boundedness of (g1 ∗ u)(t)).
Since (I − λ−αA) is invertible, we have that Û(λ) = 0. By the uniqueness theorem
for the Laplace transform and by continuity, we get that U(t) = 0 for every t ≥ 0.
Hence, u(t) = v(t) for every t ≥ 0. The proof is finished. �

Remark 6.4. We mention that to prove the existence of solutions of Problem (6.1),
we proceed by direct construction and make minimal use of the Laplace transform.

The following result is the main result of this section.

Theorem 6.5. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 1 < α ≤ 2, β ≥ 0 and set n := dβe, k := dαβ2 e. Assume that
A generates an (α, 1)β-resolvent family Sβα. Then the following assertions hold.

(a) For every x, y ∈ D(An+1), the function u(t) := D
αβ
2
t Sβα(t)x + D

αβ
2
t (g1 ∗

Sβα)(t)y is the unique classical solution of (6.1).

(b) For every x, y ∈ D(An), the function u(t) := D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1∗Sβα)(t)y

is the unique mild solution of (6.1).

Proof. Let A, α, β, n := dβe and k := dαβ2 e be as in the statement of the theorem.
First we prove existence of classical and mild solutions.

(a) Let x, y ∈ D(An+1) and set u(t) := D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗Sβα)(t)y. It follows

from Lemma 4.19 that u ∈ C([0,∞);D(A))∩C1([0,∞);X), u(0) = x and u′(0) = y.
Since u(0) = x, u′(0) = y, using Lemma 4.19 and Lemma 4.5, we have that for
every t ≥ 0,

g2−α ∗ (u− u(0)− u′(0)g2)(t)

= g2−α ∗
[ n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx− x
]

+ g2−α ∗
[ n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 )+1 ∗ Sβα)(t)Any − ty
]

=
n−1∑
j=1

gαj+3−α(t)Ajx+ (gα(n− β2 )+2−α ∗ Sβα)(t)Anx

+
n−1∑
j=1

gαj+4−α(t)Ajy + (gα(n− β2 )+3−α ∗ Sβα)(t)Any

=
n∑
j=1

gαj+3−α(t)Ajx+ (gα(n− β2 )+2 ∗ Sβα)(t)An+1x

+
n∑
j=1

gαj+4−α(t)Ajy + (gα(n− β2 )+3 ∗ Sβα)(t)An+1y.

(6.2)

Using (6.2) and Lemma 4.19 we get that for every t ≥ 0,

d2

dt2

[
g2−α ∗ (u− u(0)− u′(0)g2)

]
(t)

=
n∑
j=1

gαj+1−α(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)An+1x



28 V. KEYANTUO, C. LIZAMA, M. WARMA EJDE-2017/222

+
n∑
j=1

gαj+2−α(t)Ajy + (gα(n− β2 ) ∗ Sβα)(t)An+1y ∈ C([0,∞);X).

Hence, g2−α ∗(u−u(0)−u′(0)g2) ∈ C2([0,∞);X). We have to show that u satisfies
(6.1). Using (4.32) in Lemma 4.19, we get that for every t ≥ 0,

Dαt u(t) =Dαt D
αβ
2
t Sβα(t)x+ Dαt D

αβ
2
t (g1 ∗ Sβα)(t)y

=g2−α ∗
[ dk+2

dtk+2

(
gk−αβ2

∗ Sβα
)

(t)x+
dk+2

dtk+2

(
gk−αβ2

∗ g1 ∗ Sβα
)

(t)y
]

=g2−α ∗
d

dt

[ n∑
j=1

gαj(t)Ajx+ (gα(n− β2 )+α−1 ∗ Sβα)(t)An+1x
]

+ g2−α ∗
[ n∑
j=1

gαj(t)Ajy + (gα(n− β2 )+α−1 ∗ Sβα)(t)An+1y
]

=
n∑
j=1

gαj+1−α(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)An+1x

+
n−1∑
j=0

gαj+1(t)Aj+1y + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)An+1y

=
n∑
j=0

gαj+1(t)Aj+1x+ (gα(n− β2 ) ∗ Sβα)(t)An+1x

+
n−1∑
j=0

gαj+1(t)Aj+1y + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)An+1y

=A
[ n∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx
]

+A
[ n−1∑
j=0

gαj+1(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any
]

=A
[
D

αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

]
= Au(t)

and this completes the proof of the existence part in the assertion (a).

(b) Let x, y ∈ D(An) and set u(t) := D
αβ
2
t Sβα(t)x+D

αβ
2
t g1 ∗ Sβα(t)y. Using (4.31)

in the proof of Lemma 4.19 we get that for every t ≥ 0,

u(t) =
dk

dtk

[
(gk−αβ2 ∗ Sβα)(t)x

]
+
dk

dtk

[
(gk−αβ2 ∗ g1 ∗ Sβα)(t)y

]
=
n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx

+
n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any.

