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DYNAMICS OF THREE DIMENSIONAL FLOW IN
POROUS MEDIA

NIKOLA KONATAR

Abstract. We describe the dynamics of the interface between two immiscible

fluids of different densities in three dimensional porous media. This generalizes
previous results given in two dimensions in which existence of the stream func-

tion played a substantial role. The most important contribution of the paper

is the introduction of a method which avoids usage of the stream function.

1. Introduction

Problems of flow in porous media are unavoidable in most of the branches of
industry or science. We mention environmental engineering, petroleum research,
traffic flow, sedimentation processes, radar shape-from-shading problems, blood
flow etc. In the current contribution, we investigate dynamics of the interface
between two (almost) immiscible fluids governed by Darcy law.

Our method is based on the level set procedure [1, 3, 4, 7] in the frame of which
we track the interface points. The motion of the interface is governed by a transport
equation and the points move along characteristics. Although the velocity which
determines the characteristics are unknown, they can be expressed via appropriate
Green type functions [2, 3].

An important property of the method to be presented here is the fact that we
succeeded in avoiding the use of the stream function (which does not exist for
dimensions greater than two) by, roughly speaking, replacing it by the pressure
function. The stream function is actually a potential corresponding to a two di-
mensional divergence free vector field (expressing the immiscibility of the involved
liquids; see (2.3) below). It played a substantial role in e.g. [1, 3, 8] where the
research similar to ours is conducted. From the same reason, in e.g. [6], onset
of convection in a gravitationally unstable diffusive boundary layer in porous me-
dia were described only in two-dimensional situation. We believe that our method
has a potential for applications in different research directions when it comes to
investigations in dimensions more than two.

In the next section, we use the method to prove rigorously that a tip of the
interface directed downwards moves down if the heavier liquid is up and vice versa.
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2. The Darcy law

Dynamics of interface between two immiscible fluids of different densities in
porous media is governed by the Darcy law, conservation of mass, and immiscibility
(in three-dimensional environment):

u = −K
µ

(∇P − ρg), u = (u, v, w), (2.1)

∂t(Φρ) + div(ρu) = 0, (2.2)

div(u) = 0. (2.3)

Here, K represents a positive definite permeability matrix, µ is the viscosity of the
fluids, and Φ is the porosity constant of the porous media. We assume that these
parameters are constant, and they can be normalized to unity. P is the pressure, ρ
is the density of fluids, and g is vertically directed gravity. The divergence is taken
with respect to the variables x, y and z.

Next, we will assume that the flow of the fluid is periodic with respect to the x
and y with periods 2L1 and 2L2, respectively, and that the interface between the
fluids in the moment t can be described by the set

Γt = {(x, y, z) ∈ [−L1, L1]× [−L2, L2]× [0, 1]|φt(x, y, z) = 0},

where φt : [−L1, L1]× [−L2, L2]× [0, 1]→ R. The initial interface position is given
by Γ0 = {(x, y, z) : φ0(x, y, z) = 0}. Using this we can define the density of the
fluids as (in the sequel, ρh and ρl are constants):

ρ = ρl + (ρh − ρl)H(φt(x, y, z)), ρh > ρl. (2.4)

with ρl and ρh representing the densities of the lighter and heavier fluid respectively,
and H is the Heaviside function. From this definition we can see that the heavier
fluid is in the area where φt > 0, while the lighter is in the area where φt < 0.

We will assume that the speed of fluids vanishes at boundaries

u|x=−L1 = u|x=L1 = u|y=−L2 = u|y=L2 = u|z=0 = u|z=1 = 0 (2.5)

With such assumptions, it is natural to assume hydrostatic pressure at boundaries:

P |x=±L1 = P |y=±L2 = ρlg(1− z). (2.6)

Note that we actually assume that there is no heavier fluid at the boundary.
We rewrite equations (2.1), (2.2) and (2.3) to get:

u = −∂P̃
∂x

, (2.7)

v = −∂P̃
∂y

, (2.8)

w = −∂P̃
∂z

+ ρ̃g, (2.9)

∂ρ̃

∂t
+ u

∂ρ̃

∂x
+ v

∂ρ̃

∂y
+ w

∂ρ̃

∂z
= 0, (2.10)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.11)
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with u, v and w being the speeds of the fluid in the direction of the x, y and z axis
respectively, and P̃ = P − ρlg(1 − z), ρ̃ = (ρh − ρl)H(φt). We can see from (2.6)
that P̃ = 0 at the side boundaries.

Inserting (2.4) into (2.10) we obtain

∂φt

∂t
+ u|Γ

∂φt

∂x
+ v|Γ

∂φt

∂y
+ w|Γ

∂φt

∂z
= 0. (2.12)

Looking at the characteristics of this equation we obtain ẋ = u, ẏ = v and ż =
w, with (x, y, z) being the position of particles on the interface Γt. The initial
conditions are given by x(0) = x0, y(0) = y0, z(0) = z0, (x0, y0, z0) ∈ Γ0.