(6.3)
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It follows from (6.3) and Lemma 4.19 that u ∈ C([0,∞);X). Using (6.3) we get
that for every t ≥ 0,

Iαt u(t) :=(gα ∗ u)(t)

=
n−1∑
j=0

gαj+1+α(t)Ajx+ (gα(n− β2 ) ∗ gα ∗ Sβα)(t)Anx

+
n−1∑
j=0

gαj+2+α(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ gα ∗ Sβα)(t)Any.

(6.4)

It follows from (6.4) and Lemma 4.5 that Iαt u(t) ∈ D(A) for every t ≥ 0. Using
Lemma 4.19, Lemma 4.5 and (4.35), we have that for every t ≥ 0,

u(t) =
n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx

+
n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any

=x+ ty +
n−1∑
j=1

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx

+
n−1∑
j=1

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any

=x+ ty +A
[ n−1∑
j=1

gαj+1(t)Aj−1x+ (gα(n− β2 ) ∗ Sβα)(t)An−1x
]

+A
[ n−1∑
j=1

gαj+2(t)Aj−1y + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)An−1y
]

=x+ ty +A
[ n∑
j=1

gαj+1(t)Aj−1x+ (gα(n− β2 ) ∗ gα ∗ Sβα)(t)Anx
]

+A
[ n∑
j=1

gαj+2(t)Aj−1y + (gα(n− β2 ) ∗ g1 ∗ gα ∗ Sβα)(t)Any
]

=x+ ty +A
[ n−1∑
j=0

gαj+1+α(t)Ajx+ (gα(n− β2 ) ∗ gα ∗ Sβα)(t)Anx
]

+A
[ n−1∑
j=0

gαj+2+α(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ gα ∗ Sβα)(t)Any
]

=x+ ty +Agα ∗
[ n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ Sβα)(t)Anx
]

+Agα ∗
[ n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any
]
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=x+ ty +A(gα ∗ u)(t). (6.5)

Hence, u is a mild solution of (6.1) and this completes the proof of the existence
part in the assertion (b).

It remains to show the uniqueness of solutions. Let x, y ∈ D(An) and let u be
a mild solution. We just have to show that (g1 ∗ u)(t) is exponentially bounded.
Using the first equality in (6.5), we have that for every t ≥ 0,

(g1 ∗ u)(t) =
n−1∑
j=0

gαj+2(t)Ajx+ (gα(n− β2 )+1 ∗ Sβα)(t)Anx

+
n−1∑
j=0

gαj+3(t)Ajy + (gα(n− β2 ) ∗ g2 ∗ Sβα)(t)Any.

Using Lemma 4.3 we get from the preceding equality that there exist some constants
M,ω ≥ 0 such that for every t ≥ 0,

‖(g1 ∗ u)(t)‖ ≤Meωt
n∑
j=0

(‖Ajx‖+ ‖Ajy‖).

We have shown that (g1 ∗ u)(t) is exponentially bounded. Now, Proposition 6.3
implies the uniqueness of mild and classical solutions. The proof of the theorem is
finished. �

Remark 6.6. We observe that although in (6.1) we have the Caputo fractional de-

rivative Dαt , the solution is given by the Riemann-Liouville derivative D
αβ
2
t Sβα(t)x+

D
αβ
2
t (g1 ∗ Sβα)(t)y. If αβ

2 is not an integer, then the function D
αβ
2
t Sβα(t)x+ D

αβ
2
t (g1 ∗

Sβα)(t)y is not a solution of (6.1), unless x = y = 0.

7. Resolvent families and the inhomogeneous Cauchy problem

In this section we study the solvability and the representation of solutions of the
inhomogeneous fractional order abstract Cauchy problem

Dαt u(t) = Au(t) + f(t), t > 0, 1 < α ≤ 2,

u(0) = x, u′(0) = y,
(7.1)

where A is a closed linear operator with domain D(A) defined in a Banach space,
f : [0,∞)→ X is a given function and x, y are given vectors in X.

Definition 7.1. A function u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) is said to be a
classical solution of Problem (7.1) if g2−α ∗ (u− u(0)− u′(0)t) ∈ C2([0,∞);X) and
(7.1) is satisfied.

We adopt the following definition of mild solutions.

Definition 7.2. A function u ∈ C([0,∞);X) is said to be a mild solution of
Problem (7.1) if Iαt u(t) := (gα ∗ u)(t) ∈ D(A) for every t ≥ 0, and

u(t) = x+ ty +A

∫ t

0

gα(t− s)u(s) ds+
∫ t

0

gα(t− s)f(s) ds, ∀t ≥ 0.

We have the following uniqueness result.

Proposition 7.3. Let A be a closed linear operator with domain D(A) defined on
a Banach space X and let 1 < α ≤ 2. Then the following assertions hold.
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(a) If u is a classical solution of (7.1), then it is a mild solution of (7.1).
(b) If (λα − A) is invertible for Re(λ) large enough, and if a mild solution u

exists and (g1 ∗ u)(t) is exponentially bounded, then it is unique.

Proof. Let 1 < α ≤ 2 and let A be a closed linear operator with domain D(A)
defined on a Banach space X.

(a) Let u be a classical solution of (7.1). Since u ∈ C([0,∞);D(A)), we have that
(gα ∗u)(t) ∈ C([0,∞);D(A)). Since Dαt u(t) = Au(t)+f(t), that is, (g2−α ∗u′′)(t) =
Au(t) + f(t), we have that (gα ∗ g2−α ∗ u′′)(t) = A(gα ∗ u)(t) + (gα ∗ f)(t), i.e.,
(g2 ∗u′′)(t) = A(gα ∗u)(t) + (gα ∗f)(t). Hence, u(t)−u(0)− tu′(0) = A(gα ∗u)(t) +
(gα ∗ f)(t) for every t ≥ 0 and we have shown that u is a mild solution of (7.1).

(b) Assume that (7.1) has two mild solutions u and v and set U := u− v. Then
U ∈ C([0,∞);X), (gα ∗ U)(t) ∈ D(A) for every t ≥ 0 and U(t) = A(gα ∗ U)(t).
Taking the Laplace transform, we get that (I − λ−αA)Û(λ) = 0 for Re(λ) > ω
(where ω ≥ 0 is the real number from the exponential boundedness of (g1 ∗ u)(t)).
Since (I − λ−αA) is invertible, we have that Û(λ) = 0. By the uniqueness theorem
for the Laplace transform and by continuity, we get that U(t) = 0 for every t ≥ 0.
Hence, u(t) = v(t) for every t ≥ 0. The proof is finished. �

Remark 7.4. As for the homogeneous equation in Section 6, to prove the existence
of mild and classical solutions of Problem (7.1), we proceed by a direct method with
minimal use of the Laplace transform.

We have the following result of existence and representation of classical and mild
solutions which is the main result of this section.

Theorem 7.5. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 1 < α ≤ 2, β > 0 and set n := dβe, k := dαβ2 e. Assume that
A generates an (α, 1)β-resolvent family Sβα. Let Pβα be the (α, α)β-resolvent family
generated by A. Then the following assertions hold.

(a) For every f ∈ Ck([0,∞);D(A)) ∩ Ck+1([0,∞);X), f (2i)(0), f (2i+1)(0) ∈
D(An+1−i), i = 0, 1, . . . , k−1

2 , if k is odd, f (2i)(0) ∈ D(An+1−i), i = 0, 1, . . . , k2 ,

f (2i+1)(0) ∈ D(An+1−i), i = 0, . . . , k2 −1, if k is even, D
αβ
2
t f(t) := (gk−αβ2 ∗f

(k))(t)
is exponentially bounded, and for every x, y ∈ D(An+1), Problem (7.1) has a unique
classical solution u given by

u(t) = D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y +D

αβ
2
t (Pβα ∗ f)(t), t ≥ 0. (7.2)

(b) For every f ∈ Ck([0,∞);X), f (2i)(0), i = 0, 1, . . . , k−1
2 , f (2i+1)(0) ∈ D(An−i),

i = 0, 1, . . . , k−1
2 − 1, if k is odd, f (2i)(0), f (2i+1)(0) ∈ D(An−i), i = 0, 1, . . . , k2 − 1,

if k is even, D
αβ
2
t f(t) := (gk−αβ2 ∗ f

(k))(t) is exponentially bounded, and for every
x, y ∈ D(An), Problem (7.1) has a unique mild solution u given by (7.2).

Proof. Let A, α, β, n and k be as in the statement of the theorem. First we prove
existence of classical and mild solutions.

(a) Let x, y ∈ D(An+1). It follows from the proof of Theorem 6.5(a) that

D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y ∈ C([0,∞);D(A)) ∩ C1([0,∞);X). Moreover,

D
αβ
2
t Sβα(0)x+D

αβ
2
t (g1 ∗ Sβα)(0)y = x,

d

dt

[
D

αβ
2
t Sβα

]
(0)x+

d

dt

[
D

αβ
2
t (g1 ∗ Sβα)

]
(0)y = y.
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Now, assume that f satisfies the assumptions in the statement of part (a) of the
theorem. Using Remark 4.4 and (2.5), we get that for every t ≥ 0,

D
αβ
2
t (Pβα ∗ f)(t)

= D
αβ
2
t (gα−1 ∗ Sβα ∗ f)(t) =

dk

dtk

[
(gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f)(t)