Next, we differentiate equation (2.7) with respect to x, (2.8) with respect to y,
(2.9) with respect to z and add the resulting equation we obtain:

0 = div u = −∆P̃ +
∂ρ̃g

∂z
. (2.13)

Now introduce a non-decreasing function ω ∈ C∞(R) such that

ω(ξ) =

{
0, ξ ≤ 0
1, ξ ≥ 1

.

It is well known that Hε(x) = ω(x
ε ) converges weakly to the Heaviside function

H as ε→ 0. Also, δε(x) = 1
εH
′
ε(x

ε ) ⇀ δ(x) as ε→ 0.
Now, take instead of ρ̃ in (2.7)-(2.11) the function

ρ̃ = (ρh − ρl)Hε(φt(x, y, z)),

and denote the velocity and pressure accordingly. In particular, instead of (2.13)
we have

∆P̃ε =
∂ρ̃ε

∂z
. (2.14)

We introduce a sequence of smooth functions Gε : [−L1, L1] × [−L2, L2] ×
[−1, 1]→ R such that:

−∆Gε = δε(x)δε(y)δ′ε(z), (2.15)

Gε|x=−L1 = Gε|x=L1 = Gε|y=−L2 = Gε|y=L2 = Gε|z=−1 = Gε|z=1 = 0. (2.16)

It is not difficult to see that Gε is an odd function with respect to z, and therefore
we can extend it periodically on the entire R with respect to the z direction so that
the extension remains a solution to (2.15).

This sequence of functions converges in the sense of distributions to a distribution
G, which satisfies

−∆G = δ(x)δ(y)δ′(z),

G|x=−L1 = G|x=L1 = G|y=−L2 = G|y=L2 = G|z=±k = 0, k ∈ Z.
(2.17)

Lemma 2.1. The distributions G and Gε are positive for z < 0 and negative for
z > 0.

Proof. It is easy to see that sign(δε(x)δε(y)δ′ε(z)) = − sign(z), so ∆Gε > 0 for z > 0
and ∆Gε < 0 for z < 0. Now we use the maximum principle, and we obtain that
Gε is positive for z < 0 and negative for z > 0. Since G is the limit of Gε as ε→ 0,
we conclude that the same result applies for G. �
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Now, we extend the system of equations (2.1), (2.2), (2.3) on the set [−L1, L1]×
[−L2, L2]×R in the following manner (see the two-dimensional projection on Figure
1):

(a) we map the area Π symmetrically onto [−L1, L1]×[−L2, L2]×[−1, 0] by intro-
ducing ρ̃(x, y,−z) = ρ̃(x, y, z), P̃ (x, y,−z) = P̃ (x, y, z), g(−z) = −g, (x, y, z) ∈ Π;

(b) we periodically extend this to [−L1, L1]× [−L2, L2]× R.

Figure 1. Extending the system from the area Π = [−L1, L1] ×
[−L2, L2]× [0, 1] onto [−L1, L1]× [−L2, L2]× R

We prove the following theorem.

Theorem 2.2. Assume that the function φ0 has a minimum at the point (x0, y0)
and that φ0(0, 0) = z0 ∈ (0, 1). Then the vertical component of the velocity of the
fluid w(0, 0, z0) at (0, 0, z0) is less than zero (i.e. the fluid moves downward at the
tip).

Proof. According to the choice of the approximation of the Heaviside function, we
have at the initial moment ρ̃ε(0, 0, z0)

∣∣
t=0

= 0. Therefore, from (2.12) and (2.9) we
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obtain the following (at t = 0 which we imply below):
ż(0, 0, z0) = wε(0, 0, z0)

= −∂P̃ε

∂z
(0, 0, z0) + ρ̃ε(0, 0, z0)

= −〈∂P̃ε

∂z
, δ(x)δ(y)δ(z − z0)〉

= 〈P̃ε, δ(x)δ(y)δ′(z − z0)〉

= 〈P̃ε,∆G〉 = 〈∆P̃ε, G〉 = 〈g ∂ρ̃ε

∂z
,G〉

→ (ρh − ρl)g
∫ L1

−L1

∫ L2

−L2

G(x, y, φ0(x, y)) dx dy as ε→ 0,

(2.18)

where, when integrating by parts, we took into account the periodicity of P̃ and
G with respect to z. Here, 〈·, ·〉 represents the pairing of a distribution and a test
function.

Since (0, 0) is the minimum of the function φ, we can conclude that φ(x, y) > 0 for
all (x, y) ∈ [−L1, L1]×[−L2, L2]. Since G < 0 for z = φ(x, y) > 0, the whole integral
(2.18) must be negative. Thus, we conclude that w(0, 0, z0) = lim

ε→0
wε(0, 0, z0) must

be negative i.e. the tip of the interface will move downwards. �
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