]
=

dk−1

dtk−1

[
(gk−αβ2 ∗ gα−1 ∗ Sβα)(t)f(0)

]
+ (gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f ′)(t)

=
k−1∑
i=0

dk−1−i

dtk−1−i

[
(gk−αβ2 ∗ gα−1 ∗ Sβα)(t)f (i)(0)

]
+ (gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f (k))(t)

=
k−1∑
i=0

dk

dtk

[
(gk−αβ2 ∗ gα−1 ∗ gi+1 ∗ Sβα)(t)f (i)(0)

]
+ (gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f (k))(t)

=
k−1∑
i=0

gα ∗
dk

dtk

[
(gk−αβ2 ∗ gi ∗ Sβα)(t)f (i)(0)

]
+ (gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f (k))(t).

(7.3)
If k is odd, then using (7.3) we have that for every t ≥ 0,

D
αβ
2
t (Pβα ∗ f)(t) =

k−1
2∑
i=0

gα ∗
dk

dtk

[
(gk−αβ2 ∗ g2i ∗ Sβα)(t)f (2i)(0)

]

+

k−1
2 −1∑
i=0

gα ∗
dk

dtk

[
(gk−αβ2 ∗ g2i+1 ∗ Sβα)(t)f (2i+1)(0)

]
+ (gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f (k))(t)

=

k−1
2∑
i=0

gα+i(2−α) ∗
dk

dtk

[
(gk−αβ2 ∗ gαi ∗ Sβα)(t)f (2i)(0)

]

+

k−1
2 −1∑
i=0

gα+(2−α)i+1 ∗
dk

dtk

[
(gk−αβ2 ∗ gαi ∗ Sβα)(t)f (2i+1)(0)

]
+ (gk−αβ ∗ gα−1 ∗ Sβα ∗ f (k))(t).

Using the preceding equality, Lemma 4.19(c) and Lemma 4.5, we get that for every
t ≥ 0,

D
αβ
2
t (Pβα ∗ f)(t) =

k−1
2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+1(t)Ajf (2i)(0)

+

k−1
2∑
i=0

(gα(n− β2 )+(2−α)i+α ∗ Sβα)(t)An−if (2i)(0)

+

k−1
2 −1∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+2(t)Ajf (2i+1)(0)
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+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+α+1 ∗ Sβα)(t)An−if (2i+1)(0)

+ (gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f (k))(t). (7.4)

Using the above equality we get that for every t ≥ 0,

d

dt

[
D

αβ
2
t (Pβα ∗ f)(t)

]
=

k−1
2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α(t)Ajf (2i)(0)

+

k−1
2∑
i=0

(gα(n−β)+(2−α)i+α−1 ∗ Sβα)(t)An−if (2i)(0)

+

k−1
2 −1∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+1(t)Ajf (2i+1)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+α ∗ Sβα)(t)An−if (2i+1)(0)

+ (gk−αβ2 ∗ gα−1 ∗ Sβα)(t)f (k)(0) + (gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f (k+1))(t).

(7.5)

Now, it follows from (7.4), (7.5), Lemma 4.19, Lemma 4.5 and the hypothesis, that

D
αβ
2
t (Pβα ∗ f)(t) ∈ C([0,∞);D(A)) ∩ C1([0,∞);X).
If k is even, proceeding as for the case k odd and using Lemma 4.19, Lemma

4.5 and the hypothesis, we also get that D
αβ
2
t (Pβα ∗ f)(t) ∈ C([0,∞);D(A)) ∩

C1([0,∞);X).

From (7.4) and (7.5), it is clear that Dαβ
t (Pβα ∗ f)(0) = d

dt

[
D

αβ
2
t (Pβα ∗ f)

]
(0) = 0.

We have shown that u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X), u(0) = x and u′(0) = y.
By the proof of Theorem 6.5(a) we have that

g2−α ∗
[
D

αβ
2
t Sβα(t)x− x+D

αβ
2
t (g1 ∗ Sβα)(t)y − ty

]
∈ C2([0,∞);X).

Using (7.4), we have that if k is odd, then for every t ≥ 0,

d2

dt2

[
g2−α ∗D

αβ
2
t (Pβα ∗ f)(t)

]
=

k−1
2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+1(t)Ajf (2i)(0)

+

k−1
2∑
i=0

(gα(n− β2 )+(2−α)i ∗ Sβα)(t)An−if (2i)(0)

+

k−1
2 −1∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+2(t)Ajf (2i+1)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+1 ∗ Sβα)(t)An−if (2i+1)(0)
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+ (gk−αβ2 ∗ Sβα)(t)f (k)(0) + (gk−αβ2 ∗ Sβα ∗ f (k+1))(t).

We get a similar formula if k is even. Therefore, (g2−α∗D
αβ
2
t (Pβα∗f)) ∈ C2([0,∞);X)

and hence, (g2−α ∗ (u − u(0) − u′(0)g2) ∈ C2([0,∞);X). It also follows from the
proof of Theorem 6.5(a) that for every t ≥ 0,

Dαt
[
D

αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

]
= A

[
D

αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

]
. (7.6)

Using Lemma 4.5, we get that for every t ≥ 0,

Dαt D
αβ
2
t (Pβα ∗ f)(t) =Dαt D

αβ
2
t (gα−1 ∗ Sβα ∗ f)(t)

=
(
g2−α ∗

d2

dt2
[
D

αβ
2
t (gα−1 ∗ Sβα ∗ f)

])
(t)

=
dk+2

dtk+2

[
(gk+2−αβ2 −α

∗ gα−1 ∗ Sβα ∗ f)(t)
]

=
dk+2

dtk+2

[
(gk+2 ∗ f)(t) + (gk+2−αβ2

∗Agα−1 ∗ Sβα ∗ f)(t)
]

=f(t) +A
dk

dtk

[
(gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f)(t)

]
=f(t) +AD

αβ
2
t (Pβα ∗ f)(t).

(7.7)

It follows from (7.6) and (7.7) that Dαt u(t) = Au(t) + f(t) for every t ≥ 0. Hence,
u is a classical solution of (7.1) and this completes the proof of the existence part
in the assertion (a).

(b) Let x, y ∈ D(An). From the proof of Theorem 6.5(b) we have D
αβ
2
t Sβα(t)x+

D
αβ
2
t (g1 ∗ Sβα)(t)y ∈ C([0,∞);X) and that Iαt

[
D

αβ
2
t Sβα(t)x + D

αβ
2
t (g1 ∗ Sβα)(t)y

]
∈

D(A) for all t ≥ 0. Assume that f satisfies the hypothesis in the statement of part
(b) of the theorem. Using (7.4), Lemma 4.6, Lemma 4.5 and Lemma 4.19, we have
that if k is odd, then for every t ≥ 0,

Iαt D
αβ
2
t

(
Pβα ∗ f

)
(t) =gα ∗D

αβ
2
t

(
gα−1 ∗ Sβα ∗ f

)
(t)

=

k−1
2 −1∑
i=0

n−2−i∑
j=0

gα(i+j)+(2−α)i+α+1(t)Ajf (2i)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+α ∗ Sβα)(t)An−1−if (2i)(0)

+

k−1
2 −2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+2(t)Ajf (2i+1)(0)

+

k−1
2 −2∑
i=0

(gα(n− β2 )+(2−α)i+α+1 ∗ Sβα)(t)An−1−if (2i+1)(0)

+ (gk−αβ2 ∗ gα−1 ∗ gα ∗ Sβα ∗ f (k))(t) ∈ D(A).
(7.8)
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We get a similar formula if k is even. Hence, for every t ≥ 0,

Iαt u(t) = Iαt D
αβ
2
t Sβα(t)x+ Iαt D

αβ
2
t (g1 ∗ Sβα)(t)y + Iαt D

αβ
2
t

(
Pβα astf

)
(t) ∈ D(A).

It follows from (6.5) in the proof of Theorem 6.5 that for every t ≥ 0,

D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

= x+ ty +A
[
(gα ∗D

αβ
2
t Sβα)(t)x+ (gα ∗D

αβ
2
t (g1 ∗ Sβα))(t)y

]
.

(7.9)

Proceeding as in (7.3) and using Lemma 4.5 and (2.3), we have that for every t ≥ 0,

D
αβ
2
t

(
Pβα ∗ f

)
(t) =

dk

dtk

[
(gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f)(t)

]
=
dk

dtk

[
(gk ∗ gα ∗ f)(t) +A(gα ∗ gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f)(t)

]
=(gα ∗ f)(t) +Agα ∗

dk

dtk

[
(gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f)(t)

]
=(gα ∗ f)(t) +A(gα ∗D

αβ
2
t

(
Pβα ∗ f

)
)(t).

(7.10)
Combining (7.9) and (7.10), we get that for every t ≥ 0,

u(t) =D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y +D

αβ
2
t

(
Pβα ∗ f

)
(t)

=x+ ty +A(gα ∗ u)(t) + (gα ∗ f)(t).

Hence, u is a mild solution of Problem (7.1). This completes the proof of the
existence part in the assertion (b).

It remains to show the uniqueness of solutions. Let x, y ∈ D(An) and let f
satisfy the assumptions in part (b) of the theorem. Let u be a mild solution. Using
(6.3) and proceeding as in (7.8) we get that, if k is odd, then for every t ≥ 0,

(g1 ∗ u)(t) =
n−1∑
j=0

gαj+2(t)Ajx+ (gα(n− β2 )+1 ∗ Sβα)(t)Anx

+
n−1∑
j=0

gαj+3(t)Ajy + (gα(n− β2 ) ∗ g2 ∗ Sβα)(t)Any

+

k−1
2 −1∑
i=0

n−2−i∑
j=0

gα(i+j)+(2−α)i+2(t)Ajf (2i)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+1 ∗ Sβα)(t)An−1−if (2i)(0)

+

k−1
2 −2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+3(t)Ajf (2i+1)(0)

+

k−1
2 −2∑
i=0

(gα(n− β2 )+(2−α)i+2 ∗ Sβα)(t)An−1−if (2i+1)(0)

+ (gk−αβ2 ∗ gα ∗ Sβα ∗ f (k))(t).

(7.11)
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We get a similar equality if k is even. Since by assumption (g1 ∗ Sβα)(t) is ex-
ponentially bounded, and that there exist some constants M1, ω1 ≥ 0 such that
‖(gk−αβ2 ∗ f

(k))(t)‖ ≤ M1e
ω1t, t ≥ 0, it follows from (7.11) that if k is odd, then

there exist some constants M,ω ≥ 0 such that for every t ≥ 0,

‖(g1 ∗ u)(t)‖

≤Meωt
[ n∑
j=0

(‖Ajx‖+ ‖Ajy‖) +

k−1
2 −1∑
i=0

n−2−i∑
j=0

‖Ajf (2i)(0)‖

+

k−1
2 −1∑
i=0

‖An−1−if (2i)(0)‖
]

+Meωt
[ k−1

2 −2∑
i=0

n−1−i∑
j=0

‖Ajf (2i+1)(0)‖

+

k−1
2 −2∑
i=0

‖An−1−if (2i+1)(0)‖+M1e
ω1t
]
.

We get a similar estimate if k is even. We have shown that (g1 ∗ u)(t) is exponen-
tially bounded. Now, the uniqueness of mild and classical solutions follows from
Proposition 7.3 and this completes the proof. �

Remark 7.6. Theorem 7.5 holds in the case β = 0 as follows: Let A be a closed
linear operator with domain D(A) defined on a Banach space X. Let 1 < α ≤ 2.
Assume that A generates an (α, 1)-resolvent family Sα. Let Pα be the (α, α)-
resolvent family generated by A. Then the following assertions hold.

(a) For every f ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) exponentially bounded, and
for every x, y ∈ D(A), Problem (7.1) has a unique classical solution

u(t) = Sα(t)x+ (g1 ∗ Sα)(t)y + (Pα ∗ f)(t), t ≥ 0.

(b) For every f ∈ C([0,∞);X) exponentially bounded, and for every x, y ∈ X,
Problem (7.1) has a unique mild solution u given by (7.2).

8. Applications

In this section we give some examples where the situations of the previous sec-
tions are applied. Throughout this section Ω ⊂ RN denotes an open set with Lips-
chitz continuous boundary ∂Ω. Let the real valued coefficients satisfy aij ∈ L∞(Ω),
bj , cj , d ∈ L∞(Ω), i, j = 1, 2, . . . , N . We assume also that there exists a constant
µ > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ µ|ξ|2 for all ξ ∈ RN ,

for a.e. x ∈ Ω. Let A be the elliptic operator formally given by

Au =
N∑
j=1

Dj

( N∑
i=1

ai,jDiu+ bju
)
−
( N∑
i=1

ciDiu+ du
)
. (8.1)

Next we have an example for Dirichlet, Neumann and Robin boundary conditions
on L2-spaces.
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Example 8.1. For 1 < α ≤ 2, we consider the fractional order Cauchy problem

Dαt u(t, x)−Au(t, x) = f(t, x), t > 0, x ∈ Ω,

∂u(t, z)
∂νA

+ γ(z)u(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = u0(x),
∂u(0, x)
∂t

= u1(x), x ∈ Ω.

(8.2)

Here, u0, u1 ∈ L2(Ω), f ∈ C([0,∞);L2(Ω)), A is the operator given in (8.1),

∂u

∂νA
=

N∑
j=1

( N∑
i=1

aijDiu+ bju
)
· νj ,

where ν denotes the outer normal vector of Ω at the boundary ∂Ω and γ ≥ 0
belongs to L∞(∂Ω) of γ = ∞. If γ = ∞, then the boundary conditions in (8.2)
become the Dirichlet boundary conditions u(t, z) = 0, t > 0 and z ∈ ∂Ω (see e.g.
[6, 7]).

We consider the first order Sobolev spaces

H1(Ω) := {u ∈ L2(Ω),
∫

Ω

|∇u|2 dx <∞}

endowed with the norm

‖u‖H1(Ω) :=
(∫

Ω

|u|2 dx+
∫

Ω

|∇u|2 dx
)1/2

,

and H1
0 (Ω) = D(Ω)

H1(Ω)
where D(Ω) denotes the space of test functions on Ω.

Let Aγ be the bilinear form on L2(Ω) with domain H1(Ω) and given for u, v ∈
H1(Ω) by

Aγ(u, v) :=
∫

Ω

N∑
j=1

( N∑
i=1

aijDiu+ bju
)
Djv dx

+
∫

Ω

( N∑
j=1

cjDju+ du
)
v dx+

∫
∂Ω

γuv dσ,

where σ denotes the usual Lebesgue surface measure on the boundary ∂Ω, and let
AD be the bilinear form on L2(Ω) with domain H1

0 (Ω) and given for u, v ∈ H1
0 (Ω)

by

AD(u, v) :=
∫

Ω

N∑
j=1

( N∑
i=1

aijDiu+ bju
)
Djv dx+

∫
Ω

( N∑
j=1

cjDju+ du
)
v dx.

It is easy to see that the bilinear forms Aγ and AD are closed in L2(Ω). Let A2,γ

and A2,D be the closed linear operators in L2(Ω) associated with the form Aγ and
AD, respectively. That is,

D(A2,γ) := {u ∈ H1(Ω), ∃ v ∈ L2(Ω), Aγ(u, ϕ) = (v, ϕ)L2(Ω), ∀ϕ ∈ H1(Ω)}
A2,γu = v

and
D(A2,D) := {u ∈ H1

0 (Ω), ∃ v ∈ L2(Ω), AD(u, ϕ) = (v, ϕ)L2(Ω), ∀ϕ ∈ H1
0 (Ω)}

A2,Du = v.
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One has the following more explicit description of the operators A2,γ and A2,D on
L2(Ω).

D(A2,γ) = {u ∈ H1(Ω), Au ∈ L2(Ω),
∂u

∂νA
+ γu = 0}, A2,γu = Au,

D(A2,D) = {u ∈ H1
0 (Ω) : Au ∈ L2(Ω)}, A2,Du = Au.

The operator A2,β (resp. A2,D) is a realization of the operator A in L2(Ω) with
Robin boundary conditions and Neumann boundary conditions if γ = 0 (resp. with
Dirichlet boundary conditions). With this setting Problem (8.2) can be rewritten
as an abstract Cauchy problem in the Hilbert space L2(Ω),

Dαt u(t) = Ãu(t) + f(t), t ≥ 0, 1 < α ≤ 2,

u(0) = u0, ut(0),= u1,

with Ã = A2,γ or A2,D. It is well-known (see e.g. [3]) that the operators A2,β and
A2,D generate cosine families on L2(Ω) and hence generate (α, 1)-resolvent families
Sα for every 1 < α ≤ 2. Therefore all the results in Theorem 7.5 hold for Problem
(8.2) with n = k = 0.

Next, we consider the one-dimensional case.

Example 8.2 (Elliptic operators in one-dimension). Let a ∈ W 1,∞(0, 1) satisfy
a(x) ≥ µ0 > 0 for some constant µ0. Let b, c ∈ L∞(0, 1), 1 ≤ p <∞ and let αj , βj
(j = 0, 1) be complex numbers such that (αj , βj) 6= (0, 0). For 1 < α ≤ 2, we
consider the fractional order Cauchy problem

Dαt u(t, x) = a(x)uxx(t, x) + b(x)ux(t, x) + c(x)u(t, x) + f(t, x), t > 0, x ∈ (0, 1),

αjux(t, j) + βju(t, j) = 0, j = 0, 1, t > 0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1).
(8.3)

Let Ãp be the operator defined on Lp(0, 1) by

D(Ãp) := {u ∈W 2,p(0, 1) : αju′(j) + βju(j) = 0, j = 0, 1},
Apu = a(x)u′′ + b(x)u′ + c(x)u.

The operator Ãp is a realization of A (given by Au = a(x)u′′ + b(x)u′ + c(x)u)
on Lp(0, 1) with Dirichlet boundary conditions if αj = 0, βj 6= 0 (j = 0, 1), with
Neumann boundary conditions if αj 6= 0, βj = 0 (j = 0, 1) and Robin boundary
conditions if αj 6= 0, βj 6= 0 (j = 0, 1). With the same assumption on αj , βj , a
realization Ã∞ of A with Dirichlet boundary condition on C0(0, 1) := {u ∈ C[0, 1] :
u(0) = u(1) = 0} or with Neumann and Robin boundary conditions on C[0, 1] is
given by

D(Ã∞) := {u ∈ C2[0, 1] : αju′(j) + βju(j) = 0, j = 0, 1},
A∞u = a(x)u′′ + b(x)u′ + c(x)u.

By [10, 30] the operator Ãp generates a cosine family on Lp(0, 1) and Ã∞ generates
a cosine family on C[0, 1] (on C0(0, 1) if it is Dirichlet boundary condition). The
case of Wentzell (or dynamical) boundary conditions on Lp(0, 1)×C and on C[0, 1]
has been investigated in [1, 31]. Therefore, one has the same results for Problem
(8.3) as the ones given in Example 8.1. More precisely, letting Xp := Lp(0, 1)
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(or Lp(0, 1) × C in the case of Wentzell boundary conditions) if 1 ≤ p < ∞ and
X∞ = C[0, 1] (or C0(0, 1) in the case of Dirichlet boundary condition), then all the
results in Theorem 7.5 hold for Problem (8.3) with n = k = 0.

Example 8.3 (Elliptic operators on general Lp spaces). For simplicity we assume
that Ω ⊂ RN (N ≥ 2) is bounded. For 1 < α ≤ 2, we consider the fractional order
Cauchy problem

Dαt u(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Ω,

∂u(t, z)
∂νA

+ γ(z)u(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = u0(x),
∂u(0, x)
∂t

= u1(x), x ∈ Ω.

(8.4)

Here, u0, u1 ∈ Lp(Ω), f ∈ C([0,∞);Lp(Ω)), for some p ∈ [1,∞) (p 6= 2), or
u0, u1 ∈ C(Ω), f ∈ C([0,∞];C(Ω)) are given functions, and the operator A is given
in (8.1). Let Ã be the closed linear operator in L2(Ω) introduced in Example 8.1.
Recall that Ã = A2,γ or Ã = A2,D. For 2 ≤ p < ∞, we let Ap denote the part of
the operator A2,γ in Lp(Ω) and for 1 ≤ p < 2, we let Ap be the closure in Lp(Ω) of
the operator B defined by

D(B) = {u ∈ D(A2,γ) ∩ Lp(Ω), Au ∈ Lp(Ω)}, Bu = A2,γu = Au.

The operator Ap is a realization of the operator A in Lp(Ω) with Robin boundary
conditions, Neumann boundary conditions if γ = 0 and Dirichlet boundary condi-
tions if γ =∞. By [30, 42], the operator Ap generates a β-times integrated cosine
family (Cβ(t)) on Lp(Ω) with β := N | 12 −

1
p |. Hence, all the results in Theorem 7.5

hold for Problem (8.4) with n := dβe and k := dαβ2 e.
Letting A∞ be a realization of the operator A with Robin, Neumann or Dirichlet

boundary conditions on L∞(Ω), we have that A∞ generates a β-times integrated
cosine family on L∞(Ω) with β > N

2 and one can also apply Theorem 7.5. We
notice that D(A∞) is not dense in L∞(Ω).

Next, we consider the case of the Laplace operator on some special open subsets
of RN .

Example 8.4 (Laplace operator on some special open sets). Let Ω := RN or
Ω := (0, 1)N ⊂ RN and let Ãp be a realization of the Laplace operator on Lp(Ω)
(p 6= 2) with Dirichlet, Neumann or Robin boundary conditions defined above. By
[17, 24, 30] the operator Ãp generates a β-times integrated cosine family on Lp(Ω)
with β = (N − 1)| 12 −

1
p |. Therefore, one has the same results as in Example 8.3

with here β = (N − 1)| 12 −
1
p |.

As in the previous example, here also, letting A∞ be a realization of the Laplace
operator with Robin, Neumann or Dirichlet boundary conditions on L∞(Ω), we
have that A∞ generates a β-times integrated cosine family on L∞(Ω) with β = N−1

2
and one can also apply Theorem 7.5. We also notice that D(A∞) is not dense in
L∞(Ω).

We conclude the paper with an example involving a Schrödinger like operator.
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Example 8.5. We consider the fractional order Schrödinger like equation

Dαt u(t, x) = eiθ∆pu(t, x) + f(t, x), t > 0, x ∈ RN , 1 < α < 2,

u(0, x) = u0(x),
∂u(0, x)
∂t

= u1(x), x ∈ RN .
(8.5)

Here, the operator ∆p is a realization of the Laplace operator on Lp(RN ), 1 ≤ p <
∞, the angle θ satisfies π

2 < θ <
(
1− α

4

)
π. Let Ap := eiθ∆p. Then D(Ap) =

W 2,p(RN ). We have shown in Example 4.11 that Ap generates an (α, 1) = (α, 1)0-
resolvent family Sα on Lp(RN ). Using Theorem 7.5 we get the following results on
existence of solutions to Problem (8.5).

• For every f ∈ C([0,∞);W 2,p(RN )) ∩ C1([0,∞);Lp(RN )) and u0, u1 ∈
W 2,p(RN ), Problem (8.5) has a classical solution u.
• For every f ∈ C([0,∞);Lp(RN )) and u0, u1 ∈ Lp(RN ), Problem (8.5) has

a mild solution u.
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